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A VISCOSITY ITERATIVE ALGORITHM TECHNIQUE

FOR SOLVING A GENERAL EQUILIBRIUM PROBLEM SYSTEM

MASOUMEH CHERAGHI, MAHDI AZHINI AND HAMID REZA SAHEBI

Abstract. In the recent decade, a considerable number of Equilibrium problems have

been solved successfully based on the iteration methods. In this paper, we suggest a vis-

cosity iterative algorithm for nonexpansive semigroup in the framework of Hilbert space.

We prove that, the sequence generated by this algorithm under the certain conditions im-

posed on parameters strongly convergence to a common solution of general equilibrium

problem system. Results presented in this paper extend and unify the previously known

results announced by many other authors. Further, we give some numerical examples to

justify our main results.

1. Introduction

The viscosity iterative algorithms for finding a common element of the set of fixed points

for nonlinear operators and the set of solutions of variational inequality problems have been

investigated by many authors [11, 21, 24, 26, 27] and references therein. The viscosity tech-

nique for nonexpansive mappings in Hilbert space was proposed by Moudafi[9, 10]. This

technique allow us to apply this method to convex optimization, linear programming and

monoton inclusions [15, 17, 20, 22, 23, 25]. It is well known that the generalized equilibrium

problems include variational inequality problems, optimization problems, problems of Nash

equilibria, saddle point problems, fixed point problems and complementarity problems as

special cases [1, 9, 22, 23].

Let C be a nonempty closed convex subset of a real Hilbert space H with inner product

〈·, ·〉 and norm ‖ · ‖. A mapping T : C → C is said to be contraction if there exists a constant

α ∈ (0,1) such that ‖T (x)−T (y)‖≤α‖x − y‖, ∀x, y ∈C . If α= 1 T is called nonexpansive on C .

The generalized equilibrium problem (GEP) is defined as follows:

Find x̄ ∈C : F (x̄, y)+〈Ax̄, y − x̄〉 ≥ 0 ∀y ∈C , (1.1)
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where A : C → H is a nonlinear mapping, and F : C×C →R is a bifunction. The set of solutions

this problem is denoted by GEP(F, A)., i.e.,

GEP(F, A) = {x̄ ∈C : F (x̄, y)+〈Ax̄, y − x̄〉 ≥ 0, ∀y ∈C },

which was studied by Takahashi [23].

To study the generalized equilibrium problem (1.1), we may assume that F satisfies the

following conditions:

(A1) F (x, x)≥ 0, ∀x ∈C ,

(A2) F is monotone, i.e. F (x, y)+F (y, x) ≤ 0, ∀x ∈C ,

(A3) F is upper hemicontinuouse, i.e. for each x, y, z ∈C ,

limsup
t→0

F (t z + (1− t )x, y)≤ F (x, y),

(A4) For each x ∈C fixed, the function x → F (x, y) is convex and lower semi-continuous;

A family S := {T (s) : 0 ≤ s <∞} of mapping from C into itself is called a nonexpansive semi-

group on C if it satisfies the following conditions:

(1) T (0)x = x for all x ∈C ,

(2) T (s + t )= T (s)T (t ) for all s, t ≥ 0,

(3) ‖T (s)x −T (s)y‖≤ ‖x − y‖ for all x, y ∈C and s ≥ 0,

(4) For all x ∈C , s → T (s)x is continuous.

Plubtieng and Punpaeng introduced the following iterative method for nonexpansive semigroup[13]:

xn+1 =αn f (xn)+βn xn + (1−αn −βn)
1

sn

∫sn

0
T (s)xnd s.

In 2010 Kang et.al, introduced and inspired by results in [6], prove a strong convergence

of the iterative scheme in a real Hilbert space by

xn+1 =αnγ f (xn)+βn xn + ((1−βn )I −αn A)
1

sn

∫sn

0
T (s)xnd s,

where A is a strong positive bounded linear operator on C .

Cianciaruso et al. [3] considered the following iterative method:

F (un , y)+
1

rn
〈y −un ,un −xn〉 ≥ 0;

xn+1 =αnγ f (xn)+ (1−αn A)
1

sn

∫sn

0
T (s)und s.

Recently, Sahebi et al. [14, 15, 16, 17] considered a general viscosity iterative algorithm

for finding a common element of the set general equilibrium problem system and the set of
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fixed points of a nonexpansive semigroup in a Hilbert space. They proved, under the certain

appropriate conditions, the iterative algorithm converges strongly to the unique solution of a

variational inequality. In this paper, by intuition from [3, 6, 13, 14, 15, 16, 17] a new iterative

algorithm scheme is introduced. The results presented in this paper generalize, improve and

unify many previously known results in this research area.

2. Preliminaries

For each point x ∈ H , there exists a unique nearest point of C , denote by PC x, such that

‖x −PC x‖ ≤ ‖x − y‖ for all y ∈ C . PC is called the metric projection of H onto C . It is well

known that PC is nonexpansive mapping and is characterized by the following property:

〈x −PC x, y −PC y〉 ≤ 0 (2.1)

Definition 2.1. A mapping T : H → H is said to be firmly nonexpansive, if

〈T x −T y, x − y〉 ≥ ‖T x −T y‖2, ∀x, y ∈ H .

Definition 2.2. A mapping M : C → H is said to be monotone, if

〈M x −M y, x − y〉≥ 0, ∀x, y ∈C .

M is called α-inverse-strongly-monotone if there exist a positive real number α such that

〈M x −M y, x − y〉≥α‖M x −M y‖2, ∀x, y ∈C .

Definition 2.3. A mapping B : H → H is said to be strongly positive linear bounded operator,

if there exists a constant γ̄> 0 such that 〈B x, x〉≥ γ̄‖x‖2, ∀x ∈ H .

Notation. Let {xn} be a sequence in H , then xn → x (respectively, xn * x) denote strong

(respectively, weak) convergence of the sequence {xn} to a point x ∈ H .

It is known that H satisfies Opial’s condition [12], i.e., for any sequence {xn} with xn * x

the inequality

liminf
n→∞

‖xn −x‖ < liminf
n→∞

‖xn − y‖ (2.2)

holds for every y ∈ H with y 6= x.

Lemma 2.4 ([5]). Let C be a nonempty, closed convex subset of H and let F : C ×C → R be a

bifunction satisfying (A1)−(A4). Then For r > 0 and x ∈ H, there exists z ∈C such that F (z, y)+
1
r
〈y − z, z −x〉 ≥ 0, ∀y ∈C .

Further define

T F
r x = {z ∈C : F (z, y)+

1

r
〈y − z, z −x〉 ≥ 0, ∀y ∈C },

for all r > 0 and x ∈ H. Then, the following hold:
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(i) T F
r is single-valued.

(ii) T F
r is firmly nonexpansive, i. e.,

‖T F
r (x)−T F

r (y)‖2 ≤ 〈T F
r (x)−T F

r (y), x − y〉, ∀x, y ∈ H .

(iii) Fix(T F
r ) =EP(F ).

(iv) EP(F ) is compact and convex.

Lemma 2.5 ([4]). Let F : C ×C → R be a bifunction satisfying (A1)−(A4) and let T F
r be defined

as in Lemma 2.4, for r > 0. Let x, y ∈ H and r1,r2 > 0. Then,

‖T F
r2

y −T F
r1

x‖ ≤ ‖x − y‖+|
r2 − r1

r2
|‖T F

r2
y − y‖.

Lemma 2.6 ([8]). Assume that B is a strong positive linear bounded self adjoint operator on a

Hilbert space H with coefficient γ̄> 0 and 0 < ρ ≤ ‖B‖−1. Then ‖I −ρB‖≤ 1−ργ̄.

Lemma 2.7 ([18]). Let C be a nonempty bounded closed convex subset of a Hilbert space H and

let S := {T (s) : 0 ≤ s <∞} be a nonexpansive semigroup on C , for each x ∈C and t > 0. Then, for

any 0 ≤ h <∞,

lim
t→∞

sup
x∈C

‖
1

t

∫t

0
T (s)xd s −T (h)(

1

t

∫t

0
T (s)xd s)‖= 0.

Lemma 2.8 ([19]). Let {xn} and {yn} be bounded sequences in a Banach space X and {βn} be

a sequence in [0,1] with 0 < liminfn→∞βn ≤ limsupn→∞βn < 1. Suppose xn+1 = (1−βn )yn +
βn xn , for all integers n ≥ 0 and limsup

n→∞
(‖yn+1− yn‖−‖xn+1−xn‖)≤ 0. Then lim

n→∞
‖yn −xn‖= 0.

Lemma 2.9 ([23]). Let F : C ×C →R be a bifunction satisfying (A1)−(A4) and let T F
r be defined

as in Lemma 2.4, for r > 0. Let x ∈ H and s, t > 0. Then,

‖T F
s x −T F

t x‖2 ≤
s − t

s
〈T F

s (x)−T F
t (x),T F

s (x)−x〉.

Lemma 2.10 ([25]). Let {an} be a sequence of nonnegative real numbers such that an+1 ≤ (1−
αn )an +δn , n ≥ 0 where αn is a sequence in (0,1) and δn is a sequence in R such that

(i)
∞
∑

n=1

αn =∞;

(ii) limsup
n→∞

δn

αn
≥ 0 or

∞
∑

n=1

δn <∞.

Then lim
n→∞

an = 0.

Lemma 2.11 ([2]). The following inequality holds in real space H:

‖x + y‖2 ≤ ‖x‖2 +2〈y, x + y〉, ∀x, y ∈ H .
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3. Viscosity iterative algorithm

Let C be a nonempty closed convex subset of real Hilbert space H . For each i ∈ {1, . . . ,k},

let Fi : C×C →R be bifunctions satisfying (A1)−(A4) andψi be ᾱi -inverse strongly monotone

mappings from C into H . Let S = {T (s) : s ∈ [0,+∞)} be a nonexpansive semigroup on C such

that Γ=
⋂k

i=1
Fix(S)∩GEP(Fi ,ψi ) 6= ;. Also f : C → C be an α-contraction mapping and A,B

be strongly positive bounded linear self adjoint operators on H with coefficients δ̄ > 0 and

β̄> 0 respectively such that 0 < γ< δ̄
α <γ+ 1

α , δ̄≤ ‖A‖≤ 1 and ‖B‖= β̄.

Algorithm 3.1. For given x0 ∈C arbitrary, let the sequence {xn} be generated by the manner:































un,i =T
Fi
rn,i

(xn − rn,iψi xn)

wn = 1
k

k
∑

i=1

un,i

xn+1 =αnγ f (xn)+βnB xn + ((1−ǫn )I −βnB −αn A)
1

sn

∫sn

0
T (s)wnd s,

(3.1)

where {rn,i } ⊆ (0,2ᾱi ), {αn } ⊂ (0,1), {βn}, {ǫn} ⊂ [0,1) and {sn} ⊂ (0,∞) satisfying the following

control conditions:

(C1) ǫn ≤αn , lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

ǫn = 0,
∞
∑

n=1

αn =∞;

(C2) lim
n→∞

sn =∞, sup
n∈N

|sn+1 − sn| is bounded;

(C3) lim
n→∞

|rn+1,i − rn,i | = 0, 0 < b < rn,i < a < 2ᾱi .

Lemma 3.2. For any 0 <γ< δ̄
α < γ+ 1

α , there exist a unique fixed point for sequence {xn}.

Proof. We define the sequence of mappings {Pn : H → H } as follows:

Pn x :=αnγ f (x)+βn B x + ((1−ǫn)I −βnB −αn A)
1

sn

∫sn

0
T (s)xd s, ∀x ∈ H .

We may assume without loss of generality that αn ≤ (1−ǫn −βn‖B‖)‖A‖−1. Since A and B are

linear bounded self adjoint operators, we have

‖A‖ = sup{|〈Ax, x〉| : x ∈ H ,‖x‖= 1},

‖B‖ = sup{|〈B x, x〉| : x ∈ H ,‖x‖= 1}

observe that

〈((1−ǫn)I −βnB −αn A)x, x〉 = (1−ǫn)〈x, x〉−βn〈B x, x〉−αn〈Ax, x〉

≥ 1−ǫn −βn‖B‖−αn‖A‖

≥ 0.
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Therefore, (1−ǫn)I −βnB −αn A is positive. Then, by strong positivity of A and B , we get

‖(1−ǫn )I −βnB −αn A‖ = sup{〈((1−ǫn)I −βnB −αn A)x, x〉 x ∈ H ,‖x‖= 1}

= sup{(1−ǫn )〈x, x〉−βn〈B x, x〉−αn〈Ax, x〉 : x ∈ H ,‖x‖= 1}

≤ 1−ǫn −βnβ̄−αn δ̄

≤ 1−βnβ̄−αn δ̄. (3.2)

For any x, y ∈C

‖Pn x −Pn y‖ ≤ αnγ‖ f (x)− f (y)‖+βn‖B‖‖x − y‖

+‖(1−ǫn)I −βnB −αn A‖
1

sn

∫sn

0
‖T (s)x −T (s)y‖d s

≤ αnγα‖x − y‖+βnβ̄‖x − y‖+ (1−βnβ̄−αn δ̄)‖x − y‖

= (1− (δ̄−γα)αn )‖x − y‖.

Therefore, Banach contraction principle guarantees that Pn has a unique fixed point in H ,

and so the iteration (3.1) is well defined. ���

Lemma 3.3. The sequence {xn} generated by Algorithm 3.1 is bounded.

Proof. Let p ∈Γ=
⋂k

i=1
Fix(S)∩GEP(Fi ,ψi ). By intuition from [14], we have

‖un,i −p‖2 ≤ ‖xn −p‖2 + rn,i (rn,i −2ᾱi )‖ψi xn −ψi p‖2.

Then

‖wn −p‖2 ≤
1

k

k
∑

i=1

‖un,i −p‖2

≤ ‖xn −p‖2 +
1

k

k
∑

i=1

rn,i (rn,i −2ᾱi )‖ψi xn −ψi p‖2, (3.3)

and

‖wn −p‖ ≤ ‖xn −p‖.

‖xn+1 −p‖ = ‖αnγ f (xn)+βn B xn + ((1−ǫn )I −βnB −αn A)
1

sn

∫sn

0
T (s)wnd s −p‖

≤ αn‖γ f (xn)− Ap‖+βn‖B xn −B p‖+ǫn‖p‖

+‖((1−ǫn)I −βnB −αn A)‖
1

sn

∫sn

0
‖T (s)wn −T (s)p‖d s

≤ αn(‖γ f (xn)−γ f (p)‖+‖γ f (p)− Ap‖)+βn‖B xn −B p‖+ǫn‖p‖

+(1−βn β̄−αn δ̄)‖wn −p‖

≤ αnγα‖xn −p‖+αn‖γ f (p)− Ap‖+βn β̄‖xn −p‖+αn‖p‖

+(1−βn β̄−αn δ̄)‖xn −p‖

= (1− (δ̄−γα)αn )‖xn −p‖+αn (‖p‖+‖γ f (p)− Ap‖)



A VISCOSITY ITERATIVE ALGORITHM TECHNIQUE 397

≤ max
{

‖xn −p‖,
‖γ f (p)− Ap‖+‖p‖

δ̄−γα

}

...

≤ max
{

‖x0 −p‖,
‖γ f (p)− Ap‖+‖p‖

δ̄−γα

}

. (3.4)

Hence {xn} is bounded. ���

Now, set tn := 1
sn

∫sn

0
T (s)wnd s. Then {wn}, {tn} and { f (xn)} are bounded.

Lemma 3.4. The following properties are satisfied for the Algorithm 3.1:

P1. lim
n→∞

‖xn+1 −xn‖ = 0.

P2. lim
n→∞

‖xn − tn‖ = 0.

P3. lim
n→∞

‖ψi xn −ψi p‖= 0, f or i ∈ {1,2, . . . ,k}.

P4. lim
n→∞

‖tn −wn‖= 0.

P5. lim
n→∞

‖T (s)tn − tn‖= 0.

Proof.

P1: From Theorem 3.1(ii)[14], we have

‖tn+1 − tn‖ ≤ ‖xn+1 −xn‖+M |rn+1,i − rn,i |+ 2|sn+1−sn |
sn+1

‖wn −p‖, (3.5)

where Mi = max
{

sup{
‖T

Fi
rn+1,i

(xn−rn+1,i ψi xn )−(xn−rn+1,i ψi xn )‖
rn+1,i

},sup{‖ψi xn‖}
}

and M = 1
k

k
∑

i=1

2Mi .

Setting xn+1 = ǫn xn + (1−ǫn )zn , then we have

zn+1 − zn =
αn+1γ f (xn+1)+βn+1B xn+1 + ((1−ǫn+1)I −βn+1B −αn+1 A)tn+1 −ǫn+1xn+1

1−ǫn+1

−
αnγ f (xn)+βn B xn + ((1−ǫn )I −βnB −αn A)tn −ǫn xn

1−ǫn

=
αn+1

1−ǫn+1
(γ f (xn+1)− Atn+1)+

αn

1−ǫn
(Atn −γ f (xn))+

βn+1

1−ǫn+1
B (xn+1 − tn+1)

+
βn

1−ǫn
B (tn −xn)+ (tn+1 − tn)+

ǫn

1−ǫn
xn −

ǫn+1

1−ǫn+1
xn+1.

Using (3.5), we have

‖zn+1 − zn‖ ≤
αn+1

1−ǫn+1
‖γ f (xn+1)− Atn+1‖+

αn

1−ǫn
‖γ f (xn)− Atn‖

+
βn+1

1−ǫn+1
‖B‖‖xn+1− tn+1‖+

βn

1−ǫn
‖B‖‖tn −xn‖+‖tn+1 − tn‖
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+
ǫn

1−ǫn
‖xn‖+

ǫn+1

1−ǫn+1
‖xn+1‖

≤
αn+1

1−ǫn+1
‖γ f (xn+1)− Atn+1‖+

αn

1−ǫn
‖γ f (xn)− Atn‖

+
βn+1

1−ǫn+1
β̄(‖xn+1‖+‖tn+1‖)+

βn

1−ǫn
β̄(‖tn‖+‖xn‖)+‖xn+1 −xn‖

+M |rn+1,i − rn,i |+
2|sn+1 − sn|

sn+1
‖wn −p‖+

ǫn

1−ǫn
‖xn‖+

ǫn+1

1−ǫn+1
‖xn+1‖,

which implies

‖zn+1 − zn‖−‖xn+1 −xn‖ ≤
αn+1

1−ǫn+1
‖γ f (xn+1)− Atn+1‖+

αn

1−ǫn
‖γ f (xn)− Atn‖

+
βn+1

1−ǫn+1
β̄(‖xn+1‖+‖tn+1‖)+

βn

1−ǫn
β̄(‖tn‖+‖xn‖)

+M |rn+1,i − rn,i |+
2|sn+1 − sn|

sn+1
‖wn −p‖

+
ǫn

1−ǫn
‖xn‖+

ǫn+1

1−ǫn+1
‖xn+1‖.

Hence, it follows by conditions (C 1)− (C 3) that

limsup
n→∞

(‖zn+1 − zn‖−‖xn+1 −xn‖) ≤ 0. (3.6)

From (3.6) and Lemma 2.8, we get lim
n→∞

‖zn −xn‖= 0 and

lim
n→∞

‖xn+1 −xn‖= lim
n→∞

(1−ǫn)‖zn −xn‖= 0. (3.7)

Then we have lim
n→∞

‖tn+1 − tn‖= 0.

P2: We can write

‖xn − tn‖ ≤ ‖xn+1 −xn‖+‖αnγ f (xn)+βnB xn + ((1−ǫn )I −βnB −αn A)tn − tn‖

≤ ‖xn+1 −xn‖+αn‖γ f (xn)− Atn‖+βn‖B xn −B tn‖+ǫn‖tn‖

= ‖xn+1 −xn‖+αn‖γ f (xn)− Atn‖+βnβ̄‖xn − tn‖+ǫn‖tn‖.

Then

(1−βn β̄)‖xn − tn‖≤ ‖xn+1 −xn‖+αn‖γ f (xn)− Atn‖+ǫn‖tn‖.

Therefore

‖xn − tn‖ ≤
1

1−βn β̄
‖xn+1 −xn‖+

αn

1−βn β̄
‖γ f (xn)− Atn‖+

ǫn

1−βn β̄
‖tn‖

≤
1

1−βn β̄
‖xn+1 −xn‖+

αn

1−βn β̄
(‖γ f (xn)− Atn‖+‖tn‖).
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Using (C1) together (P1), we obtain

lim
n→∞

‖xn − tn‖= 0. (3.8)

P3: We have

‖xn+1 −p‖2 = ‖αnγ f (xn)+βnB xn + ((1−ǫn )I −βnB −αn A)tn −p‖2

= ‖αn(γ f (xn)− Ap)+βn (B xn −B p)+ ((1−ǫn )I −βnB −αn A)(tn −p)−ǫn p‖2

≤ ‖((1−ǫn)I −αn A)(tn −p)+βn(B xn −B tn)−ǫn p‖2

+2〈αn(γ f (xn)− Ap), xn+1 −p〉

≤ ((1−αn δ̄)‖wn −p‖+βnβ̄‖xn − tn‖+ǫn‖p‖)2 +2αn〈γ f (xn)− Ap, xn+1 −p〉

= (1−αn δ̄)2‖wn −p‖2 + (βnβ̄)2‖xn − tn‖2 + (ǫn)2‖p‖2

+2(1−αn δ̄)βnβ̄‖wn −p‖‖xn − tn‖+2(1−αn δ̄)ǫn‖p‖‖wn −p‖

+2βnǫnβ̄‖p‖‖xn − tn‖+2αn〈γ f (xn)− Ap, xn+1 −p〉. (3.9)

From (3.3), we have

≤ (1−αn δ̄)2(‖xn −p‖2 +
1

k

k
∑

i=1

rn,i (rn,i −2ᾱi )‖ψi xn −ψi p‖2)+ (βn β̄)2‖xn − tn‖2

+(ǫn)2‖p‖2 +2(1−αn δ̄)βnβ̄‖wn −p‖‖xn − tn‖+2(1−αn δ̄)ǫn‖p‖‖wn −p‖

+2βnǫnβ̄‖p‖‖xn − tn‖+2αn〈γ f (xn)− Ap, xn+1 −p〉

≤ ‖xn −p‖2 + (αn δ̄)2‖xn −p‖2 + (1−αn δ̄)2 1

k

k
∑

i=1

rn,i (rn,i −2ᾱi )‖ψi xn −ψi p‖2

+(βnβ̄)2‖xn − tn‖2 + (αn )2‖p‖2 +2(1−αn δ̄)βnβ̄‖wn −p‖‖xn − tn‖

+2(1−αn δ̄)αn‖p‖‖wn −p‖+2βnǫnβ̄‖p‖‖xn − tn‖+2αn〈γ f (xn)− Ap, xn+1 −p〉.

Using (C 3), we obtain

(1−αn δ̄)2 1

k

k
∑

i=1

b(2ᾱi −a)‖ψi xn −ψi p‖2

≤ ‖xn −p‖2 −‖xn+1 −p‖2 + (αn δ̄)2‖xn −p‖2 + (βn β̄)2‖xn − tn‖2 + (αn )2‖p‖2

+2(1−αn δ̄)βnβ̄‖wn −p‖‖xn − tn‖+2(1−αn δ̄)αn‖p‖‖wn −p‖

+2βnǫnβ̄‖p‖‖xn − tn‖+2αn〈γ f (xn)− Ap, xn+1 −p〉

≤ (‖xn −p‖+‖xn+1 −p‖)‖xn −xn+1‖+ (αn δ̄)2‖xn −p‖2 + (βnβ̄)2‖xn − tn‖2

+(αn)2‖p‖2 +2(1−αn δ̄)βnβ̄‖wn −p‖‖xn − tn‖+2(1−αn δ̄)αn‖p‖‖wn −p‖

+2βnǫnβ̄‖p‖‖xn − tn‖+2αn〈γ f (xn)− Ap, xn+1 −p〉.

By (P1)-(P2) and Lemma 2.4(i ),we have lim
n→∞

‖ψi xn −ψi p‖2 = 0.



400 M. CHERAGHI, M. AZHINI AND H. R. SAHEBI

P4: Theorem 3.1 [14] implies that

‖wn −p‖2 ≤
1

k

k
∑

i=1

‖un,i −p‖2

≤ ‖xn −p‖2 −
1

k

k
∑

i=1

‖xn −un,i‖2

+
2

k

k
∑

i=1

rn,i (‖xn −un,i‖‖ψi xn −ψi p‖− ᾱi‖ψi xn −ψi p‖2). (3.10)

It follows from (3.9) and (3.10) that

‖xn+1 −p‖2 = (1−αn δ̄)2‖wn −p‖2 + (βnβ̄)2‖xn − tn‖2 + (ǫn)2‖p‖2

+2(1−αn δ̄)βnβ̄‖wn −p‖‖xn − tn‖+2(1−αn δ̄)ǫn‖p‖‖wn −p‖

+2βnǫnβ̄‖p‖‖xn − tn‖+2αn〈γ f (xn)− Ap, xn+1 −p〉

≤ (1−αn δ̄)2(‖xn −p‖2 −
1

k

k
∑

i=1

‖xn −un,i‖2

+
2

k

k
∑

i=1

rn,i (‖xn −un,i‖‖ψi xn −ψi p‖− ᾱi‖ψi xn −ψi p‖2)+ (βn β̄)2‖xn − tn‖2

+(ǫn)2‖p‖2 +2(1−αn δ̄)βnβ̄‖wn −p‖‖xn − tn‖+2(1−αn δ̄)ǫn‖p‖‖wn −p‖

+2βnǫnβ̄‖p‖‖xn − tn‖+2αn〈γ f (xn)− Ap, xn+1 −p〉

≤ ‖xn −p‖2 + (αn δ̄)2‖xn −p‖2 − (1−αn δ̄)2 1

k

k
∑

i=1

‖xn −un,i‖2

+(1−αn δ̄)2 2

k

k
∑

i=1

rn,i (‖xn −un,i‖‖ψi xn −ψi p‖− ᾱi ‖ψi xn −ψi p‖2)

+(βnβ̄)2‖xn − tn‖2 + (αn)2‖p‖2 +2(1−αn δ̄)βnβ̄‖wn −p‖‖xn − tn‖

+2(1−αn δ̄)ǫn‖p‖‖wn−p‖+2βnǫnβ̄‖p‖‖xn−tn‖+2αn〈γ f (xn)−Ap, xn+1−p〉.

Therefore

(1−αn δ̄)2 1

k

k
∑

i=1

‖xn −un,i‖2

≤ ‖xn −p‖2 −‖xn+1 −p‖2 + (αn δ̄)2‖xn −p‖2

+(1−αn δ̄)2 2

k

k
∑

i=1

rn,i (‖xn −un,i‖‖ψi xn −ψi p‖− ᾱi‖ψi xn −ψi p‖2)

+(βnβ̄)2‖xn − tn‖2 + (αn )2‖p‖2 +2(1−αn δ̄)βnβ̄‖wn −p‖‖xn − tn‖

+2(1−αn δ̄)ǫn‖p‖‖wn −p‖+2βnǫnβ̄‖p‖‖xn − tn‖+2αn〈γ f (xn)− Ap, xn+1 −p〉

≤ (‖xn −p‖+‖xn+1 −p‖)‖xn+1 −xn‖+ (αn δ̄)2‖xn −p‖2

+(1−αn δ̄)2 2

k

k
∑

i=1

rn,i (‖xn −un,i‖‖ψi xn −ψi p‖− ᾱi‖ψi xn −ψi p‖2)
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+(βnβ̄)2‖xn − tn‖2 + (αn )2‖p‖2 +2(1−αn δ̄)βnβ̄‖wn −p‖‖xn − tn‖

+2(1−αn δ̄)ǫn‖p‖‖wn −p‖+2βnǫnβ̄‖p‖‖xn − tn‖+2αn〈γ f (xn)− Ap, xn+1 −p〉.

From (C1) together (P1)-(P3), we obtain lim
n→∞

‖xn −un,i‖ = 0.

It is easy to prove

lim
n→∞

‖wn −xn‖= 0. (3.11)

Using (3.8) and (3.11), we estimate ‖tn−wn‖ ≤ ‖tn−xn‖+‖xn −wn‖. Then lim
n→∞

‖tn−wn‖= 0.

P5: Let E := {w ∈C : ‖w −p‖ ≤ ‖x0 −p‖, 1

δ̄−γα‖γ f (p)− Ap‖+‖p‖}, E is a nonempty bounded

closed convex subset of C which is T (s)-invariant for each s ∈ [0,+∞) and contains {xn}. With-

out loss of generality, we may assume that S := {T (s) : s ∈ [0,+∞)} is a nonexpansive semi-

group on E . From (27)[7], we have

‖T (s)xn −xn‖ ≤ 2
∥

∥

∥

1

sn

∫sn

0
T (s)wnd s −xn

∥

∥

∥

+
∥

∥

∥T (s)
1

sn

∫sn

0
T (s)wnd s −

1

sn

∫sn

0
T (s)wnd s

∥

∥

∥.

Using Lemma 2.7 and (3.8), we obtain lim
n→∞

‖T (s)xn −xn‖ = 0.

Therefore

‖T (s)tn − tn‖ ≤ ‖T (s)tn −T (s)xn‖+‖T (s)xn −xn‖+‖xn − tn‖

≤ ‖tn −xn‖+‖T (s)xn −xn‖+‖xn − tn‖.

Then we have lim
n→∞

‖T (s)tn − tn‖= 0. ���

4. Main result

Theorem 4.1. The Algorithm defined by (3.1) is convergence strongly to z ∈ Γ = ⋂k
i=1

Fix(S)∩
GEP(Fi ,ψi ), which is a unique solution in of the variational inequality

〈(γ f − A)z, y − z〉 ≤ 0, ∀y ∈Γ.

Proof. For all x, y ∈ H , we have

‖PΓ(I − A+γ f )(x)−PΓ(I − A+γ f )(y)‖ ≤ ‖(I − A+γ f )(x)− (I − A+γ f )(y)‖

≤ ‖I − A‖‖x − y‖+γ‖ f (x)− f (y)‖

≤ (1− δ̄)‖x − y‖+γα‖x − y‖

= (1− (δ̄−γα))‖x − y‖.
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Then PΓ(I −A+γ f ) is a contraction mapping from H into itself. Therefore by the Banach

contraction principle, there exists z ∈ H such that z = PΓ(I − A+γ f )z.

The proof of Theorem 3.2 [14] show that

〈(γ f − A)z, xn − z〉 ≤ 0. (4.1)

Finally, we prove xn is strongly convergent to z.

‖xn+1 − z‖2 = αn〈γ f (xn)− Az, xn+1 − z〉+βn〈B xn −B z, xn+1 − z〉−ǫn〈z, xn+1 − z〉

+〈((1−ǫn )I −βnB −αn A)(tn − z), xn+1 − z〉

≤ αn (γ〈 f (xn)− f (z), xn+1−z〉+〈γ f (z)−Az, xn+1−z〉)+βn‖B‖‖xn−z‖‖xn+1−z‖

−ǫn‖z‖‖xn+1 − z‖+‖(1−ǫn )I −βnB −αn A‖‖tn − z‖‖xn+1 − z‖

≤ αnαγ‖xn − z‖‖xn+1 − z‖+αn〈γ f (z)− Az, xn+1 − z〉+βnβ̄‖xn − z‖‖xn+1 − z‖

−ǫn‖z‖‖xn+1 − z‖+ (1−βn β̄−αn δ̄)‖xn − z‖‖xn+1 − z‖

= (1−αn (δ̄−αγ))‖xn−z‖‖xn+1−z‖−ǫn‖z‖‖xn+1−z‖+αn〈γ f (z)−Az, xn+1−z〉

≤
1−αn (δ̄−αγ)

2
(‖xn − z‖2 +‖xn+1 − z‖2)−ǫn‖z‖‖xn+1 − z‖

+αn〈γ f (z)− Az, xn+1 − z〉

≤
1−αn (δ̄−αγ)

2
‖xn − z‖2 +

1

2
‖xn+1 − z‖2 −ǫn‖z‖‖xn+1 − z‖

+αn〈γ f (z)− Az, xn+1 − z〉.

This implies that

2‖xn+1 − z‖2 ≤ (1−αn (δ̄−αγ))‖xn − z‖2 +‖xn+1 − z‖2 −2αn‖z‖‖xn+1 − z‖

+2αn〈γ f (z)− Az, xn+1 − z〉.

Then

‖xn+1 − z‖2 ≤ (1−αn (δ̄−αγ))‖xn − z‖2 −2αn‖z‖‖xn+1 − z‖+2αn〈γ f (z)− Az, xn+1 − z〉

= (1−kn)‖xn − z‖2 +2αn ln , (4.2)

where kn =αn (δ̄−αγ) and ln = 〈γ f (z)− Az, xn+1 − z〉−‖z‖‖xn+1 − z‖.

Since lim
n→∞

αn = 0 and
∞
∑

n=0

αn = ∞, it is easy to see that lim
n→∞

kn = 0,
∞
∑

n=0

kn = ∞ and

limsup
n→∞

ln ≤ 0. Hence, from (4.1), (4.2) and Lemma 2.10, we deduce that xn → z, where z =

PΓ(I − A+γ f )z. ���
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Remark 4.2. Putting ψi = 0 and {ǫn}, {βn } = 0 we obtain method introduced in Theorem 4.1

[3]. Taking {ǫn} = 0,Fi =ψi = 0, wn = xn and A = B = I , then the conclusion Theorem 3.3 [13]

is obtained. Taking {ǫn} = 0,Fi = ψi = 0, wn = xn and B = I , then the conclusion Theorem

3.1 [6] is obtained. Putting {ǫn} = 0 and B = I , then the main Theorems [14, 15, 16, 17] are

obtained.

5. Numerical examples

In this section, we give some examples and numerical results for supporting our main

theorem.

All the numerical results have been produced in Matlab 2017 on a Linux workstation with

a 3.8 GHZ Intel annex processor and 8 Gb of memory.

Example 5.1. Let H =R, the set of all real numbers, with the inner product defined by 〈x, y〉=
x y, ∀x, y ∈R, and induced usual norm | . |. Let C = [−4,2]; let F1,F2 : C ×C →R be defined by

F1(x, y) = (3− x2)(x − y), F2(x, y) = (x +6)(y − x), ∀x, y ∈ C ; let ψ1,ψ2 : C → H be defined by

ψ1(x) = 2x,ψ2(x) = x, ∀x ∈ C and let for each x ∈ R, we define f (x) = 1
6

x, A(x) = 1
3

x, B (x) =
1

10 x, and let, for each x ∈C , T (s)x = x. Then there exist unique sequences {xn} ⊂R, {un,i } ⊂C ,

and {wn} ⊂C generated by the iterative schemes

un,i =T
Fi
rn,i

(xn − rn,iψi xn), wn =
1

2
(un,1 +un,2) (5.1)

xn+1 =
1

n
xn +

1

10(n +1)2
xn +

(

(1−
2

n2
)I −

1

(n +1)2
B −

3

n
A

) 1

sn

∫sn

0
wnd s (5.2)

where αn = 3
n , βn = 1

(n+1)2 , ǫn = 2
n2 and sn = n, rn,1 = rn,2 = 1+ 1

n . Then {xn} converges to

{−3} ∈⋂k
i=1

Fix(S)∩GEP(Fi ,ψi ).

Proof. The bifunctions F1 and F2 satisfy the (A1)−(A4). Further, f is contraction mapping

with constant α= 1
3 and A and B are strongly positive bounded linear operator with constant

δ̄= 1 on R. Therefore, we can choose γ = 2 which satisfies 0 < γ < δ̄
α < γ+ 1

α . Furthermore, it

is easy to observe that
⋂k

i=1
Fix(S)∩GEP(Fi ,ψi ) = {−3} 6= ;. We have computed un,i for each

example i = 1,2 as follow

un,1 = −
1+

√

1−4(1+ 1
n

)((1+ 2
n

)xn −3(1+ 1
n

))

2+ 2
n

,

un,2 = −
1
n

xn +6(1+ 1
n

)

2+ 1
n

, wn =
1

2
(un,1 +un,2)

xn+1 =
(10n2 +21n +10

10n(n +1)2

)

xn +
(10n4 +10n3 −31n2 −50n −20

10n2(n +1)2

)

wn .

We obtain the following figure of the result , with initial point x1 = 1. ���
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Figure 1: The graph of {xn} with initial value x1 = 1.

Example 5.2. Let H = R, the set of all real numbers, with the inner product defined by 〈x, y〉 =
x y, ∀x, y ∈ R, and induced usual norm | . |. Let C = [0,2]; let F1,F2,F3 : C ×C → R be defined

by F1(x, y) = −2x2(x − y), F2(x, y) = −x2(x − y)2, F3(x, y) = −3x2 + x y + 2y2, ∀x, y ∈ C ; let

ψ1,ψ2,ψ3 : C → H be defined by ψ1(x) = ψ2(x) = ψ3(x) = 0, ∀x ∈ C and let for each x ∈ R,

we define f (x) = 1
8 x, A(x) = B (x) = I , and let, for each x ∈ C , T (s)x = 1

1+2s x. Then there exist

unique sequences {xn} ⊂R, {un,i } ⊂C , and {wn} ⊂C generated by the iterative schemes

un,i =T
Fi
rn,i

(xn − rn,iψi xn), wn =
1

3
(un,1 +un,2 +un,3) (5.3)

xn+1 =
2

8
p

n
xn +

1

n2
xn +

(

(1−
1

n
)I −

1

n2
B −

1
p

n
A

) 1

sn

∫sn

0

1

1+2s
wnd s (5.4)

where αn = 1p
n

, βn = 1
n2 , ǫn = 1

n and sn = n, rn,1 = rn,2 = 1+ 8
n . Then {xn} converges to {0} ∈

⋂k
i=1

Fix(S)∩GEP(Fi ,ψi ).

Proof. It is easy to prove that the bifunctions F1, F2 and F3 satisfy the (A1)− (A4). Further,

f is contraction mapping with constant α = 1
5 and A = B = I are strongly positive bounded

linear operator with constant δ̄ = 1 on R. Therefore, we can choose γ = 2 which satisfies

0 < γ < δ̄
α
< γ+ 1

α
. Furthermore, it is easy to observe that

⋂k
i=1

Fix(S)∩GEP(Fi ,ψi ) = {0} 6= ;.

We have computed un,i for i = 1,2 as follow

un,1 =
−1+

√

1+ (8+ 64
n )xn

4+ 32
n

, un,2 = xn , un,3 =
n

6n +40
xn

wn =
1

3
(un,1 +un,2 +un,3)
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xn+1 =
( 1

4
p

n
+

1

n2

)

xn + (
wn

2n
) ln(1+2n)

(

1−
1

n
−

1

n2
−

1
p

n

)

Choose x1 = 1. we obtain the following figure. ���

Figure 2: The graph of {xn} with initial value x1 = 1.

Example 5.3. Let H = R, the set of all real numbers, with the inner product defined by 〈x, y〉 =
x y, ∀x, y ∈ R, and induced usual norm | . |. Let C = [0,3]; let F1,F2 : C ×C → R be defined by

F1(x, y) = 5x(x − y), F2(x, y) = −2x(y − x), ∀x, y ∈ C ; let ψ1,ψ2 : C → H be defined by ψ1(x) =
3x,ψ2(x) = 4x, ∀x ∈ C and let for each x ∈ R, we define f (x) = 1

5
(x +2), A(x) = x, B (x) = 1

3
x,

and let, for each x ∈ C , T (s)x = 1
1+3s x. Then there exist unique sequences {xn} ⊂ R, {un,i } ⊂C ,

and {wn} ⊂C generated by the iterative schemes

un,i = T
Fi
rn,i

(xn − rn,iψi xn), wn =
1

2
(un,1 +un,2) (5.5)

xn+1 =
1

5
p

n
(xn +2)+

1

3(2n2 −3)
xn +

(

(1−
1

n2
)I −

1

2n2 −3
B −

1

2
p

n
A

) 1

sn

∫sn

0

1

1+3s
wnd s (5.6)

where αn = 1
2
p

n
, βn = 1

2n2−3
, ǫn = 1

n2 and sn = 2n, rn,1 = rn,2 = 1+ 1
5n2 . Then {xn} converges to

{0} ∈⋂k
i=1

Fix(S)∩GEP(Fi ,ψi ).

Proof. It is easy to prove that the f is contraction mapping with constant α = 1
3

and A and

B are strongly positive bounded linear operator with constant δ̄ = 1 on R. Therefore, we

can choose γ = 2 which satisfies 0 < γ < δ̄
α
< γ+ 1

α
. Furthermore, it is easy to observe that

⋂k
i=1

Fix(S)∩GEP(Fi ,ψi ) = {0} 6= ;. As mention

un,1 =
10n2 +3

50n2 +5
xn , un,2 =

15n2 +4

5n2 +2
xn ,
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wn =
1

2
(un,1 +un,2),

xn+1 = (
6n2 +5

p
n −9

15
p

n(2n2 −3)
)xn +

2

5
p

n
+

1

6n
ln(1+6n)(1−

1

n2
−

1

3(2n2 −3)
−

1

2
p

n
)wn

Choose x1 = 3. we obtain the following figure. ���

Figure 3: The graph of {xn} with initial value x1 = 3.

Example 5.4. Let H = R, the set of all real numbers, with the inner product defined by 〈x, y〉 =
x y, ∀x, y ∈ R, and induced usual norm | . |. Let C = [0,3]; let F1,F2 : C ×C → R be defined by

F1(x, y) = 5x(x − y), F2(x, y) =−2x(y − x), ∀x, y ∈ C ; let ψ1,ψ2 : C → H be defined by ψ1(x) =
3x,ψ2(x) = 4x, ∀x ∈ C and let for each x ∈ R, we define f (x) = 1

5
(x +2), A(x) = x, B (x) = 1

3
x,

and let, for each x ∈ C , T (s)x = e−3s x. Then there exist unique sequences {xn} ⊂ R, {un,i } ⊂ C ,

and {wn} ⊂C generated by the iterative schemes

un,i = T
Fi
rn,i

(xn − rn,iψi xn), wn =
1

2
(un,1 +un,2) (5.7)

xn+1 =
1

5
p

n
(xn +2)+

1

3(2n2 −3)
xn +

(

(1−
1

n2
)I −

1

2n2 −3
B −

1

2
p

n
A

) 1

sn

∫sn

0
e−3s wnd s (5.8)

where αn = 1
2
p

n
, βn = 1

2n2−3
, ǫn = 1

n2 and sn = 2n, rn,1 = rn,2 = 1+ 1
5n2 . Then {xn} converges to

{0} ∈⋂k
i=1

Fix(S)∩GEP(Fi ,ψi ).

Proof. By the same arguments example (5.3), we have

un,1 =
10n2 +3

50n2 +5
xn , un,2 =

15n2 +4

5n2 +2
xn ,
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wn =
1

2
(un,1 +un,2),

xn+1 = (
6n2 +5

p
n −9

15
p

n(2n2 −3)
)xn +

2

5
p

n
−

1

6n
(1−

1

n2
−

1

3(2n2 −3)
−

1

2
p

n
)e−6nwn

Choose x1 = 3. we obtain the following figure. ���

Figure 4: The graph of {xn} with initial value x1 = 3.
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