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ON ENDO CURVATURE TENSOR OF A CONTACT
METRIC MANIFOLD

MOHIT KUMAR DWIVEDI, JAE-BOK JUN AND MUKUT MANI TRIPATHI

Abstract. We prove that a (k, u)-manifold with vanishing Endo curvature tensor is a Sasakian manifold. We find
a necessary and sufficient condition for a non-Sasakian (k, u)-manifold whose Endo curvature tensor B¢’ satisfies
B®S(¢,X)-S =0, where S is the Ricci tensor. Using 2-homothetic deformation we obtain an example of an N (k)-

contact metric manifold on which B¢ (&, X) - S #0.

1. Introduction

In [2], Blair, Koufogiorgos and Papantoniou introduced the class of contact metric mani-
folds M with contact metric structures ((p, &, g), in which the curvature tensor R satisfies the
equation

RX,V)é=(kI+ph)(XAY), X, YeTM, (1.1

where (k, 1) € R?, 21 is the Lie derivative of ¢ in the direction ¢ and
XAY)Z=gY,2)X-g(X,2)Y, XY, ZeTM.

A contact metric manifold belonging to this class is called a (k, u) -manifold. A (k, p)-manifold
becomes a Sasakian manifold if k = 1. Characteristic examples of non-Sasakian (k, y)-manifolds
are the tangent sphere bundles of Riemannian manifolds of constant sectional curvature not
equal to one and certain Lie groups.

On the other hand, Bochner introduced a Kédhler analogue of the Weyl conformal cur-
vature tensor, which is now well known as the Bochner curvature tensor [3]. By using the
Boothby-Wang’s fibration, Matsumoto and Chiiman constructed C-Bochner curvature tensor
[9] from the Bochner curvature tensor and studied in the context of Sasakian geometry. In a
Sasakian manifold, the Ricci operator Q commutes with the structure tensor ¢, but in gen-
eral Qg # ¢Q. Thus the definition of C-Bochner curvature tensor seems not to include all the
non-Sasakian cases. Perhaps keeping this view in mind, Endo [6] defined a curvature tensor
B® on a contact metric manifold, which coincides with the C-Bochner curvature tensor when
the manifold is Sasakian.
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In this paper, we recognize the curvature tensor B®* as Endo curvature tensor. In Sec-
tion 2, we give necessary details about contact metric manifolds and Sasakian manifolds. In
Section 3, we prove that an ¢-Endo flat (k, 1)-manifold is a Sasakian manifold. In particular,
an Endo flat (k, u)-manifold is a Sasakian manifold. We also prove that if the Endo curvature
tensor vanishes on the unit tangent sphere bundle 77 M(c) of a manifold of constant curva-
ture ¢, then ¢ = 1. In [13], [14] and [17], contact metric manifolds satisfying R (X,¢)-S =0
are studied. Motivated by these studies, in Section 4, we prove that in a non-Sasakian (k, u)-
manifold the Endo curvature tensor B satisfies B¢*(¢, X) - S = 0 if and only if the manifold is
3-dimensional and flat. In last, we also give an example of an N (k)-contact metric manifold,
on which B% (£, X)-S #0.

2. Contact metric manifolds

A (2n+ 1)-dimensional differentiable manifold M is called an almost contact manifold if
there is an almost contact structure (¢,¢,n) consisting of a (1,1) tensor field ¢, a vector field
¢, and a 1-form 7 satisfying

¢*=-I1+n®& and(oneof) nE) =1, @i=0, nop=0. (2.1)
Let g be a compatible Riemannian metric with (¢,¢,n), that is,

gX, V) =g(pX,@Y)+nX)n(Y) 2.2)

or equivalently,
g(X,9Y)=-g(pX,Y) and g(X,§)=n(X) 2.3)

for all X,Y € TM. Then, M becomes an almost contact metric manifold equipped with an
almost contact metric structure (¢,¢,1, g).

An almost contact metric structure becomes a contact metric structure if

g(X,pY)=dn(X,Y), X, YeTM. (2.4)

In a contact metric manifold, the (1, 1)-tensor field & is symmetric and satisfies
hé=0, hep+@h=0, trace(h)=trace(¢ph)=0. (2.5)

A contact metric manifold M is Sasakian if and only if

R(X,Y){=(XAY)¢, X, YeTM.
The (k, ) -nullity distribution N(k, ) (12],[13]) of a contact metric manifold M is defined by

N(k,p): p— Nplk,p) ={Z € TyM:R(X,Y)Z = (kI + uh)(X A Y) Z}

for all X,Y,Z € TM, where (k,u) € R®. A contact metric manifold with ¢ € N(k, ) is called
a (k, p)-manifold. For a (k,p)-manifold, it follows that W2 =(k-1) (pz. This class contains
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Sasakian manifolds for k = 1.In fact, for a (k, u)-manifold, the conditions of being Sasakian
manifold, k = 1 and h = 0 are all equivalent. If y =0, the (k, p)-nullity distribution N(k, 1)
is reduced to the k-nullity distribution N(k) [15]. If £ € N(k), then we call a contact metric
manifold M an N (k)-contact metric manifold. For more details we refer to [1].

3. (k, p)-manifolds with vanishing Endo curvature tensor

In [6], Endo defined a tensor in a (2n + 1)-dimensional contact metric manifold M as fol-
lows:

B® (X,Y) = R(X,Y) + hopX A hgY

{QYAX—¢Q¢YAX

+
4(n+2)

1
+5{n(Y)Q£AX+n(QY)£/\X}
- QXAY+¢@pQpXAY

- 00 QEAY +7 (@AY}

+ Q@Y ApX + QY ApX

- QX APY —pQXApY
+2g(QeX,Y)p+2g(9pQX,Y) ¢
+2g(pX,Y)pQ+2g(pX,Y) Qo
- (X)) QY AE+n(X) (pQ@Y) A&
+nquXAé—n(YMwQ¢X)Af}

- r+4n®+6n
4(n+1)(n+2)
3 r—6n-=8
4(n+1)(n+2)
r+2n
frorog |
4(n+1)(n+2)

{pY ApX +28 (pX,Y) p}

NY)EAX+n(X)Y A&}

- 2
4n+1)(n+2) trace(h”) {pY A X +2g(pX,Y)p

+YAX+n(V)XAE+N(X)EAYY, (3.1)

where X,Y € TM, Q is the Ricci operator and r is the scalar curvature. The tensor B®* will be
called the Endo curvature tensor.

In a (2n+ 1)-dimensional (k, y)-manifold M, (1.1) is equivalent to
R X)=¢n(kI+ph)X=-R(X,8), XeTM. 3.2)
From (3.1), (1.1) and (3.2), it follows that

es _(2(k-1) )
B (X,Y)E—( ) I+uh|(XAY), (3.3
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2(k-1)
I+uh
n+2 H

Bes(f,X)=s‘/\( X =-B"(X,$)

forall X, Y € TM. Consequently, we have

2(k-1)

es _
B (€, X)¢= "

(nX)¢&—X)—phX =-B% (X,&)¢.

n(B* (X,Y)¢) =0,

_2(k-1)
T on+2
Now, we need the following definition.

n(B* ¢, X)Y)

(8, Y)=nX)n(Y)) + ug (hX,Y).

Definition 3.1. A (k, u)-manifold M is said to be ¢-Endo flat if
B®(X,Y){=0, X,YeTM.
In particular, if B® = 0 then M will be said to be Endo flat.
Now, we prove the following
Theorem 3.2. An ¢-Endo flat (k, u) -manifold is a Sasakian manifold.

Proof. Let M?"*1 be an ¢-Endo flat (k, 1)-manifold. Then in view of (3.5), we get

_2(k-1)
T n+2

0 (n(X) ¢~ X) - phX,

which, in view of h2 = (k—1) (pz, implies that

(n+2),uh:h2

Taking the trace of (3.8), we obtain
0 = trace (hz) =2n(1-k).
From (3.9), we have k = 1. Thus, M2"*! becomes Sasakian.

Corollary 3.3. An Endo flat (k, 1) -manifold is a Sasakian manifold.

A contact metric manifold M is said to be n-Einstein [10] if the Ricci tensor S satisfies

S=ag+bnen,

(3.4)

(3.5)

(3.6)

(3.7

(3.8)

(3.9

(3.10)

where a and b are smooth functions on the manifold. In particular, if b = 0 then M is an

Einstein manifold.
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The Endo curvature tensor reduces to C-Bochner curvature tensor in a Sasakian manifold.
A number of results for Sasakian manifolds with vanishing C-Bochner curvature tensor can
be found in [5], [7], [8], [11], [12] etc.. Here, we list some known results for Sasakian manifolds
with vanishing C-Bochner curvature tensor in the following two Theorems.

Theorem 3.4. Let M*>"*! be a Sasakian manifold with vanishing C-Bochner curvature ten-
sor. Then the following statements are true:

1. ([11]) If the scalar curvature r is constant and the Ricci tensor is positive semi-definite,
then M?"*! isn-Einstein.

2. (Theorem 1, [12]) If the scalar curvature r is constant and the square of the length of the
Ricci tensor is less than r? /2n, then M?"*1 is n-Einstein.

3. (Theorem 1, [7]) If (i) n = 3, (ii) the scalar curvature r is constant and (iii) the square of
the length of the n-Einstein tensor

S = (5= 1) 8= (55 ~2n-1) nim;

(n=1)(n+2)%(r+2n)®

. 2n+1 .
Tt 22 then M is a Sasakian space form.

is less than

4. (Theorem 2, [7]) If n = 2 and the scalar curvature is a constant r # —4, then M2+ s g
Sasakian space form.

5. (Theorem B, [5]) If (i) n =2, (ii) the scalar curvature is constant and (iii) the Ricci tensor
is positive semi-definite; then M*"*! is a Sasakian space form.

THeorem 3.5. Let M?"*! be a compact Sasakian manifold with vanishing C-Bochner cur-
vature tensor. Then the following statements are true:

1. (Theorem 2, [12]) If the square of the length of the Ricci tensor is constant and less than
r2/2n, where r is the scalar curvature; then M?"+1 is n-Einstein.

2. (Theorem 4.1, [9]) If (i) n = 2, (ii) the scalar curvature is constant and (iii) the smallest
eigenvalue of the Ricci tensor is greater than —2, then M?>"* is n-Einstein.

3. (Theorem C, [5]) If (i) n = 3, (ii) the length of the Ricci tensor is constant and (iii) the
length of the n-Einstein tensor

S = (5= ~1) 8~ (5 ~2n-1) nim;

V2(r—n+1)

CSCEOL then M?"*1 is a Sasakian space form.

is less than
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Remark 3.6. In view of Corollary 3.3, the consequences of Theorem 3.4 and Theorem 3.5
are still true if Sasakian manifolds with vanishing C-Bochner curvature tensor are replaced by
Endo-flat (k, u)-manifolds.

The unit tangent sphere bundle 77 M equipped with the standard contact metric structure
is a (k, p)-manifold if and only if the base manifold M is of constant curvature ¢ with k =
¢(2—c)and p=—-2c [2]. In case of ¢ # 1, the unit tangent sphere bundle is non-Sasakian [16].
Then, applying Theorem 3.2 to T1 M(c), we have

Corollary 3.7. If the unit tangent sphere bundle Ty M(c) of a space of constant curvature c
is Endo flat then c = 1.

4. (k, p)-manifolds satisfying B®*(£,X)-S =0

In a non-Sasakian (k, ,u)-rnanifold M?"*1 the Ricci tensor S is given by [2]

SX,Y)=02n-D-np)gX,V)+(2(n-1)+p)ghX,Y)
+(20-m+n(2k+u))nX)nY) (4.1)

forall X,Y e TM.
We also recall the following result for later use.

Theorem 4.1. (Theorem 1.2, [18]) A non-Sasakian Einstein (k, u)-manifold is flat and 3-
dimensional.

Now we prove the main result of this section as follows:

Theorem 4.2. Let M be a non-Sasakian (k, 1)-manifold. Then the Endo curvature tensor
B®S satisfies B®* ((, X) - S =0 ifand only if M is flat and 3-dimensional.

Proof. Let M2"*! be a non-Sasakian (k, w)-manifold. Then the condition B® ({,X)-S=0
gives

S(B¥(,X)Y,&)+S(Y,B* (&, X)¢) =0. (4.2)
In view of Q¢ =2nké, we get
S(X,¢) =2nkn(X), (4.3)
which implies that
S(B* (¢, X)Y,&)=2nkn(B* (¢, X)Y). (4.4)

Using (3.7) in (4.4), we obtain

S(B® (&, X)Y,§) = 2nkug (hX,Y)
N dnk(k-1)

— (8 (X, V) =n(X)n(Y)). (4.5)
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In view of (3.5) and (4.3) we have

os _4nk(k-1)
S(B*(&,X)&Y) = — . 1Xnm)
2(k-1)
- SX,Y)-uS(hX,Y). (4.6)
n+2
From (4.2), (4.5) and (4.6), we have
Z(k—l)S(X Y) = Ank(k—1) X, Y)
n+2 T T W
+2nug (hX,Y)—uS(hX,Y). 4.7)

From (4.1) we have
S(hX,Y)=(2(n-1)-ny)ghX,Y)
—k-D(2n-D+p)gX,Y)
+k-D20-D+u)nX)nY), (4.8)

where we have used noh =0, h2=(k-1) (p2 and (2.2). In view of (4.1), (4.7) and (4.8) we obtain
(3.10) with

_2m-D+p) (k-1 (4nk+(n+2) (2(n-1)+p)p)
2(k-D(2m-D+p)—pn+2)(2+ny)

~ p(n+2)(2+nu)(2(n-1) - nu)
2(k-1)(2n-D+u)-pn+2)(2+ny)’

(4.9

and
_pn+ 2)(k-1DRn-1)+w?+2+nw(nk+uw —2(n-1))

b= 20— D2n-1)+ 0 - pC+npw(n+2)

(4.10)

Thus we see that M2"*1 becomes n-Einstein. From (4.1) and (3.10), we see that a non-
Sasakian (k, u)-manifold M?"*! is n-Einstein if and only if

p=-2(n-1). (4.11)
Using (4.11) in (4.1) we get
S=2(n*-1)g-2(n*-nk-1)nen. 4.12)

It can be noted that in view of (4.9), (4.10) and (4.11), equation (3.10) also yields (4.12). From
(4.12), it follows that
r=2nk+2(n-1(n+1)). (4.13)

Using (4.11) in (4.8) we get
S(hX,Y)=2(n*-1)g(hX,Y). (4.14)
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Using (4.11) and (4.14) in (4.7) and contracting the resulting equation we obtain
0=(k—-1)(2nk@2n+1)-r), (4.15)
where trace (k) = 0 is used. In view of (4.13), (4.15) and k < 1, we obtain
n®—nk-1=0. (4.16)

Using (4.16) in (4.12) we see that M?"*! is Einstein and consequently in view of Theorem 4.1,
M?"*1 becomes flat and 3-dimensional.
The converse is straightforward.

In last, we give an example of an N (k)-contact metric manifold, on which B (¢, X)-S # 0.
First, we recall the notion of a 2,-homothetic deformation. For a given contact metric
structure (¢, ¢,1, g), this is the structure defined by

_ - 1 _ _
n=an, €=;é, p=¢, g=ag+ala-1)nen,

where a is a positive constant. While such a change preserves the state of being contact metric
or Sasakian, it destroys a condition like R(X, Y)¢ =0or R(X,Y)¢ = k(n(Y)X—n(X)Y). However
the form of the (k, p)-nullity condition, that is

RX,Y)é=(kI+ph)(nMX-nX)Y), X, YeTM
for k, 1 being real constants, is preserved under a 2,-homothetic deformation with

k+a®>-1
=), M:

u+2a-2
a? a ’

banll

Given a non-Sasakian (k, u)-manifold M, Boeckx [4] introduced an invariant Iy = (1-u/2)/vV1—-k
and showed that two non-Sasakian (k, 1t)-manifolds M; and M, are locally isometric as con-
tact metric manifolds up to a 2,-homothetic deformation if and only if Ips, = Ips,-

Now, we present the following

Example 4.3. Consider the unit tangent sphere bundle of a 4-dimensional manifold of
constant curvature (3 + 2\/5). After a @2(2 N ﬁ)—homothetic deformation we get an N (1/2)-
contact metric manifold, on which B (&, X)-S #0.
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