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MONOTONE ITERATIVE TECHNIQUE

FOR CARATHEODORY THEORY OF NONLINEAR

FUNCTIONAL RANDOM INTEGRAL EQUATIONS

B. C. DHAGE

Abstract. In this paper some random �xed point theorems for the mappings on an ordered Ba-

nach space are proved. As applications, the existence of the extremal solutions of some nonlinear

functional random integral equations is obtained under certain monotonicity conditions.

1. Introduction

Let (
;A) be a measurable space and set X be a real separable Banach space. Let �X
denote the �-algebra of all Borel subsets ofX . A mapping x : 
! X is called measurable

if for any B 2 �X ; x
�l(B) = f! 2 
 : x(!) 2 Bg 2 A. A mapping T : 
0 � X ! X

is called a random operator if T (�; x) is measurable for all x 2 X . A random operagor

T is also denoted by T (!)x := T (!; x) or by simply T (!). A random operator T (!) is

called continuous if T (!)(�) is continuous for each ! 2 
, and completely continuous,

if it is continuous and for any bounded set B in X , T (!)(B) is precompact subset of

X for each ! 2 
. Similarly a random operator T : 
 � X ! X is called contraction

if kT (!)x � T (!)yk � �(!)kx � yk(�(!) < l) for all x; y 2 X and for each ! 2 
. A

measurable mapping � : 
 ! X is called a random �xed point of the random operator

T (!) if T (!)�(!) = �(!) for each ! 2 
.

A non-empty closed subset K of X is called a cone in X if (i) K + K � K (ii)

�K � K for � 2 R, � � 0 and (iii) f�Kg \ K = 0, where 0 is a zero emelment of

X . Now we introduce an order relation � in X as follows : Let x; y 2 X . Then x � y

if and only if y � x 2 K. The Banach spcae X together with this order relation �

becomes a ordered Banach space and it is denoted by (X, k � k, �) or simply by (X , K).

We need the following properties of the cone K in the sequel. A cone K in X is called

normal if every order bounded set in X is bounded in norm. Similaryly a cone K in

X is called regular if every increasing sequence which is bounded above is convergent.

Let u; v 2 X be such that u � v. Then an order interval [u; v] is a set in X de�ned

by [u; v] = fx 2 X ju � x � vg. A random operator T (w) is called nondecreasing if for

any x; y 2 X , x � y implies T (!)x � T (!)y for each ! 2 
. A measurable mapping

Received October 15, 2001; revised March 12, 2002.
2000 Mathematics Subject Classi�cation. 47H10
Key words and phrases. Fixed point theorem, random integral equation.

341



342 B. C. DHAGE

�
� : 
 ! X is called a maximal random �xed point of the random operator T (!) if for

any random �xed point � of T (!), �(!) � �
�(w) for each ! 2 
. Similarly a minimal

random �xed point �
�
of the random operator T (!) is de�ned.

Several classical or deterministic �xed point theorems have been extended to random

operators in the literature by di�erent authors and some of the random �xed point

theorems have nice applications to nonlinear random di�erenital and integral equations

for proving the existence and uniqueness results. See for details, Bharucha Reid [3] and

the references given therein. In this paper we prove some �xed point theorems involving

a single and a pair of random operators on an ordered Banach space which extend the

classical or deterministic well-known �xed point theorems of Amann [1] and Dhage [4]

to random operators.

2. Random Fixed Point Theory

Before going to the mian results of this paper, we recall some useful de�nitions:

The measure of noncompactness of a bounded set S in a Banach space X is a non-

negative real number �(S) to be de�ned by

�(S) = inffr > 0; S =
n

[
i = l

Si diam (Si) � r; 8ig: (2.1)

The function �(�) is called a Kuratowskii measure of noncompactness and the details

may be found in Banas and Goebel [2]. A random operator T : 
 � X ! X is called

�-condensing if for any bounded set S in X , T (!)(S) is bounded and �(T (!)S) < �(S)

if �(S) > 0 for each ! 2 
. It is know that every completely continuous and contraction

random operators are �-condensing.

Let a; b : 
 ! X . Then by a � b we mean a(!) � b(!)8! 2 
. In this case we also

write a � b on 
. By the order interval [a; b] we denote a set in X de�ned by

[a; b] = fx 2 X ja(!) � x � b(!) 8! 2 
g

= \!2
[a(!); b(!)]:

Our �rst result is

Theorem 2.1. Let a; b : 
 ! X be two measurable functions such that a � b and

let Q : 
 � [a; b] ! [a; b] be a continuous and nondecreasing random operator. Then Q

has a minimal random �xed point �� and a maximal random �xed point �� if any one of

following conditions holds.

(a) Q(!) is �-condensing and the cone K in X is normal.

(b) The cone K is regular in X.

Moreover,

�
�
(!) = lim

n
Q

n(!)a and �

�(!) = lim
n
Q

n(!)b: (2.2)
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Proof. Let ! 2 
 be a �xed element. Then the sequences fxn(!)g and fyn(!)g in

[a; b] de�ned by

xn(!) = Q

n(!)a and yn(!) = Q

n(!)b (2.3)

satisfy the inequality

a(w) = x0(!) � xl(!) � � � � � xn(!) � � � � � yn(!) � y0(!) = b(!): (2.4)

for each ! 2 
.

Since a and b are measurable function on 
, and Q(!) is a continuous random op-

erator, each xn(!) and yn(!) are measurable and consequently are random variables for

each n 2 N. We discuss the conclusion of the theorem in the following two cases:

Case I. Suppose that the cone K in X is normal. Then the order interval [a; b] is a

bounded subset of X . Consequently fxn(!)g and fyn(!)g are bounded sets in X . We

show that fxn(!)g and fyn(!)g are precompact sets in X . Suppose that fxn(!)g is not

precompact.

Now

fxn(!)g = fa(!)g [Q(fxn(!)g):

Hence

a(fxn(!)g) � �(Q(!)(fxng)) < �(xn(!)) which is a contradiction:

Hence fxn(!)g is precompact and fxn(!)g is compact for each ! 2 
. Therefore

there is a point �
�
in [a; b] such that lim

n
xn(!) = �

�
(!). Similarly it is proved that there

is a point �� in [a; b] such that lim
n
yn(!) = �

�(!). The measurability of fxn(!)g and

fyn(!)g implies that �
�
and �

� are random variables. From the continuity of Q(!) it

follows that Q(!)�
�
(!) = �

�
(!) and Q(!)��(!) = �

�(!) for each ! 2 
. Now suppose

that � is any other random �xed point of Q(!) in [a; b]. Then a(!) � �(!) � b(!) for

each ! 2 
 and from the nondecreasing nature of Q(!) it follows that

xn(!) = Q

n(!)a � �(!) � Q

n(!)b = yn(!) for each ! 2 
:

Hence �
�
(!) � �(!) � �

�(!) for each ! 2 
. Thus �
�
and �� are respectively the minimal

and maximal random �xed points of Q(!) in [a; b].

Case II. Next suppose that the condition (b) holds. By the regularity of cone K

in X , there are points �
�
and �

� in [a; b] such that ln
n
xn(!) = �

�
(!) and lim

n
yn(!) =

�
�(!); ! 2 
, where xn(!) and yn(!) are de�ned by (2.3). The rest of the proof is similar

to Case I and we omit the details. This completes the proof.

Corollary 2.1. Let a; b : 
 ! X be two measurable functions such that a � b and

let Q : 
� [a; b]! [a; b] be a completely continuous and nondecreasing random operator.
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Further if the cone K in X is normal, then Q(!) has a minimal random �xed point �
�

and a maximal random �xed point �� in [a; b]. Moreover,

�
�
(!) = lim

n
Q

n(!)a and �

�(!) = lim
n
Q

n(!)b:

Theorem 2.2. Let Q : 
 � X ! X be a continuous and nondecreasing random

operator. Suppose that there exist two measurable functions a; b : 
! X such that a � b

satisfying a(!) � Q(!)a and Q(!)b � b(!) for each ! 2 
. Then Q(!) has a minimal

random �xed point �
�
and a maximal random �xed point �

�
in [a; b] if any one of the

following conditions holds.

(a) Q(!) is �-condensing and the cone K in X is normal.

(b) The cone K in X is regular.

Moreover

�
�
(!) = lim

n
Q

n(!)a and �

�(!) = lim
n
Q

n(!)b:

Proof. Consider the order interval [a; b] in X . We shall show that Q de�nes a

mapping Q(!) : 
� [a; b]! [a; b]: Let x 2 [a; b] be any element. Then a � x � b: Since

Q is nondecreasing and a(!) � Q
n(!)a and Q

n(!)b � b(!) for each ! 2 
, one has

a(!) � Q(!)a � Q(!)x � Q(!)b � b(!)

for each ! 2 
. Hence Q(!)x 2 [a; b] for all x 2 [a; b]. Now the desired conclusion follows

by an application of Theorem 2.1.

Corollary 2.2. Let Q : 
 �X ! X be a completely continuous and nondecreasing

random operator. Suppose that there exist two measurable functions a; b : 
 ! X such

that a � b satisfying a(!) � Q(!)a and Q(!)b � b(!) for each ! 2 
. Further if the

cone K in X is normal, then the operator Q(!) has a minimal random �xed point �
�
and

a maximal random �xed point �� in [a; b]. Moreover,

�
�
(!) = lim

n
Q

n(!)a and �

�(!) = lim
n
Q

n(!)b for each ! 2 
:

Theorem 3.3. Let a; b : 
 ! X be two measurable functions such that a � b and

let A;B : 
 � [a; b] ! [a; b] be two non-decreasing random operators such that for each

! 2 
,

(a) A(!) is contraction,

(b) B(!) is completely continuous, and

(c) A(!)x +B(!)x 2 [a; b] for each x 2 [a; b].

Further if the cone K in X is normal, then the operator equation

A(!)x+B(!)x = x (2.4)
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has a minimal random solution �
�
and a maximal random solution �

� in [a; b]. Moreover,

�
�
(!) = lim

n
xn(!) and �

�(!) = lim
n
yn(!);

where xn+1(!) = A(!)xn +B(!)xn; n � 0; with x0 = a

and yn+1(!) = A(!)yn +B(!)yn; n � 0; with y0 = b

)
(2.5)

Proof. De�ne a mapping Q : 
�X ! X by

Q(!)x = A(!)x +B(!)x (2.6)

for each ! 2 
. Clearly by hypothesis (c), Q de�nes a mapping Q : 
� [a; b]! [a; b].

Also Q is nondecreasing random operator in view of the fact that the sum of two mea-

surable functions is again measurable. As A(!) is contraction, it is continuous and since

sum of two continuous mappings is again continuous, the random operator Q(!) is con-

tinuous. It is easily shown that Q is a �-condensing random ooperator on 
� [a; b]. Now

Q(!) satis�es all the conditions of Theorem 2.1 and hence a direct application of it yields

the desired conclusion. The proof is complete.

Corollary 3.3. Let A;B : 
�X ! X be two non-decreasing random operators such

that

(a) A(!) is a contraction,

(b) B(!) is completely continuous, and

(c) there exist two measurable functions a; b : 
 ! X such that a � b and satisfy for

each ! 2 
,

a(!) � A(!)a+B(!)a and A(!)b+ B(!)b � b(!):

Further if the cone K in X is normal, then the operator equation (2.4) has a minimal

random solution �
�
and a miximal random solution �

� in [a; b]. Moreover,

�
�
(!) = lim

n
xn(!) and �

�(!) = lim
n
yn(!); for each ! 2 
;

where fxn(!)g and fyn(!)g are de�ned by (2.5).

To state our �nal �xed point theorem we need the following porperty of the cone K

in X .

A cone K in a seperable Banach algebra X is called a positive if it satis�es (d)K0K � K

where \o" is a multiplicative composition in X .

A random operator T : 
�X ! X is called positive if range (T ) � Kjf0g.

Lemma 2.1. Let K be a positive cone K in a Banach algebra X and let u1, u2, v1,

v2 2 K. If u1 � u2 and v1 � v2, then u1v1 � u2v2.

Proof.

Now u2v2 � u1v1 � u2v2 � u1v2 + u1v2 � u1v1

= (u2 � u1)v2 + u1(v2 � v1)

= k1v2 + u1k2

= k
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for some k = k1v2 + u1k2 2 K. By the de�nition of the order relation � which implies

that u1v1 � u2v2.

Theorem 3.4. Let a; b : 
! K be two measurable functions such that a � b and let

A;B : 
� [a; b]! X be two positive and non-decreasing random operators satisfying for

each ! 2 
.

(a) A(!) is Lipschitziian with Lipschitz constant �(!),

(b) B(!) is completely continuous, and

(c) A(!)xB(!)x 2 [a; b] for each x 2 [a; b].

Further if the cone Kin X is positive and normal, then the random equation

A(!)xB(!)x = x (2.7)

has a minimal random solution �
�
and a maximal positive random solution �

� in [a; b]

whenever �(!)M(!) < l for each ! 2 
, where M(!) = kB(!)([a; b])k = supfkB(!)xk :

x 2 [a; b]g.

Moreover,

�
�
(!) = lim

n
xn(!) and �

�(!) = lim
n
yn(!);

where xn+1(!) = A(!)xnB(!)xn; n � 0; with x0 = a

and yn+1(!) = A(!)ynB(!)yn; n � 0; with y0 = b

)
(2.8)

Proof. De�ne a mapping Q : 
�X ! X by

Q(!)x = A(!)xB(!)x: (2.9)

Now A(!) and B(!) are continuous and so from the continuity of multiplication in

Banach algebra, it follows that Q is a random operator. By hypothesis (c), Q de�nes a

mapping Q : 
 � [a; b] ! [a; b]. It is shown as in Dhange [4] that Q(!) is a continuous

and �-condenring random operator. Also Q(!) is nondecreasing is view of Lemma 2.1.

Now the desired result follows by an application of Theorem 2.1.

Corollary 3.4. Let A;B : 
 �X ! X be two non decreasing and positive random

operators satisfying for each ! 2 
.

(a) A(!) is Lipschitzian with Lipschitz constant �(!),

(b) B(!) is completely continuous, and

(c) there exist measurable functions a; b : 
! Kjf0g such that a(!) � A(!)aB(!)a and

A(!)bB(!)b � b(!).

Further if the cone K in X is positive and normal, then the operator equation (2.7)

has a minimal random �xed point �
�
and a maximal �xed point �� in [a; b] whenever

a(!)M(!) < l for each ! 2 
, where M(!) = kB(!)([a; b])k Moreover,

�
�
(!) = lim

n
xn(!); and

�

�(!) = lim
n
yn(!)
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where fxn(!)g and fyn(!)g are de�ned by (2:8).

In the following section we shall obtain the existence of extremal solutions of a certain

nonlinear functional random integral equations.

3. Functional Random Integral Equations

Given a closed and bounded interval J = [0; 1] in R, the set of all real numbers,

consider the nonlinear functional random integral equation (in short RIE).

x(t; !) = q(t; !) +

Z
�(t)

0

f(s; x(�(s); !); !)ds (3.1)

for all t 2 J , here q : J �
! R, f : J �R�
! R and �; � : J ! J . The special cases

of the RIE(3.1) have been studied extensively in the literature. See Bharucha - Reid [3].

We shall obtain the existence of the extremal random solutions of the RIE(3.1) in the

space BM(J;R) of all measurable and bounded real-valued functions de�ned on J . We

equip the space BM(J;R) with a norm k � k de�ned by

kxk = sup
t2J

kx(t)k:

Clearly BM(J;R) is a separable Banach space with this supremum norm. We de�ne

an order relation � in the space BM(J;R) by the cone K in BM(J;R) de�ne by

K = fx 2 BM(J;R)jx(t) � 0; t 2 Jg (3.2)

Clerly the cone K is normal BM(J;R).

A function u : 
 ! BM(J;R) is called a lower solution of the RIE(3.1) if for each

! 2 
,

u(t; !) � q(t; !) +

Z
�(t)

0

f(s; x(�(s); !); !)ds

for all t 2 J , Simillarly u is called an upper solution of the RIE (3.1) if the reverse

inequality is satis�ed. Finally a function u : 
 ! BM(J;R) is called a solution of the

RIE (3.1) if it is a lower as well as an upper solution of the RIE (3.1) on J . In this case

u is called a wide sense solution of RIE (3.1). Moreover if u(t; !) is mesarable in !, then

it is called a random solution of RIE (3.1).

We need the following de�nition in the sequel.

De�nition 3.1. A function � : J �R�
! R is said to be L1!-Caratheodory, if for

each ! 2 
,

(i) t! �(t; x; !) is measurable for all x 2 R,

(ii) x! �(t; �; !) is continuous for almost all t 2 J , and

(iii) for given k > 0, there exists a function hk : 
! L
1(J;R) such that
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j�(t; x; !)j � hk(t; !); a,e t 2 J:

for all x 2 R with jxj � k.

We consider the following set of asscumptions

(H0) The functions �; � : J ! J , are continuous.

(H1) t ! q(t; !) is continuous for each ! 2 
 and ! ! q(t; !) is measurable for all

t 2 J ,

(H2) The function ! ! f(t; x; !) is measurable for all (t; x) 2 J �R.

(H3) f(t; x; !) is L1!-Caratheodory.

(H4) For each ! 2 
, f(t; x; !) is nondecreasing in x for almost all t 2 J .

(H5) There exists two measurable functions a; b : 
 ! BM(J;R) such that a � b

and a and b are respectively the lower and upper solutions of the RIE (3.1) on

J .

Theorem 3.1. Assume that the hypotheses (H0) � (H5) hold. Then the RIE (3:1)

admits a maximal random solution �
� and a minimal random solution �

�
in [a; b].

Moreover,

�
�
(!) = lim

n
xn(!) and �

�(!) = lim
n
yn(!)

where

xn(!) = q(t; !) +

Z
�(t)

0

f(s; xn�1(�(s); !); !)ds; n � 1; x0(!) = a(!);

and

yn(!) = q(t; !) +

Z
�(t)

0

f(s; yn�1(�(s); !); !)ds; n � 1; y0(!) = b(!);

Proof. De�ne a mapping Q on 
�BM(J;R) by

Q(!)x(t) = q(t; !) +

Z �(t)

0

f(s; x(�(s); !); !)ds; t 2 J: (3.3)

Take

y(t; !) =

Z
�(t)

0

f(s; x(�(s); !); !)ds; t 2 J and ! 2 
:

Since � is continuous, t! y(t; !) is continuous and hence is bounded on J for each ! 2 


Further ! ! y(t; !) =
R
�(t)

0
f(s; x(�(s); !); !)ds exists for each ! 2 
, and hence

is a limit of the �nite sum of the measurable functions. So y : 
 ! BM(J;R) is a

measurable function. This further in view of the hypothysis (H1) imples that Q de�nes

a measurable mapping Q : 
 � BM(J;R) ! BM(J;R) and hence Q is a random

operator. By hypothesis (H5), a(!) � Q(!)a and Q(!)b � b(!) for each ! 2 
.
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Let x; y 2 BM(J;R) be such that x � y. Then by (H4) for each ! 2 
,

Q(!)x(t) = q(t; !) +

Z �(t)

0

f(s; x(�(s); !); !)ds

� q(t; !) +

Z �(t)

0

f(s; x(�(s); !); !)ds

= Q(!)y(t)

for all t 2 J , and so Q(!)x � Q(!)y for each ! 2 
. Hence Q(!) is a nondecreasing

random operator on BM(J;R). Next we show that Q(!) is a completely continuous

random operator on BM(J;R). Obviously by using a standard arguments (see Granas

et.at.[5]) and using dominated convergence theorem, it is shown that Q(!) is a continuous

random operator. Let k > 0 be a �xed real number and consider a sequence fxng in

BM(J;R) such that jxn(t)j � k for all t 2 J . Then by (H8),

jQ(!)xn(t)j � j

Z
�(t)

0

f(s; x(�(s); !); !)dsj+ jq(t; !)j

� kq(!)k+

Z
�(t)

0

hk(s; !)ds

� kq(!)k+ khk(!)kL1 (3.4)

which shows that kQ(!)xnk is uniformly bounded for each ! 2 
. Now let t; � 2 J .

Then

jQ(!)xn(t)�Q(!)xn(�)j � jq(t; !)� q(�; !)j+ jp(t; !)� p(�; !)j (3.5)

where p(t; !) =
R �(t)
0

hk(s; !)ds.

Since q(�; !) and p(�; !) are uniformly continuous on J , it follows that fQ(!)xn(t)g is a

equi-continous set in BM(J;R). Hence Q(!) is a completely continuous random operator

onM(J;R) by Arzela-Ascoli theorem. Now the desired conclusion follows by application

of Corollary 2.2. This completes the proof.

As an application of the main result of this section, we consider the functional �rst

order random di�erential equation (in short RDE)

dx(t; !)

dt

= f(t; x(�(t); !); !) a.e. t 2 J:

x(0; !) = q(!) 2 R

9=
; (3.6)

for each ! 2 
, here f : J �R�
! R and � : J ! J is continuous.

By the random solution of the RDE (3.6) we mean a measurable function � : 
 !

AC(J;R) which satis�es (3.6) on J .

We equip the space AC(J;R) with a norm k � k and order relation � by

kxk = sup
t2J

jx(t)j;
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and x � y , x(t) � y(t) for all t 2 J .

Clearly AC(J;R) is a ordered separable Banach space, where in the cone K de�ned

by

K = fx 2 AC(J;R)jx � 0g

is normal.

We need the following set of hypothyses:

(A1) q : 
! R is measurable.

(A2) There exists two measurable functions u; v : 
 ! AC(J;R) such that u � v,

and for each ! 2 
,

du(t; !)

dt

� f(t; u(�(t); !); !) a.e. t 2 J:

u(0; !) � q(!)

and
dv(t; !)

dt

� f(t; v(�(t); !); !) a.e. t 2 J:

v(0; !) � q(!):

Theorem 3.2. Assume that the hypotheses (A1)�(A2) and (H2)�(H4) hold. Then

the RDE (3.6) admits a minimal random solution �
�
and a maximal random solution �

�

in [u; v]. Moreover

�
�
(!) = lim

n
xn(!) and �

�(!) = lim
n
yn(!)

for each ! 2 
, where

xn(!) = q(!) +

Z
t

0

f(s; xn�1(�(s); !); !)ds; n � 1; with x0 = u:

with

yn(!) = q(!) +

Z
t

0

f(s; xn�1(�(s); !); !)ds; n � 1; with y0 = v:

Proof. The problem (2.6) is equivalent to the RIE

x(t; !) = q(!) +

Z t

0

f(s; x(�(s); !); !)ds; t 2 J:

Now the desired conclusion follows by and application of Theorem 3.1 since

AC(J;R) � BM(J;R).

4. Conclusion

Finally while concluding this paper, we mention that we have not been able to relax

the continuity of the random mappings in any result of this paper for proving the �xed

point theorem or for proving the existence results for random di�erential and integral
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equations. This is because of the reason that the image of a random variable under a

discontinuous random operator may not be a random variable. Again the �xed point

theorems of this paper have some nice applications to a variety of nonlinear random

di�erential and integral equations and some of the results in this direction will be reported

else where.
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