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ON THE BOUNDEDNESS OF A GENERALIZED FRACTIONAL
INTEGRAL ON GENERALIZED MORREY SPACES

ERIDANI

Abstract. In this paper we extend Nakai’s result on the boundedness of a generalized fractional
integral operator from a generalized Morrey space to another generalized Morrey or Campanato
space.

1. Introduction and Main Results

For a given function p : (0,00) — (0,00), let 7, be the generalized fractional integral

operator, given by
T —
Tof (@) = fwe(l nde
R* |z -yl
and put

= Pz —yl) Py — xB,(y))
T = [ o (= el gy,
the modified version of 7,, where By is the unit ball about the origin, and xp, is the
characteristic function of By.
In [4], Nakai proved the boundedness of the operators 7, and 7, from a generalized
Morrey space M,y to another generalized Morrey space My, or generalized Campanato

space L1,4. More precisely, he proved that
ITofllrmew < Cllifllaa,e and ([ Tpfllerw < Cllfllnmg,

where C' > 0, with some appropriate conditions on p, ¢ and 1. Using the techniques
developed by Kurata et.al.[1], we investigate the boundedness of these operators from
generalized Morrey spaces M, 4 to generalized Morrey spaces M, or generalized Cam-
panato spaces Ly, for 1 < p < oo.

The generalized Morrey and Campanato spaces are defined as follows. For a given
function ¢ : (0,00) — (0,00), and 1 < p < oo, let

1 (1 S\?
£l = 00— (E [ 1w dy) ,
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and

1 1 P
11,0 =09 = (ﬁ [ 1) —fB|pdy) ,

where the supremum is taken over all open balls B = B(a,r) in R", |B] is the Lebesgue
measure of B in R", ¢(B) = ¢(r), and fp = ﬁ fB fy)dy. We define the generalized
Morrey space M, 4 by

Mpo ={f € Li,.(R") :||fllnm,., < oo},
and the generalized Campanato space L,y by
Lyo =A{f € Lip(R") : || fllz,,, < oo}
Our results are the following:

Theorem 1. If p,¢,¢ : (0,00) — (0, 00) satisfying the conditions below:

1 _t 1 _ 9t 1 _ pt)

§§;§2=>A—1§%§A1;a"d14—2§%§‘42; (L.1)
1 00

/0 @dt < 00, and for all r > 0, we have / @dt < Aso(r)P, (1.2)

o(r) /07‘ @dt + /OO wdt < Agp(r), for allr >0, (1.3)

where A; > 0 are independent of t,r > 0, then for each 1 < p < oo there exists Cp > 0
such that
1 Toflimy < Cpllflinm, -

Theorem 2. If p, ¢, : (0,00) = (0,00) satisfying the conditions below:

1t 1 o(t) 1 (t)
§S;S2:>A_1SWSA1’MCIA_2SMSA2’ (2.1)
1 o0
/ @dt < 00, and for all r > 0, we have d)(?p dt < Asp(r)P, (2.2)
0 ”
t 1 t
p,fi? - pt(n) < Aylr— 4 p,f_’;)l, for 3 < <2, (2.3)
d)(r)/o @dt + r/r %dt < As¢(r), for all T > 0, (2.4)

where A; > 0 are independent of t,r > 0, then for each 1 < p < oo there exists Cp > 0
such that }
1Tz, < Cpllfllrtg,,
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2. Proof of the Theorems

To prove the theorems, we shall use the following result of Nakai [2] (in a slightly
modified version) about the boundedness of the standard maximal function M f on a
generalized Morrey space M, 4. The standard maximal function M f is defined by

M (@) = sup |—;| /B F()ldy, « € R",

where the supremum is taken over all open balls B containing z.

Theorem(Nakai). If ¢ : (0,00) — (0,00) satisfying the conditions below:

= o(r) =

(@) $<t<2= L <2l <y,
(b) [ 2%t < Ay(r)P, for all v > 0,

where A; > 0 are independent of t,r > 0, then for each 1 < p < oo there exists Cp > 0
such that

1M flla,., < Cpllflinm,.,-

From now on, C' and (), will denote positive constants, which may vary from line to
line. In general, these constants depend on n.

Proof of Theorem 1. For vz € R", and r > 0, write

F@ellz —yl) fWe(lz —yl)
T,f(z) = LPE = 91 g DPPUE = IV gy = Iy (z) + L (x).
f@ = [ . y =L@+ L)

|lz—y|<r |x_y|n |x_y|n

Note that, for t € [2%r, 2¥+1r], there exist constants C; > 0 such that

ok+1,
t
p(2Fr) < Cl/ P g
2k t
and -
ok+1y
oo <oy [ ED
2k
So, we have

-1

<3 LIS
2kr<|z—y|<2k+1ir |:E - y|n

k=—00

-1
p(2kr)
< ck;oo @) /Mldkﬂr |£(9)ldy
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<OY o2 Mf)

k=—o0
p(t)
d
t Yy

< CMf(z) k;m /2 e

< CMf(2) /0 LGP

¥(r)
<C5m

gk+1r

Mf ().
Meanwhile,

lfW)lp(lz —y))
| (x)| < /Ix—ylzr iz =y dy

oo

. HOLCERI

- k=0 ~/2’°r§z—y<2’°+1r |m_y|n

o k+1
<o P27 i
S kzz(:) (ri)n /z_y<2k+1T |f(y)|dy

<O PR flas, o

k=0

o 2k+2,
o(t)plt
<Clillw,. Y [ A
k=0 2"*tr

< Clfllu,.. [ 22
< OY Il -

Now, for 1 < p < o0, we have

|To f (@) [P < 207 H(| 1 (2) [P + | L2 (2)|P),
and by Nakai’s Theorem, we have for all balls B = B(a,r)
o [ @Pde < s [ Mprds < QMR , < G
Y(r)?|B| Jp ~ o(r)?|B| Jp - Mp.s = TP My .°

and )
_— L(z)|Pdx < C|| % .
¢(T)p|B| /B | 2( )| = ||f||Mp)¢

Combining the two estimates, we obtain

1 , )
S(r?|B] /B 7o f(@)Pdz < Cyllfllhs,
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and the result follows.
Proof of Theorem 2. Let B = B(a,2r). For z € B = B(a,r), we have

T,f(x) = Cp = Ep() + Eg (),

where
B plla -y —x5H) Uy = x5, (Y))
= Jp 1V ( oo )
/ Iy yI”D .
and

- ()
From (2.3), we have

plla )
Cal<C ( LG y|n+1dy> ,

where k = max(2|al, 2r), and so we know that Cp is finite for every ball B = B(a,r).
With the same technique as in the proof of the previous theorem, we have

=

[f@)le(lz —y)
= /|ac—y|<3r |$ - y|n y

< OMf(z) /037« @dt

<CMf(x) /Or @dt,

and by (2.3)
, pllz—yl)  plla—yl)
|EB(x)|S/|a_y|22T|f(y)|‘ z—g"  Ja—y|" dy
<olo—d [ et

la—y|>2r

< Cllfllan,or [ 29,

and the result follows as before.

Remark. We also suspect that 7,, the modified version of 7,, is bounded from £, 4
to £, under the same hypothesis on p, ¢ and ¢ as in Theorem 2. However, we have
not obtained the proof and the research in this direction is still ongoing.
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