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A GENERAL OSTROWSKI TYPE INEQUALITY FOR DOUBLE
INTEGRALS

G. HANNA, S. S. DRAGOMIR AND P. CERONE

Abstract. Some generalisations of an Ostrowski Type Inequality in two dimensions for n—time
differentiable mappings are given. The result is an Integral Inequality with bounded n—time
derivatives. This is employed to approximate double integrals using one dimensional integrals
and function evaluations at the boundary and interior points.

1. Introduction

The classical Ostrowski Integral Inequality (see [2], p.468) in one dimension stipulates
a bound between a function evaluated at an interior point z and the average of the
function f over an interval. That is,

(@ = =32

1
i (b — a)? ](b—a)‘

for all z € [a,b], where f' € Ly(a,b) and f : [a,b] — R is a differentiable mapping on
(a,b).

Here, the constant i is sharp in the sense that it cannot be replaced by a smaller
constant. We also observe that the tightest bound is obtained at z = “T*b, resulting in
the well-known mid-point inequality. In [1], P. Cerone, S. S. Dragomir and J. Roumeliotis
proved the following Ostrowski type inequality for n—time differentiable mappings.

b
f@) — 5 [ Fod] < & (11)

oo

Theorem 1. Let f : [a,b] = R be a mapping such that f=1 s absolutely continuous
on [a,b] and fV € Loo[a,b]. Then for all x € [a,b], we have the inequality:
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where ||f")]|o0 = sup,epap 1f™ ()] < 0.
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For other similar results for n—time differentiable mappings, see the paper [7] by Fink
and [8] by Anastassiou.

In [3] and [4] the authors proved some inequalities of Ostrowski type for double
integrals in terms of different norms.

In this paper we combine the above two results and develop them in two dimensions
to obtain a generalization of the Ostrowski inequality for n -time differentiable mappings
using different types of norms.

2. Integral Identities

The result presented here approximates a two-dimensional integral for n— time dif-
ferentiable mappings via the application of one dimensional integrals at the boundary,
function evaluations at interior or boundary points and\or its derivatives at a multiple
number of points over the given region.

The following result holds.

Theorem 2. Let f : [a,b] X [¢,d] = R be a continuous mapping such that the
l+k
following partial derivatives %, k=0,1,....,.n—1,1=0,1,...,m — 1 exist and
are continuous on [a,b] x [c,d]. Further, for K, : [a,b]> = R, Sp, : [¢,d]* = R given by

O™t ¢ [a, 2] L% s e e,y
K, (z,t) = . , Sm(y,s):= . (2.1)
0" e (x, 0] =A™ s (y,d]

then for all (z,y) € [a,b] X [¢,d], we have the identity:

n—1m-1
O (@)
//ftsdsdt > D @iy s

k=0 1=0
8'”’”]‘(% 5)
+(-1) 0 / Sm(y, s B g (s
n’“ y R (G
+(—1) onl /K ~Sras ——2dt
m+n/ / Kn(2,8)Sm(y, s )an;tf:g(fns)d dt, (2.2)
where
_ (=) + (=)@ —a)*H! (d—y)"™ + (=D (y — o)
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Proof. Applying the identity (see [1])

b A (p— ) (— 1)k (p—a)kH b
/ g(t)dtzzl(b Lo ’“]g““(mm—l)" [P ng 0, .0

k=0

where

(t_n—‘f)n it t € [a,x],
Pn(z,t) = '

(t;—l!’)n if t e (z,b)],

which has been used essentially in the proof of Theorem 1, for the partial mapping f(, s),
s € [c,d], we can write

(b — )" + (=1)*(z —a)** | 0" f(z,5)
/f”dt [ k1 1) ] ot

o™ f(t,s)
/K (z,t) 5 ——~dt (2.5)

for every & € [a,b] and s € [c, d].
Integrating (2.5) over s on [c, d], we deduce

(b—z)F L+ (-1)*(z—a) ! / ok f(
//ftsdsdt—Z[ (k+1 6t’°
b d an
—1)n/ Ko(z,1) (/ %@) dt (2.6)
for all z € [a,b].
Applying the identity (2.4) again for the partial mapping a’“gt(: ) on [¢,d], we obtain
/ 0" f( _ ’“Z (d—y)* + (=D)'y—)*] & [ f(x,y)
8tk — T+ 1) dst otk
Ok f (x, 5)
/ Sm o ( BIG ds

—le (d =y + (=DHy — )+ | 8 f(a,y)
B (1+1)! Otk ds!

=

a’“erf(flf s)
/S (y,s ot gsm ——————ds. (2.7)
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In addition, the identity (2.4) applied for the partial derivative 8ngt(f")

4 om(t,s)

otn

¢ =0

()
/S (y,s S g ——~ds.

_N =)™+ () = 0 S ()
ds= [ (+ 1) Bty

(2.8)

Using (2.7) and (2.8) and substituting into (2.6) will produce the result (2.2), and thus

the theorem is proved.

Utilising the result (2.2) we will produce the midpoint cubature rule for two - di-
mensional rectangular region for n-times differentiable mappings as well as the trapezoid

cubature rule as shown in the following two corollaries respectively.

Corollary 1. With the assumptions as in Theorem 2, we have the representation

b pd
/ / f(t,s)ds dt
Tt 2 Otk st
n—1 a
I;)Xk ( Otkds™
m—1 b n-+1 c+d
n C+d ot 8 + f(taT)
1) ZY!( 3 )/ Kl mpar

& a”*’”f(t s)
m+n
/ / K t)Sm s ————~dsdt,

where X (+) and Y;(+) are as given in (2.3) and so

1+ (-1)k 1+ (-1)

d m £(a+b
+b>/ DA e L)

a+b) (b—a)kt! c+d\
Xk<2>_ A S

and K, : [a,b] = R, S,,, : [c,d] = R are given by

(k+1)! (I+1)!

and

on using (2.1).
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Corollary 2. Let f be as in Theorem 2. Then we have the following identity

/b /df(t,s)ds dt

-is T ";f f“ T
at,f 0.0+ 0+ (04100 + 1 00)
%(_1)”’2 . l [ e [f(t,c)+(—1)’“f(t,d)]dt]
L [ [ o G O g

where X,,_1(t) and Y,,_1(s) are as given by (2.3).

Proof. By substituting (z,y) = (a,¢), (a,d), (b,c), (b,d) respectively and summing
the resulting identities and after some simplification, we get the desired inequality (2.10).

In the above section we promoted some two-dimensional integral identities for n-times
differentiable mappings, which are useful in themselves. They are exploited in the next
section to obtain two-dimensional integral inequalities on Lebesgue spaces Lo [[a1,b1] X
[az, b2]], Lpllay, b1] X [az, bo]] and Ly[[ay, bi] X [az, bo]].

3. Some Integral Inequalities

In this section we tap the equalities of Section 2 and develop inequalities for the
depiction of the two-dimensional integral of a function with respect to one-dimensional
integrals at the boundary, function evaluations at interior or boundary points and/or
derivatives at a multiple number of points over the entire region. We start with the
following result

Theorem 3. Let f : [a,b] X [¢c,d] = R be continuous on [a,b] X [c,d], and assume
that 8t"85’{‘ exist on (a,b) x (¢,d). Then we have the inequality

n—1m-—1
6”’“f(:c,y)
/ f t S dS dt — Z Z Xk W

k=0 [=0

’“*mf(:c 5) 8”+’f(t y)
ZX'« /5 (,5) —5gam 5= (=1) /K ) maa
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(@ b — ) X[ — Ol gy x| S
(n+ D+ 1)1 Bede |
6n+mf
S Dam € Loo([a,b] x [¢,d]);
1 (m _ a)nq+1+(b _ x)nq-i-l % y (y _ C)mq+1+(d _ y)mq+1 % y 6n+mf
n!m! ng+1 mq+1 otnds™ »
< orm f 1.1_ . (3.1)
OtnHs™ € LP([aab] x [Cad])v p> 17 p + q - 1)
1 n n n_ (p_ .\n
Tl =) + (b= a)" + (@ — )" — (b )"
=0+ (=) (-0 - (@ x | Zd ]
y—c y y—c y pyyye
6n+mf
Simgam Lyi([a,b] x [c,d])
for all (z,y) € [a,b] X [c,d], where
H ormf H ot f(t, s)
otnds™ (t,5)€[a b]x[c d] otngs™ ’
6n+mf 6n+m P B
[fae H,,—(/ [ o 9] )<
Proof. Using Theorem 2, we get from (2.2)
- 3’*’“]‘(:6 y)
/ftsdsdt—ZZXk i) 5
k=0 1=0
2 f ()
ZX’“ / Sm(y, s T rhgsm ————*ds
o 0" f(t,y)
ZYI /K T, t) st
o1 (t, s)
/K:z:t m(y, ) ——+"- 5in en ds dt|
oM f(t, 5)
/ / | K (2, ) Sm (y, 5] atné - ‘d dt. (3.2)

Using Holder’s inequality and properties of the modulus and integral, then we have that
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// | K, (2, t) S (y, 8)| 62_;30(;8) ds dt
o] 2 5 1ot 01 s

< ;;’“iﬁ p(fffﬁ|Kn(x,t>sm<y,s>|thds)é, p>1, %+$:1; (3.3)
5| o Kl 0Sua 0

Now, from (3.3) and using (2.1),

// Ko, 8)Som (3, )|t ds
/|K mt|dt/ |Sm(y, s)|ds
_ V %dw/z %dt] x /y (S;!C)mds+/d7(d:nf)mdsl

_ @@=+ 0 —a)" iy — )™ + (d—y)™ "]
(n+ D!(m +1)!

giving the first inequality in (3.1).
Further, on using (2.1) and from (3.3)

</ab /cd | Kn(@,8)Sm(y, s)|"ds dt)
(/ab |Kn(:l:,t)|th>é (/cd 1Sy, 5)|%ds dt> !
ﬁ V:(t o /xb(b - t)nth] | g [/y(s — ¢)™ds + / " s)qusl E

_ L (@@t e bt Ty =gt 4 (d -yt ]
" nlm! ng+1 mq+1

Q=

=

producing the second inequality in (3.1).
Finally, from (2.1) and (3.3),

sup |Kn(:c,t)5m(y,s)|
(t,s)€la,b] x[c,d]

= sup |[Kn(z,t)] sup [Sm(y,s)]
tela,b] s€le,d]
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:max{@f—a)” <b—m)“}xmax{<y—c>m (d—y)’”}

n! n! m! m!

|

(= )" - (b—a)"

!

1 r—a)"+ (b—x)"

><l(y—c)’”+(d—y>m+

(y—o)" +(d-y)"
2

2

gives the inequality in (3.1) where we have used the fact that

X+Y
2

max{X,Y} = 5

Y—X‘

Thus the theorem is now completely proved.

Keeping in mind that x and y are free parameters, we can produce “mid-point” and
“boundary-point” type results by choosing appropriate values for z and y. In addition,
choosing values for n and m will recapture the earlier result of Hanna et al. [5] and
Dragomir et al. [6].

From the results of Theorem 3 above, we have the following corollary.

Corollary 3. With the assumptions of Theorem 3, we have the inequality

[ oo a- S5 (55 et (55

k=0 [=0

0 T () [ S ()

k=0 ¢
m—1 b
. c+d - ot c+d
-1 pars Y’( 2 )/a Ka(?) 6tnaslf(t’ 2 )dt
( 1 ontm f
_ n+1 _ m—+1 .
S )im i@ @ X |5 |
< 1 (b— a)nq+1(d _ C)qurl : y H ontm f H ' (3.4)
2ntmplm) (ng+1)(mg+1) otmds™ llp’
1 N m 8n+mf
g~ "= 0™ x || gz
where || - ||, (p € [1,00]) are the Lebesgue norms on [a,b] X [c,d].

Proof. Taking z = “t* and y = <% in (3.1) readily produces the result as stated.

These are the tightest possible for their respective Lebesgue norms, because of the
symmetric and convex nature of the bounds in (3.1).
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Remark 1. For n =m =1 in (3.4) and 2 8t85 belonging to the appropriate Lebesgue
spaces on [a, b] X [¢,d], we have

ftsdsdt (b — a)(d - )f(“*b C;d).
_a/sl a+b ) ds + ( —c/K1 aatf(t,‘:;d)dt
(1—16(”—@2(61— *x |5
< 1[(1)_ Q)T+ (d — ¢)1+! P H62fH- 55)
1 G+ 17 5205 ||
2
10— 0= x| 7L

and thus some of the results of [5], [9] and [6] are recaptured.

Corollary 4. With the assumptions on f as outlined in Theorem 3, we can obtain
another result which is a generalization of the Trapezoid inequality

n-lm-1 b_ak+1 d )l+1

/ftSdet >y (k+1)! '(l+61)!

k=0 1=0
« akJrl f(aac) + (_1) f(aa d) + (_1)kf(bac) + (_1)k+lf(b7d)
Otk os! 4
-1
mx b—a)f (s =)™ 4 (s—d)™ O™ | f(a,5) + (=1)F (b, 5)
-(=1) = (k+1)! /C m! otkdsm [ 4 ]ds
-1
pse [ (d= Pt —a) + (= b 3T | f(te) + (=D f(t,d)
—(=1) — (I+1)! /a n! otnds! [ 4 ]dt
¢ (b _ a)n-i—l (d _ m+1 8n+mf ‘ ) 8n+mf '
Knm (n+ )!(m + 1 Hatnas H Bingsm © Lo ([a, b] x e, d]);
— [T, abt|th | T (c, d; s)|%ds
gl reonay [t eore)
(b—a)"(d- ortmf ortmf
\ 4n'tm! H@tnas ‘ otrosm < La((a, b] x [e, d]).
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where
(1 if n=2r; and m = 2r,,
2" 1 if n=2r1+1andm=2
o it n=12r + 1 and m = 2rs,
Kan = 2m _ 1
o if n=2r and m =2rs +1,
2" — 1 2m — 1
( )( )if n=2ri+1land m=2ry+1
\ 2n 2m
where

Tn(a,b;t>=[(b‘””;})"(t—a)”}, oty )= | A D=

Proof. Using the identity (2.10), we find that

1 1
n—.'m-— b _ a k+1 d C)l+1

/ftSdet >y (k+1)! '(l+1)!

k=0 1=0
otk D' f(a,d) + (=1)* f(b,c) + (=1)** f(b,d)
B:L'kay 4

3
|

(- )ttt (s (s—d)™ 9 [ f(a,5)+(=1) S (b,s)
Z k:+1 / ml 8:{;’“65’”[ ]ds

=0
_(_l)nm y (d — c)l+1 /b (t — a)n + (t — b)n ~ an—H f(t,C) + (_l)lf(tad) di
— | (+D! n! dylotn 4
n+mf
= (a,b; )T (c,d; s) S Dam dsdt
anerf n+mf -
HatnaSmH / / [T, b3 8)Tom (e, ds s)|dt dsif s Loo([a,8] % [¢,d]);
3tn38m / T abthdt / | T ( cds|ds)
<
— an+m
it sroge € Lulla, bl x e.d), p>1, —+ 2 =1,
anerf . - ) an+mf
Hat”as Hl(t s a b]X[C d] |Tn(a,b,t)Tm(C, d,8)| lf 6tnasm € Ll([a’7b] X [C,d]).

Now consider f; |T.(a,b;t)|dt. As may be seen, explicit evaluation of the integral

depends on whether n is even or odd.



OSTROWSKI TYPE INEQUALITY FOR DOUBLE INTEGRALS 329

(i) If n is even, put n = 2ry. Therefore,

/b T, (a, b; t)|dt = : 1 ) /b (b— )2 + (t — a)2 "

27”1 ! 2
B 1 1 (b _ a)2r1+1 (b _ a)2r1+1
o (2’{’1)! 2 27“1 +1 27“1 +1
B (b _ a)2r1+1 B (b _ a)nJrl
@2+ ) (n+ 1)
Similarly,
d d 2 2 +1
1 d— s)°" — )" d—c)™
/ | T (c,d; s)|ds = / (d=5)™ + (s =) ds = (d=c) , T even.
. (2r2)! J. 2 (m+ 1)!

(7i) Now, if n is odd, that is, n = 2r; + 1, then

(b _ t)27‘1+1 _ (t _ a)27‘1+1

T, ,0;0) =
(a, ;1) 22 + 1)

Let g(t) = (b —t)?+L — (t — a)?m1 L,
We can observe that

g(t) <0 for all t € (GTM,b]

b
gy =0 att="2
b
o) >0 forall t € [a, 222).
Thus
2(27“1 + ]- / |T a,b; t |dt / 2T1+1 (t _ a)2rl+1]dt.
b
+ / 2r1+1 (b _ t)2r1+1]dt]
T b—
_ 9. (b_a)z 1+2 _4( > )2r1+2
2r1 +2 2r + 2
and so
(b— a)2'r'1+2 1
Tn(a,b;t)|dt = _
/ | a | ( r +2)(27.1_'_1)! 22r1+1

(b _ a)2r1+2 22r1+1 -1 B (b _ a)n+1 |:2n _ 1]
(2r; +2)! 22+l | (4 1)! 2n
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Similarly,

_ \ym+1 m o__
/|T cds|ds—(( C)) [QZmI}, m even

and this gives the first inequality in (3.6).
Now, for the third inequality we have,

bh—a)®
1 sup (b—t)" + (t —a)™) = ( 27;:) for all n even
tela,b :
sup [To(a, by )] = 5 <" b oy
tela.t] ) sup |(b—1t)" — (t —a)"| = ' for all n odd
t€la,b] 2n!

and this gives last part of the inequality in (3.6). The corollary is thus completely proved.

Remark 2. For n = m =1, we have that

(b—a)(d—c)
4

b d
/f@$%ﬂ+ [F(a,0) + f(ad) + f(b,¢) + F(b,d)]

b—a

d —c
2{[@@@+ﬂamwyﬁ

b
[/ (f(t,c) + f(t,d))dt]

(b—a o2 f
HatasH
_ q+1
THE 211 il v bede
—¢)) 0
T gl

Again, the same result was obtained by G. Hanna et al. in [5] and S. Dragomir et al.
in [6].

In the following section we will utilise the inequalities obtained in this section and
demonstrate their capabilities to numerical integration.

4. Applications to Numerical Integration

Consider I to be a two-dimensional, n-times differentiable mapping, where all partial
derivatives in both directions exist and are integrable. We apply the inequalities ob-
tained in Section 3 for numerical implementation using a uniform mesh. The following
application in Numerical Integration is natural to be considered.

Theorem 4. Let f : [a,b] X [c,d] = R be as in Theorem 3. In addition, let I, and
Ju be arbitrary divisions of [a,b] and [c, d] respectively, that is,

Li:a=& <& < <& =0,
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where x; € (&,&i+1) fori=0,1,...,v—1, and
Jutc:T0<T1<"'<T”:d,

with y; € (15, 7j41) for j =0,1,..., 0 — 1, then we have the cubature formula

/ab /Cdf(t,s)ds dt

1 S
(SR VO f(wiyyy)

k=0 [=0 i=0 j=0

nolv=lp— Ti41 GR+M £ (0
ym 0 ( ) (. (@i, s)
X,
;;z /T]_ S (w9 e s
=K o ()
n Z Z Yi(] y] K( )(mw ) atnayl . dt
1=0 i=0 j=
(f7 U?Juaxay)v (41)

where the remainder term satisfies the condition

n+m

-1
HBt"Bsm C entl o \n+1
(n+ 1) m+ 1 o (s = &)™ + (i1 — )™

XZ M (T4 — )

anerf
otnds™
an+mf
otnos™

m+1]
if € Loo([a,b] x [c,d]);

‘ v—1
2 3 (s =€) (G — )
n!m!(ng + 1)% ; o ' '

|R(f, Inn, Jm, @, y)| < 5 .
Y [y = )™+ (i —

1
q

)mq+1]§

]7

gntmf 11

L b 1, —+-=1;

singem € Lot x[e.d), p>1, =
|t 2

%Z —&)"+ (Eipr— )"+ (2= &) = (Eir1—x)"]]

XZ Yi—7)" + (T —y) ™ (g =)™ = (141 —y;)™ ]

8n+m
o € La(fe ] x [e, )
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XPk=01,...,n-1;i=0,1,...,v-1), Y1 =01,...,m-1;j=0,1,...,u—1)

and

K,(f)(izo,l,...,u—l), S,(,{)(jzo,l,...,u—l) are defined by

Dy . (Eip1 — )" 4+ (=1)F(z; — &)FTT
Xk (l'l) L= (k — 1)' ,
@y . (T — yi) L+ (=) (y; — 1)
W - == ] (1+1)! i

(t—&)" o
K(l) (mz t) - T; t e [fz;l’z] .
! 7 (t=&ip1)" ;
a0 '€ (i, Eir1]
=" ]
S (yj,8) : = m!. -
%’ s € (i, Tj41).

The proof is obvious by Theorem 3 applied on the interval [&;, &i1] % [75, Tj41],
(t=0,1,...,v—=1; 7=0,1,...,u — 1), and we omit the details.

Remark 3. Similar result can be obtained if we use the other results obtained in
section 8, but we omit the details.
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