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CHEBYSHEV TYPE INEQUALITIES INVOLVING GENERALIZED

KATUGAMPOLA FRACTIONAL INTEGRAL OPERATORS

ERHAN SET, JUNESANG CHOI AND İLKER MUMCU

Abstract. A number of Chebyshev type inequalities involving various fractional integral

operators have, recently, been presented. Here, motivated essentially by the earlier works

and their applications in diverse research subjects, we aim to establish several Chebyshev

type inequalities involving generalized Katugampola fractional integral operator. Rele-

vant connections of the results presented here with those (known and new) involving

relatively simpler and familiar fractional integral operators are also pointed out.

1. Introduction and preliminaries

Many integral inequalities of various types have been presented in the literature. Among

them, we choose to recall the following Chebyshev inequality (see [3]):

1

b −a

∫b

a
f (x)g (x)d x ≥

(

1

b −a

∫b

a
f (x)d x

)(

1

b −a

∫b

a
g (x)d x

)

, (1.1)

where f and g are two integrable and synchronous functions on [a,b]. Here, two functions f

and g are called synchronous on [a,b] if

(

f (x)− f (y)
)(

g (x)− g (y)
)

≥ 0 (x, y ∈ [a,b]).

The inequality (1.1) has many applications in diverse research subjects such as numerical

quadrature, transform theory, probability, existence of solutions of differential equations and

statistical problems. My authors have investigated generalizations of the Chebyshev inequal-

ity (1.1) which are called Chebyshev type inequalities. Take some examples. Niculescu and

Roventa [8] proved that for two functions f , g ∈ L∞([a,b]), the Chebyshev inequality holds

under the following assumption:

(

f (x)−
1

x −a

∫b

a
f (x)d x

)(

g (x)−
1

x −a

∫b

a
g (x)d x

)

≥ 0.
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Dahmani et al. [5] established the Chebyshev inequality without synchronous function con-

dition. Also, recently, many authors have presented Chebyshev type inequalities involving

various fractional integral operators (see, e.g., [10] and the references therein). Sousa et al.

[13] established two Grüss-type inequalities involving generalized Katugampola fractional in-

tegral operator (1.8).

Motivated by the above-cited works, in this paper, we aim to establish Chebyshev type

inequalities with two synchronous functions involving generalized Katugampola fractional

integral operator (1.8). Also, we we present a Chebyshev type inequality without two syn-

chronous function assumption by substituting another condition. Further, the results pre-

sented here, being very general, are pointed out to include various known and new inequali-

ties involving some relatively simpler and familiar fractional integral operators as their special

cases.

For our purpose, we recall some definitions. The beta function B (α,β) is defined by (see,

e.g., [14, Section 1.1])

B (α, β)=



















∫1

0
tα−1(1− t )β−1 d t (ℜ(α) > 0; ℜ(β) > 0)

Γ(α)Γ(β)

Γ(α+β)

(

α, β ∈C\Z−
0

)

,

(1.2)

where Γ is the familiar Gamma function. Here and in the following, let C, R, R+, N, and Z
−
0

be the sets of complex numbers, real numbers, positive real numbers, positive integers, and

non-positive integers, respectively, and let R+
0 :=R

+∪ {0}.

Let [a,b] (−∞< a < b <∞) be a finite interval on the real axis R. The Riemann-Liouville

fractional integrals (left-sided) of a function f of order α ∈C with ℜ(α) > 0 are defined by (see,

e.g., [2, 7, 9, 11])
(

Jαa+ f
)

(x) :=
1

Γ(α)

∫x

a

f (t )

(x − t )1−α
d t (x > a). (1.3)

The Liouville fractional integrals (left-sided) of a real function f of order α ∈ C with

ℜ(α) > 0 are defined by (see, e.g., [2, 7, 9, 11])

(

Iα0+ f
)

(x) :=
1

Γ(α)

∫x

0

f (t )

(x − t )1−α
d t

(

x ∈R
+
)

. (1.4)

Let (a,b) (−∞ < a < b < ∞) be a finite or an infinite interval on the half-axis R
+. The

Hadamard fractional integrals (left-sided) of a real function f ∈ L(a,b) of order α ∈ C with

ℜ(α) > 0 are defined by (see, e.g., [2, 7, 9, 11])

(

Hα
a+ f

)

(x) :=
1

Γ(α)

∫x

a

(

log
x

t

)α−1 f (t )

t
d t (a < x < b). (1.5)
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Let (a,b) (−∞ ≤ a < b ≤ ∞) be a finite or an infinite interval on the half-axis R
+. Also,

let ℜ(α) > 0, σ ∈ R
+, and η ∈ C. The Erdélyi-Kober fractional integrals (left-sided) of a real

function f ∈ L(a,b) of order α ∈C are defined by (see, e.g., [7, 9])

(

Iαa+,σ,η f
)

(x) :=
σx−σ(α+η)

Γ(α)

∫x

a

tσ(η+1)−1

(xα− tα)1−α
f (t )d t (0 ≤ a < x < b ≤∞). (1.6)

Let [a,b] ⊂ R be a finite interval. The Katugampola fractional integrals (left-sided) of a

real function f ∈ X
p
c (a,b) of order α ∈C with ℜ(α> 0) and ρ ∈R

+ are defined by (see [6])

(

ρ Iαa+ f
)

(x) :=
ρ1−α

Γ(α)

∫x

a

tρ−1

(xρ − tρ)1−α
f (t )d t (x > a). (1.7)

Here, the space X
p
c (a,b) (c ∈ R, 1 ≤ p ≤∞) consist of those complex-valued Lebesque mea-

surable functions ϕ on (a,b) for which ‖ϕ‖X
p
c
<∞, with

‖ϕ‖X
p
c
=

(
∫b

a
|xcϕ(x)|p

d x

x

)1/p

(1 ≤ p <∞)

and

‖ϕ‖X
p
c
= esssupx∈(a,b)[xc

|ϕ(x)|].

Let 0 ≤ a < x < b ≤∞. Also, let ϕ ∈ X
p
c (a,b), α ∈R

+, and β, ρ, η, κ ∈R. Then the fractional

integrals (left-sided and right-sided) of a function ϕ are defined, respectively, by (see [12])

(

ρ I
α,β
a+,η,κϕ

)

(x) :=
ρ1−βxκ

Γ(α)

∫x

a

τρ(η+1)−1

(xρ−τρ)1−α
ϕ(τ)dτ (1.8)

and
(

ρ I
α,β

b−,η,κ
ϕ

)

(x) :=
ρ1−βxρη

Γ(α)

∫b

x

τκ+ρ−1

(xρ−τρ)1−α
ϕ(τ)dτ. (1.9)

Remark 1.1. The fractional integral (1.8) contains five well-known fractional integrals as its

particular cases (see also [13]):

(i) Setting κ= 0, η= 0 and taking the limit ρ→ 1 in (1.8), the integral operator (1.8) reduces

to the Riemann-Liouville fractional integral (1.3) (see also [7, p. 69]).

(ii) Setting κ = 0, η = 0, a = 0 and taking the limit ρ → 1 in (1.8), the integral operator (1.8)

reduces to the Liouville fractional integral (1.4) (see also [7, p.79]).

(iii) Setting β = α, κ = 0, η = 0, and taking the limit ρ → 0+ with L’Hôspital’s rule in (1.8),

the integral operator (1.8) reduces to the Hadamard fractional integral (1.5) (see also [7,

p. 110]).

(iv) Setting β= 0 and κ=−ρ(α+η) in (1.8), the integral operator (1.8) reduces to the Erdélyi-

Kober fractional integral (1.6) (see also [7, p.105]).
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(v) Setting β=α, κ= 0 and η= 0 in (1.8), the integral operator (1.8) reduces to the Katugam-

pola fractional integral (1.7) (see also [6]).

2. Chebyshev type inequalities with synchronous functions

Here, we establish Chebyshev type inequalities with synchronous functions involving the

Katugampola fractional integrals (1.7). By using (1.2), we obtain (see [13, Eq. (3.1)])

ρ1−βxκ

Γ(α)

∫x

0

τρ(η+1)−1

(xρ −τρ)1−α
dτ=

xκ+ρ(η+α)
Γ(η+1)

ρβΓ(α+η+1)
:=Λ

ρ,β
x,κ(α,η) (2.1)

(

α, x ∈R
+; β, ρ, η, κ ∈R

)

.

We also let
(

ρ I
α,β
0+,η,κϕ

)

(x) :=
(

ρ I
α,β
η,κ ϕ

)

(x). (2.2)

Theorem 2.1. Let β,κ ∈R, x, α, ρ ∈R
+, and η ∈R

+
0 . Also, let f and g be two integrable functions

which are synchronous on [0,∞). Then

(

ρ I
α,β
η,κ f g

)

(x) ≥
1

Λ
ρ,β
x,κ (α,η)

(

ρ I
α,β
η,κ f

)

(x)
(

ρ I
α,β
η,κ g

)

(x). (2.3)

Proof. Since f and g are synchronous on [0,∞), we have

( f (τ)− f (ξ))(g (τ)− g (ξ)) ≥ 0
(

τ, ξ ∈R
+
0

)

,

or, equivalently,

f (τ)g (τ)+ f (ξ)g (ξ) ≥ f (τ)g (ξ)+ f (ξ)g (τ)
(

τ, ξ ∈R
+
0

)

. (2.4)

Multiplying both sides of (2.4) by

ρ1−βxκ

Γ(α)

τρ(η+1)−1

(xρ −τρ)1−α

(

x ∈R
+, 0 < τ< x

)

and integrating both sides of the resulting inequality with respect to the variable τ from 0 and

x, we get

(

ρ I
α,β
η,κ f g

)

(x)+ f (ξ)g (ξ)
ρ1−βxκ

Γ(α)

∫x

0

τρ(η+1)−1

(xρ −τρ)1−α
dτ

≥ g (ξ)
ρ1−βxκ

Γ(α)

∫x

0

τρ(η+1)−1

(xρ −τρ)1−α
f (τ)dτ+ f (ξ)

ρ1−βxκ

Γ(α)

∫x

0

τρ(η+1)−1

(xρ−τρ)1−α
g (τ)dτ.

We find from (1.8), (2.1) and (2.2) that

(

ρ I
α,β
η,κ f g

)

(x)+ f (ξ)g (ξ) Λ
ρ,β
x,κ(α,η) ≥ g (ξ)

(

ρ I
α,β
η,κ f

)

(x)+ f (ξ)
(

ρ I
α,β
η,κ g

)

(x). (2.5)
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Multiplying both sides of (2.5) by

ρ1−βxκ

Γ(α)

ξρ(η+1)−1

(xρ −ξρ)1−α

(

x ∈R
+, 0 < τ< x

)

and integrating both sides of the resulting inequality with respect to the variable ξ from 0 and

x, similarly as above, we obtain

(

ρ I
α,β
η,κ f g

)

(x)Λ
ρ,β
x,κ (α,η)+Λ

ρ,β
x,κ (α,η)

(

ρ I
α,β
η,κ f g

)

(x)

≥

(

ρ I
α,β
η,κ f

)

(x)
(

ρ I
α,β
η,κ g

)

(x)+
(

ρ I
α,β
η,κ g

)

(x)
(

ρ I
α,β
η,κ f

)

(x),

which, upon simplifying, leads to (2.3). ���

Remark 2.1. We consider some particular cases of the result in Theorem 2.1.

(i) Setting κ = 0, η = 0 and taking the limit ρ → 1 in the result in Theorem 2.1 yields the

inequality in [1, Theorem 3.1].

(ii) Setting β= α, κ= 0, η= 0 and taking the limit ρ → 0+ in the result in Theorem 2.1 gives

the inequality in [4, Theorem 3.1].

(iii) Setting β = 0 and κ=−ρ(α+η) in the result in Theorem 2.1 yields the inequality in [10,

Theorem 1].

(iv) Setting β = α, κ = 0 and η = 0 in the result in Theorem 2.1, under the corresponding

reduced assumption, we obtain

(

ρ Iα0+ f g
)

(x) ≥
ρα

Γ(α+1)

xρα

(

ρ Iα0+ f
)

(x)
(

ρ Iα0+g
)

(x). (2.6)

Theorem 2.2. Let β,κ ∈ R, x, α, ρ, σ ∈ R
+, and η ∈ R

+
0 . Also, let f and g be two integrable

functions which are synchronous on [0,∞). Then

Λ
ρ,β
x,κ (σ,η)

(

ρ I
α,β
η,κ f g

)

(x)+Λ
ρ,β
x,κ (α,η)

(

ρ I
σ,β
η,κ f g

)

(x)

≥

(

ρ I
α,β
η,κ f

)

(x)
(

ρ I
σ,β
η,κ g

)

(x)+
(

ρ I
σ,β
η,κ f

)

(x)
(

ρ I
α,β
η,κ g

)

(x). (2.7)

Proof. Multiplying both sides of (2.5) by

ρ1−βxκ

Γ(σ)

ξρ(n+1)−1

(xρ −ξρ)1−σ

(

x ∈R
+, 0 < ξ< x

)

and integrating the resulting inequality with respect to the variable ξ, from 0 and x, similarly

as in the proof of Theorem 2.1, we get the desired result. ���

Remark 2.2. We consider some particular cases of the result in Theorem 2.2.
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(i) Setting κ = 0, η = 0 and taking the limit ρ → 1 in the result in Theorem 2.2 yields the

inequality in [1, Theorem 3.2].

(ii) Setting β=α, κ= 0, η= 0 and taking the limit ρ→ 0+ in the result in Theorem 2.2 gives

the inequality in [4, Theorem 3.2].

(iii) Setting β= 0 and κ=−ρ(α+η) in the result in Theorem 2.2 yields the inequality in [10,

Theorem 2].

(iv) Setting β = α, κ = 0 and η = 0 in the result in Theorem 2.2, under the corresponding

reduced assumption, we obtain

ρα
Γ(σ+1)

xρσ

(

ρ Iα0+ f g
)

(x)+
ρα

Γ(α+1)

xρα

(

ρ Iσ0+ f g
)

(x)

≥
(

ρ Iα0+ f
)

(x)
(

ρ Iσ0+g
)

(x)+
(

ρ Iσ0+ f
)

(x)
(

ρ Iα0+g
)

(x). (2.8)

Theorem 2.3. Let β,κ ∈R, x, α, ρ ∈R
+, and η ∈R

+
0 . Also, let

f j : R+
0 →R ( j = 1, . . . ,n; n ∈N)

be increasing functions. Then

(

ρ I
α,β
η,κ

n
∏

j=1

f j

)

(x) ≥
1

{

Λ
ρ,β
x,κ(α,η)

}n−1

n
∏

j=1

(

ρ I
α,β
η,κ f j

)

(x) (n ∈N). (2.9)

Proof. We prove this theorem by induction on n ∈N. Obviously, the case n = 1 of (2.9) holds.

For n = 2, since f1 and f2 are increasing on R
+
0 , we find

(

f1(τ)− f2(ξ)
)(

f2(τ)− f2(ξ)
)

≥ 0
(

τ, ξ ∈R
+
0

)

.

Now, the proof of (2.9) for n = 2 would run parallel to that of Theorem 2.1.

Assume that the inequality (2.9) is true for some n ∈ N. We observe that f :=
∏n

j=1
f j is

increasing on R
+
0 for each f j increasing. Let g := fn+1. Then, applying the case n = 2 to the

functions f and g , we have

(

ρ I
α,β
η,κ

n
∏

j=1

f j · fn+1

)

(x) ≥
1

Λ
ρ,β
x,κ(α,η)

(

ρ I
α,β
η,κ

n
∏

j=1

f j

)

(x) ·
(

ρ I
α,β
η,κ fn+1

)

(x)

≥
1

{

Λ
ρ,β
x,κ (α,η)

}n

n+1
∏

j=1

(

ρ I
α,β
η,κ f j

)

(x),

where the induction hypothesis for n is used for the second inequality. This completes the

proof. ���

Remark 2.3. We consider some particular cases of the result in Theorem 2.3.
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(i) Setting κ = 0, η = 0 and taking the limit ρ → 1 in the result in Theorem 2.3 yields the

inequality in [1, Theorem 3.3].

(ii) Setting β= α, κ= 0, η= 0 and taking the limit ρ → 0+ in the result in Theorem 2.3 gives

the inequality in [4, Theorem 3.3].

(iii) Setting β = 0 and κ=−ρ(α+η) in the result in Theorem 2.3 yields the inequality in [10,

Theorem 3].

(iv) Setting β = α, κ = 0 and η = 0 in the result in Theorem 2.3, under the corresponding

reduced assumption, we obtain

(

ρ Iαa+

n
∏

j=1

f j

)

(x) ≥

(

ρα
Γ(α+1)

xρα

)n−1 n
∏

j=1

(

ρ Iαa+ f j

)

(x) (n ∈N). (2.10)

Theorem 2.4. Let β,κ ∈ R, x, α, ρ ∈ R
+, and η ∈ R

+
0 . Also, let two functions f , g : R+

0 → R such

that f is increasing and g is differentiable with g ′ bounded below, and let m := inft∈R+
0

g ′(t ).

Then

(

ρ I
α,β
η,κ f g

)

(x) ≥
1

Λ
ρ,β
x,κ(α,η)

(

ρ I
α,β
η,κ f

)

(x)
(

ρ I
α,β
η,κ g

)

(x)

−
mxΓ(η+1+ 1

ρ
)Γ(η+α+1)

Γ(η+α+1+ 1
ρ

)Γ(η+1)

(

ρ I
α,β
η,κ f

)

(x)+m
(

ρ I
α,β
η,κ i · f

)

(x), (2.11)

where i (x) = x is the identity function.

Proof. Let h(x) := g (x)−mx
(

x ∈R
+
0

)

. We find that h is differentiable and increasing on R
+
0 . As

in the process of Theorem 2.3, for clarity, let p(x) := mx, we obtain

(

ρ I
α,β
η,κ f (g −p)

)

(x)

≥
1

Λ
ρ,β
x,κ (α,η)

(

ρ I
α,β
η,κ f

)

(x)
(

ρ I
α,β
η,κ (g −p)

)

(x)

=
1

Λ
ρ,β
x,κ (α,η)

(

ρ I
α,β
η,κ f

)

(x)
(

ρ I
α,β
η,κ g

)

(x)−
1

Λ
ρ,β
x,κ (α,η)

(

ρ I
α,β
η,κ f

)

(x)
(

ρ I
α,β
η,κ p

)

(x). (2.12)

By using (1.8) with the aid of (1.2), we get

(

ρ I
α,β
η,κ p

)

(x) =
m xκ+ρ(α+η)+1

Γ

(

η+ 1
ρ +1

)

ρβΓ

(

α+η+ 1
ρ
+1

) . (2.13)

We have
(

ρ I
α,β
η,κ f (g −p)

)

(x) =
(

ρ I
α,β
η,κ f g

)

(x)−m
(

ρ I
α,β
η,κ i · f

)

(x). (2.14)

Finally, using (2.13) and (2.14) in (2.12), we obtain the result (2.11). ���
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Remark 2.4. We consider some particular cases of the result in Theorem 2.4.

(i) Setting κ = 0, η = 0 and taking the limit ρ → 1 in the result in Theorem 2.4 yields the

inequality in [1, Theorem 3.4].

(ii) Setting β = α, κ = 0 and η = 0 in the result in Theorem 2.4, under the corresponding

reduced assumption, we obtain

(

ρ Iαa+ f g
)

(x) ≥
ρα

Γ(α+1)

xρα

(

ρ Iαa+ f
)

(x)
(

ρ Iαa+g
)

(x)

−
mxΓ(1+ 1

ρ )Γ(α+1)

Γ(α+1+ 1
ρ )

(

ρ Iαa+ f
)

(x)+m
(

ρ Iαa+i · f
)

(x). (2.15)

3. Chebyshev type inequality without synchronous functions

Here, we establish a Chebyshev type inequality involving the fractional integral operator

(1.8) without synchronous functions. To do this, we begin with the following lemma.

Lemma 3.1. Let β,κ ∈ R, α≥ 1, ρ ∈ R
+, and η ∈ R

+
0 . Also, let f , g : [a,b] → R be functions such

that f is differentiable and g is integrable on [a,b], and x ∈ (a,b]. Then

(

ρ I
α,β
η,κ f g

)

(x) =
1

x −a

∫x

a
f (s)d s ·

(

ρ I
α,β
η,κ g

)

(x)+
ρ1−βxκ

Γ(α)

∫x

a
H

a,x
α,η,ρ(τ)dτ, (3.1)

where

H
a,x
α,η,ρ(τ) :=

{

f (τ)−
1

τ−a

∫τ

a
f (s)d s

}

×

{

τρ(η+1)−1

(xρ −τρ)1−α
g (τ)−

1

τ−a

∫τ

a

sρ(η+1)−1

(xρ − sρ)1−α
g (s)d s

}

. (3.2)

Proof. Integrating by parts, we have

∫x

a
f (τ)

τρ(η+1)−1

(xρ −τρ)1−α
g (τ)dτ

=

(

f (τ)

∫τ

a

sρ(η+1)−1

(xρ− sρ)1−α
g (s)d s

)

∣

∣

∣

x

a
−

∫x

a

(

f
′

(τ)

∫τ

a

sρ(η+1)−1

(xρ − sρ)1−α
g (s)d s

)

dτ

= f (x)

∫x

a

sρ(η+1)−1

(xρ− sρ)1−α
g (s)d s −

∫x

a
u(τ) v ′(τ)dτ, (3.3)

where

u(τ) :=
1

τ−a

∫τ

a

sρ(η+1)−1

(xρ − sρ)1−α
g (s)d s and v ′(τ) := (τ−a) f

′

(τ). (3.4)

We find

u
′

(τ) =−
1

(τ−a)2

∫τ

a

sρ(η+1)−1

(xρ− sρ)1−α
g (s)d s +

τρ(η+1)−1

(τ−a)(xρ −τρ)1−α
g (τ) (3.5)
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and

v(τ) =

∫τ

a
(s −a) f

′

(s)d s = (τ−a) f (τ)−

∫τ

a
f (s)d s. (3.6)

We have
∫x

a
u(τ) v ′(τ)dτ= u(τ) v(τ)

∣

∣

∣

x

a
−

∫x

a
u′(τ) v(τ)dτ. (3.7)

Setting (3.4), (3.5), and (3.6) in (3.7), we get

∫x

a
u(τ) v ′(τ)dτ =

∫x

a

sρ(η+1)−1

(xρ − sρ)1−α
g (s)d s

{

f (x)−
1

x −a

∫x

a
f (s)d s

}

+

∫x

a

{

1

τ−a

∫τ

a

sρ(η+1)−1

(xρ − sρ)1−α
g (s)d s −

τρ(η+1)−1

(xρ −τρ)1−α
g (τ)

}

×

{

f (τ)−
1

τ−a

∫τ

a
f (s)d s

}

dτ. (3.8)

Substituting (3.8) into (3.3) and multiplying both sides of the resulting identity by
ρ1−βxκ

Γ(α) , and

using (1.8), we obtain the desired result (3.1). ���

Theorem 3.1. Let β,κ ∈R, α≥ 1, ρ ∈R
+, and η ∈R

+
0 . Also, let f , g : [a,b]→R be functions such

that f is differentiable and g is integrable on [a,b]. Further, let H
a,x
α,η,ρ(τ) ≥ 0 (τ ∈ (a,b]) and

x ∈ (a,b]. Then

1

x −a

(

ρ I
α,β
η,κ f g

)

(x) ≥

{

1

x −a

∫x

a
f (s)d s

}{

1

x −a

(

ρ I
α,β
η,κ g

)

(x)

}

. (3.9)

Proof. Obviously, the result here follows from Lemma 3.1. ���

Remark 3.1. We consider some particular cases of the result in Theorem 3.1.

(i) Setting κ = 0, η = 0 and taking the limit ρ → 1 in the result in Theorem 3.1 yields the

inequality in [5, Theorem 3.1].

(ii) Setting β = 0 and κ = −ρ(α+η) in the result in Theorem 3.1, under the corresponding

reduced assumption, we obtain

1

x −a

(

Iαa+,σ,η f g
)

(x) ≥

{

1

x −a

∫x

a
f (s)d s

}{

1

x −a

(

Iαa+σ,ηg
)

(x)

}

. (3.10)

(iii) Setting β = α, κ= 0, η= 0 in the result in Theorem 3.1 and taking the limit ρ → 0+ with

the aid of L’Hôpital’s rule, we get

1

x −a

(

Hα
a+ f g

)

(x) ≥

{

1

x −a

∫x

a
f (s)d s

}{

1

x −a

(

Hα
a+g

)

(x)

}

. (3.11)

(iv) Setting β = α, κ = 0 and η = 0 in the result in Theorem 3.1, under the corresponding

reduced assumption, we obtain

1

x −a

(

ρ Iαa+ f g
)

(x) ≥

{

1

x −a

∫x

a
f (s)d s

}{

1

x −a

(

ρ Iαa+ g
)

(x)

}

. (3.12)
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