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ON THE BOUNDEDNESS OF A GENERALIZED FRACTIONAL

INTEGRAL ON GENERALIZED MORREY SPACES

ERIDANI

Abstract. In this paper we extend Nakai's result on the boundedness of a generalized fractional

integral operator from a generalized Morrey space to another generalized Morrey or Campanato

space.

1. Introduction and Main Results

For a given function � : (0;1)! (0;1), let T� be the generalized fractional integral

operator, given by

T�f(x) =

Z
R
n

f(y)�(jx� yj)

jx� yjn
dy;

and put

~T�f(x) =

Z
R
n

f(y)

�
�(jx� yj)

jx� yjn
�
�(jyj)(1� �B0(y))

jyjn

�
dy;

the modi�ed version of T�, where B0 is the unit ball about the origin, and �B0 is the

characteristic function of B0.

In [4], Nakai proved the boundedness of the operators ~T� and T� from a generalized

Morrey spaceM1;� to another generalized Morrey spaceM1; or generalized Campanato

space L1; . More precisely, he proved that

kT�fkM1; 
� CkfkM1;�

and k ~T�fkL1; � CkfkM1;�
;

where C > 0, with some appropriate conditions on �; � and  . Using the techniques

developed by Kurata et.al.[1], we investigate the boundedness of these operators from

generalized Morrey spacesMp;� to generalized Morrey spacesMp; or generalized Cam-

panato spaces Lp; for 1 < p <1.

The generalized Morrey and Campanato spaces are de�ned as follows. For a given

function � : (0;1)! (0;1), and 1 < p <1, let

kfkMp;�
= sup

B

1

�(B)

�
1

jBj

Z
B

jf(y)jpdy

� 1
p

;
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and

kfkLp;� = sup
B

1

�(B)

�
1

jBj

Z
B

jf(y)� fB j
p
dy

� 1
p

;

where the supremum is taken over all open balls B = B(a; r) in Rn, jBj is the Lebesgue

measure of B in Rn, �(B) = �(r), and fB = 1
jBj

R
B
f(y)dy. We de�ne the generalized

Morrey space Mp;� by

Mp;� = ff 2 L
p

loc
(Rn) : kfkMp;�

<1g;

and the generalized Campanato space Lp; by

Lp;� = ff 2 L
p

loc
(Rn) : kfkLp;� <1g:

Our results are the following:

Theorem 1. If �; �;  : (0;1) �! (0;1) satisfying the conditions below:

1

2
�
t

r
� 2)

1

A1

�
�(t)

�(r)
� A1; and

1

A2

�
�(t)

�(r)
� A2; (1.1)

Z 1

0

�(t)

t
dt <1; and for all r > 0; we have

Z 1

r

�(t)p

t
dt � A3�(r)

p
; (1.2)

�(r)

Z
r

0

�(t)

t
dt+

Z 1

r

�(t)�(t)

t
dt � A4 (r); for all r > 0; (1.3)

where Ai > 0 are independent of t; r > 0, then for each 1 < p < 1 there exists Cp > 0

such that

kT�fkMp; 
� CpkfkMp;�

:

Theorem 2. If �; �;  : (0;1)! (0;1) satisfying the conditions below:

1

2
�
t

r
� 2)

1

A1
�
�(t)

�(r)
� A1; and

1

A2
�
�(t)

�(r)
� A2; (2.1)

Z 1

0

�(t)

t
dt <1; and for all r > 0; we have

Z 1

r

�(t)p

t
dt � A3�(r)

p
; (2.2)�����(r)

rn
�
�(t)

tn

���� � A4jr � tj
�(r)

rn+1
; for

1

2
�
t

r
� 2; (2.3)

�(r)

Z
r

0

�(t)

t
dt+ r

Z 1

r

�(t)�(t)

t2
dt � A5 (r); for all r > 0; (2.4)

where Ai > 0 are independent of t; r > 0, then for each 1 < p < 1 there exists Cp > 0

such that

k ~T�fkLp; � CpkfkMp;�
:
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2. Proof of the Theorems

To prove the theorems, we shall use the following result of Nakai [2] (in a slightly

modi�ed version) about the boundedness of the standard maximal function Mf on a

generalized Morrey space Mp;�. The standard maximal function Mf is de�ned by

Mf(x) = sup
B3x

1

jBj

Z
B

jf(y)jdy; x 2 Rn
;

where the supremum is taken over all open balls B containing x.

Theorem(Nakai). If � : (0;1) �! (0;1) satisfying the conditions below:

(a) 1
2
�

t

r
� 2) 1

A1
�

�(t)

�(r)
� A1;

(b)
R1
r

�(t)p

t
dt � A2�(r)

p
; for all r > 0,

where Ai > 0 are independent of t; r > 0, then for each 1 < p < 1 there exists Cp > 0

such that

kMfkMp;�
� CpkfkMp;�

:

From now on, C and Cp will denote positive constants, which may vary from line to

line. In general, these constants depend on n.

Proof of Theorem 1. For x 2 Rn, and r > 0, write

T�f(x) =

Z
jx�yj<r

f(y)�(jx� yj)

jx� yjn
dy +

Z
jx�yj�r

f(y)�(jx� yj)

jx� yjn
dy = I1(x) + I2(x):

Note that, for t 2 [2kr; 2k+1r], there exist constants Ci > 0 such that

�(2kr) � C1

Z 2k+1r

2kr

�(t)

t
dt

and

�(2kr)�(2kr) � C2

Z 2k+1r

2kr

�(t)�(t)

t
dt:

So, we have

jI1(x)j �

Z
jx�yj<r

jf(y)j�(jx� yj)

jx� yjn
dy

�

�1X
k=�1

Z
2kr�jx�yj<2k+1r

jf(y)j�(jx� yj)

jx� yjn
dy

� C

�1X
k=�1

�(2kr)

(2kr)n

Z
jx�yj<2k+1r

jf(y)jdy
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� C

�1X
k=�1

�(2kr)Mf(x)

� CMf(x)

�1X
k=�1

Z 2k+1r

2kr

�(t)

t
dy

� CMf(x)

Z
r

0

�(t)

t
dy

� C
 (r)

�(r)
Mf(x):

Meanwhile,

jI2(x)j �

Z
jx�yj�r

jf(y)j�(jx� yj)

jx� yjn
dy

�

1X
k=0

Z
2kr�jx�yj<2k+1r

jf(y)j�(jx� yj)

jx� yjn
dy

� C

1X
k=0

�(2k+1r)

(2kr)n

Z
jx�yj<2k+1r

jf(y)jdy

� C

1X
k=0

�(2k+1r)�(2k+1r)kfkMp;�

� CkfkMp;�

1X
k=0

Z 2k+2r

2k+1r

�(t)�(t)

t
dt

� CkfkMp;�

Z 1

r

�(t)�(t)

t
dt

� C (r)kfkMp;�
:

Now, for 1 � p <1, we have

jT�f(x)j
p
� 2p�1(jI1(x)j

p + jI2(x)j
p);

and by Nakai's Theorem, we have for all balls B = B(a; r)

1

 (r)pjBj

Z
B

jI1(x)j
p
dx �

C

�(r)pjBj

Z
B

Mf(x)pdx � CkMfk
p

Mp;�

� Cpkfk
p

Mp;�

;

and
1

 (r)pjBj

Z
B

jI2(x)j
p
dx � Ckfk

p

Mp;�

:

Combining the two estimates, we obtain

1

 (r)pjBj

Z
B

jT�f(x)j
p
dx � Cpkfk

p

Mp;�

;
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and the result follows.

Proof of Theorem 2. Let ~B = B(a; 2r). For x 2 B = B(a; r), we have

~T�f(x)� CB = E
1
B
(x) +E

2
B
(x);

where

CB =

Z
R
n

f(y)

�
�(ja� yj)(1� � ~B(y))

ja� yjn
�
�(jyj)(1� �B0(y))

jyjn

�
dy;

E
1
B
(x) =

Z
~B

f(y)
�(jx� yj)

jx� yjn
dy;

and

E
2
B
(x) =

Z
~Bc
f(y)

�
�(jx� yj)

jx� yjn
�
�(ja� yj)

ja� yjn

�
dy:

From (2.3), we have

jCB j � C

 Z
ja�yj<k

jf(y)jdy + jaj

Z
ja�yj�k

jf(y)j
�(ja� yj)

ja� yjn+1
dy

!
;

where k = max(2jaj; 2r), and so we know that CB is �nite for every ball B = B(a; r).

With the same technique as in the proof of the previous theorem, we have

jE
1
B
(x)j �

Z
ja�yj<2r

jf(y)j�(jx� yj)

jx� yjn
dy

�

Z
jx�yj<3r

jf(y)j�(jx� yj)

jx� yjn
dy

� CMf(x)

Z 3r

0

�(t)

t
dt

� CMf(x)

Z
r

0

�(t)

t
dt;

and by (2.3)

jE
2
B
(x)j �

Z
ja�yj�2r

jf(y)j

�����(jx� yj)

jx� yjn
�
�(ja� yj)

ja� yjn

���� dy
� Cjx � aj

Z
ja�yj�2r

jf(y)j
�(ja� yj)

ja� yjn+1
dy

� CkfkMp;�
r

Z 1

r

�(t)�(t)

t2
dt;

and the result follows as before.

Remark. We also suspect that ~T�, the modi�ed version of T�, is bounded from Lp;�

to Lp; under the same hypothesis on �, � and  as in Theorem 2. However, we have

not obtained the proof and the research in this direction is still ongoing.
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