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GENERALIZED WINTGEN INEQUALITY FOR SUBMANIFOLDS

IN KENMOTSU SPACE FORMS

MOHD. AQUIB AND MOHAMMAD HASAN SHAHID

Abstract. In this paper, we obtain the generalized Wintgen inequality for Legendrian

submanifolds in Kenmotsu space forms and discuss the equality case of the inequality.

Further, we discuss the inequality for bi-slant submanifolds in the same ambient space

and derive its applications in various slant cases.

1. Introduction

Kenmotsu manifold is an important class of manifolds endowed with geometrical struc-

ture. K. Kenmotsu [6], introduced and studied these manifolds. Afterward, many geometers

studied the geometry of submanifolds in Kenmotsu manifolds due to its rich geometric im-

portance [1, 7, 10].

On the other hand, the Wintgen inequality is a sharp geometric inequality for surfaces

in 4-dimensional Euclidean space involving Gauss curvature (intrinsic invariants), normal

curvature and square mean curvature (extrinsic invariants).

P. Wintgen [11], proved that the Gauss curvature K , the normal curvature K
⊥ and the

squared mean curvature ‖H ‖2 for any surface M 2 in E 4 satisfy the following inequality:

‖H ‖2 ≥K +|K ⊥|,

and the equality holds if and only if the ellipse of curvature of M 2 in E 4 is a circle.

Later, it was extended by I. V. Gaudalupe et.al. [4] for arbitrary codimension m in real

space forms M
m+2

(c) as

‖H ‖2 +c ≥K +|K ⊥|.

They also discussed the equality case of the inequality.
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In 1999, De Smet, Dillen, Verstraelen and Vrancken conjectured the generalized Wintgen

inequality for submanifolds in real space form. This conjecture is also known as DDVV con-

jecture. It was proved by Ge and Tang [3]. Recently, the DDVV inequality has been obtained

by distinct researchers for different submanifolds and different ambient manifolds [2, 9].

In present article, we obtain the generalized Wintgen inequalities for Legendrian sub-

manifolds in Kenmotsu space forms. We also discuss such inequality for various slant cases

as an application of the inequality obtained.

2. Submanifolds in Kenmotsu space forms

An odd (2m + 1)-dimensional smooth manifold M is called a Kenmotsu manifold, if it

admits an endomorphism ϕ of its tangent bundle T M , a structure vector field ξ, and a 1-form

η satisfying the following:

ϕ2 =−I +η⊕ξ, η(ξ) = 1, η◦φ= 0, (2.1)

g (ϕX ,ϕY ) = g (X ,Y )−η(X )η(Y ), η(X ) = g (X ,ξ), (2.2)

(∇Xϕ)Y = g (ϕX ,Y )−η(Y )ϕX (2.3)

∇X ξ= X −η(X )ξ (2.4)

for any X , Y tangent to M [6].

A Kenmotsu manifold M with constant φ-sectional curvature c is called a Kenmotsu

space forms and is denoted by M(c). The curvature tensor R for Kenmotsu space forms M(c)

is given by

R(X ,Y , Z ,W ) =
c −3

4
{g (Y , Z )g (X ,W )− g (X , Z )g (Y ,W )}

+
c +1

4
{g (X ,φW )g (Y ,φZ )− g (X ,φZ )g (Y ,φW )

−2g (X ,φY )g (Z ,φW )− g (X ,W )η(Y )η(Z )

+g (X , Z )η(Y )η(W )− g (Y , Z )η(X )η(W )

+g (Y ,W )η(X )η(Z )}, (2.5)

for all X ,Y , Z ∈ T M .

Let M be a submanifold of an almost contact metric manifold M with induced metric g ;

if ∇ and ∇⊥ are the induced connections on the tangent bundle T M and the normal bundle

T ⊥M of M , respectively, then the Gauss and Weingarten formulas are given by

∇X Y = ∇X Y +h(X ,Y ),

∇X N = −SN X +∇⊥
X N ,
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for vector fields X ,Y ∈ T M and N ∈ T ⊥M , where h, SN and ∇⊥ is the second fundamental

form, the shape operator and the normal connection respectively and for the immersion of

M into M the second fundamental form and the shape operator are related by the following

equation

g (h(X ,Y ), N )= g (SN X ,Y ),

for vector fields X ,Y ∈ T M and N ∈ T ⊥M .

The equation of Gauss is given by

R(X ,Y , Z ,W ) = R(X ,Y , Z ,W )+ g (h(X , Z ),h(Y ,W ))− g (h(X ,W ),h(Y , Z )), (2.6)

for X ,Y , Z ,W ∈ T M , where R and R represent the curvature tensor of M(c) and M respectively

and the Ricci equation is given

R⊥(X ,Y ,ξ,η) =
c +1

4
[g (J X ,ξ)g (JY ,η)− g (J X ,η)g (JY ,ξ)]− g ([Sξ ,Sη]X ,Y ), (2.7)

for X ,Y ∈ T M and ξ,η ∈ T ⊥M .

The squared norm of P at p ∈ M is defined as

‖P‖2 =
n
∑

i , j=1

g 2(ϕei ,e j ), (2.8)

where {e1, . . . ,en} is any orthonormal basis of the tangent space T M of M . Let {e1, . . . ,en} and

{en+1, . . . ,e2m+1} be tangent orthonormal frame and normal orthonormal frame, respectively,

on M . The mean curvature vector field is given by

H =
1

n

n
∑

i=1

h(ei ,ei ). (2.9)

We also set

‖h‖2 =
n
∑

i , j=1

g (h(ei ,e j ),h(ei ,e j )). (2.10)

3. Generalized Wintgen inequality

We denote by K and R⊥ the sectional curvature function and the normal curvature ten-

sor on M , respectively. Then the normalized scalar curvature ρ is given by [9]

ρ =
2τ

n(n −1)
=

2

n(n −1)

∑

1≤i< j≤n

K (ei ∧e j ), (3.1)
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where τ is scalar curvature, and the normalized normal scalar curvature by [9]

ρ⊥ =
2τ⊥

n(n −1)
=

2

n(n −1)

√

∑

1≤i< j≤n

∑

1≤α<β≤2m+1

(R⊥(ei ,e j ,ξα,ξβ))2. (3.2)

Following [12] we put

KN =
1

4

2m−n+1
∑

r,s=1

Tr ace[Sr ,Ss]2 (3.3)

and call it the scalar normal curvature of M . The normalized scalar normal curvature is given

by [9] ρN = 2
n(n−1)

p
KN .

Obviously

KN =
1

2

∑

1≤r<s≤2m−n+1

Tr ace[Sr ,Ss ]2

=
∑

1≤r<s≤2m−n+1

∑

1≤i< j≤n

g ([Sr ,Ss]ei .e j )2, (3.4)

for i , j ∈ {1, . . . ,n} and r, s ∈ {1, . . . ,2m −n +1}.

In term of the components of the second fundamental form, we can express KN by the for-

mula [9]

KN =
∑

1≤r<s≤2m−n+1

∑

1≤i< j≤n

(

n
∑

k=1

hr
j k hs

i k −hr
j k hs

i k

)2
. (3.5)

A submanifold M of a Kenmotsu manifold M is said to be C-totally real submanifold if

φ maps each tangent space of M into the normal space, i.e. φ(T M ) ⊂ T ⊥M . In particular, if

n = m, then M is called Legendrian submanifold.

First we proof the following lemma, which will be required in the proof of main result.

Lemma 3.1. Let M be a n-dimensional C-totally real submanifolds of a (2m +1)-dimensional

Kenmotsu space forms M(c). Then we have

ρN +ρ ≤
c −3

4
+

c +1

2n
+‖H ‖2, (3.6)

and the equality holds if and only if the shape operator S of M in M(c) takes the following form

Sen+1
=

















γ1 ν 0 . . . 0

ν γ1 0 . . . 0

0 0 γ1 . . . 0
...

...
...

. . .
...

0 0 0 . . . γ1

















,
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Sen+2
=

















γ2 +ν 0 0 . . . 0

0 γ2 −ν 0 . . . 0

0 0 γ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . γ2

















,

Sen+3
=

















γ3 0 0 . . . 0

0 γ3 0 . . . 0

0 0 γ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . γ3

















, Sen+4
= ·· · = Se2m

= Se2m+1
= 0,

where γ1,γ2,γ3 and ν are real functions on M.

Proof. We know that

n2‖H ‖2 =
2m−n+1

∑

r=

(

n
∑

i=1

hr
i i

)2

=
1

n −1

2m−n+1
∑

r=1

∑

1≤i< j≤n

(hr
i i −hr

j j )2 +
2n

n −1

2m−n+1
∑

r=1

∑

1≤i< j≤n

hr
i i hr

j j . (3.7)

Further, from [8] we have

2m−n+1
∑

r=1

∑

1≤i< j≤n

(hr
i i −hr

j j )2 +2n
2m−n+1

∑

r=1

∑

1≤i< j≤n

(hr
i j )2

≥ 2n
[

∑

1≤r<s≤2m−n+1

∑

1≤i< j≤n

(

n
∑

k=1

(hr
j k hs

i k −hr
i k hs

j k )
)2] 1

2 . (3.8)

Now, combining (3.5), (3.7) and (3.8), we find

n2‖H ‖2 −n2ρN ≥
2n

n −1

2m−n+1
∑

r=1

∑

1≤i< j≤n

[hr
i i hr

j j − (hr
i j )2]. (3.9)

Also, from equation (2.6), we get

τ=
c −3

8
n(n −1)+

c +1

8
{2(n −1)}+

2m+1
∑

r=n+1

∑

1≤i< j≤n

[hr
i i hr

j j − (hr
i j )2]. (3.10)

Using (3.1) and (3.10) in (3.9), we have the required result.

Equality case holds if and only if shape operator takes the above stated forms. ���

Remark 3.2. If the equality holds in the above inequality (3.6) then M is called a Wintgen ideal

submanifold (see [5]).

Now, we prove the following:
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Theorem 3.3. Let M be a Legendrian submanifold of a Kenmotsu space forms M(c). Then

(ρ⊥)2 ≤
[

‖H ‖2 − (ρ−
c −3

4
)+

c +1

2n

]2 +
2

n(n −1)
(

c +1

4
)2

+
c +1

n2(n −1)2

[

n(n −1)(ρ−
c −3

4
)+

c +1

2
(n −1)

]

, (3.11)

Proof. Let M be a Legendrian submanifold of a Kenmotsu space forms M(c). We choose

{e1, . . . ,en ,en+1 = ξ} and {en+2, . . . ,e2m+1} as orthonormal frame and orthonormal normal frame

on M respectively. Putting X =W = ei , Y = Z = e j , i 6= j from (2.5), we have

R(ei ,e j ,e j ,ei ) =
c −3

4
{g (e j ,e j )g (ei ,ei )− g (ei ,e j )g (e j ,ei )}

+
c +1

4
{g (ei ,φei )g (e j ,φe j )− g (ei ,φe j )g (e j ,φei )

−2g (ei ,φe j )g (e j ,φei )− g (ei ,ei )η(e j )η(ei )

+g (ei ,e j )η(e j )η(ei )− g (e j ,e j )η(ei )η(ei )

+g (e j ,ei )η(ei )η(e j )}. (3.12)

Combining equations (2.6) and (3.12), we obtain

R(ei ,e j ,e j ,ei ) =
c −3

4
{g (e j ,e j )g (ei ,ei )− g (ei ,e j )g (e j ,ei )}

+
c +1

4
{g (ei ,φei )g (e j ,φe j )− g (ei ,φe j )g (e j ,φei )

−2g (ei ,φe j )g (e j ,φei )− g (ei ,ei )η(e j )η(e j )

+g (ei ,e j )η(e j )η(ei )− g (e j ,e j )η(ei )η(ei )

+g (e j ,ei )η(ei )η(e j )}+ g (h(ei ,ei ),h(e j ,e j ))

−g (h(ei ,e j ),h(ei ,e j )). (3.13)

By taking summation 1 ≤ i , j ≤ n and using (2.9), (2.10) in (3.13), we derive

2τ =
n−1
∑

i 6= j

R(ei ,e j ,e j ,ei )+2
n−1
∑

i=1

R(ei ,ξ,ξ,ei )

=
n
∑

i , j=1

R(ei ,e j ,e j ,ei )

= n(n −1)
c −3

4
+

c +1

4
{2(1−n)}+n2‖H ‖2 −‖h‖2. (3.14)

Using (3.1) in (3.14), we get

ρ =
c −3

4
+

c +1

2n
+

n2‖H ‖2

n(n −1)
−

‖h‖2

n(n −1)
, (3.15)
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which implies

n2‖H ‖2 −‖h‖2 = n(n −1)(ρ−
c −3

4
)−

c +1

4
{2(1−n)}. (3.16)

Further, equation (2.7) implies

R⊥(ei ,e j ,ξr ,ξs ) =
c +1

4
{−(δi rδ j s −δ j rδi s )}+ g ([Sξr

,Sξs
]ei ,e j ), (3.17)

for all i , j ∈ {1, . . . ,n} and r, s ∈ {1, . . . ,n}.

Then we have

(τ⊥)2 = (R⊥(ei ,e j ,ξr ,ξs ))2

=
[c +1

4
(δi rδ j s −δ j rδi s )− g ([Sξr

,Sξs
]ei ,e j )

]2

=
n(n −1)

2
(

c +1

4
)2 +

n2(n −1)2

4
ρ2

N −
c +1

4
‖h‖2+

c +1

4
n2‖H ‖2. (3.18)

Above equation can be re-written as

(ρ⊥)2 =
2

n(n −1)
(

c +1

4
)2 +ρ2

N −
c +1

n2(n −1)2
‖h‖2 +

c +1

(n −1)2
‖H ‖2. (3.19)

Now, from (3.16) and (3.19), we have

(ρ⊥)2 =
2

n(n −1)
(

c +1

4
)2 +ρ2

N +
c +1

n2(n −1)2
[n(n −1)(ρ−

c −3

4
)+

c +1

2
(n −1)]. (3.20)

Taking into account (3.6) and (3.20), we obtain the required inequality. Further, if the shape

operator takes the forms as in Lemma 3.1, then the equality of the inequality holds. Hence,

from [5] we have our assertion. ���

4. bi-slant submanifolds in Kenmotsu manifold

A submanifold M in an almost contact metric manifold M is said to be slant if for any

p ∈ M and any X ∈ Tp M , linearly independent on ξ, the angle between φX and Tp M is a

constant θ ∈ [0, π
2

], called the slant angle of M in M .

A submanifold M of an almost contact metric manifold M is said to be a bi-slant sub-

manifold, if there exist two orthogonal distributions D1 and D2, such that

1. T M admits the orthogonal direct decomposition, i.e., T M = D1 ⊕D2⊕< ξ>.

2. Di is the slant distribution with slant angle θi for any i = 1,2.
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Table 1: Definition.

S.N. M M D1 D2 θ1 θ2

(1) M bi-slant slant slant slant angle slant angle

(2) M semi-slant invariant slant 0 slant angle

(3) M hemi-slant slant anti-invariant slant angle π
2

(4) M CR invariant anti-invariant 0 π
2

(5) M slant either D1 = 0 or D2 = 0 either θ1 = θ2 = θ or θ1 = θ2 6= θ

In fact, semi-slant submanifolds, hemi-slant submanifolds, CR-submanifolds, slant sub-

manifolds can be obtained from bi-slant submanifolds in particular. We can see the case in

the following table:

Invariant and anti-invariant submanifolds are the slant submanifolds with slant angle

θ = 0 and θ = π
2 respectively and when 0 < θ < π

2 , then slant submanifold is called proper slant

submanifold.

If M is a bi-slant submanifold in generalized Kenmotsu space forms M , then one can

easily see that

‖P‖2 =
n
∑

i , j

g 2(Pei ,e j ) = 2(d1 cos2θ1 +d2 cos2θ2), (4.1)

where dimD1 = 2d1 and dimD2 = 2d2.

Now, we shall state and prove the generalized Wintgen inequality for bi-slant submani-

folds in Kenmotsu space forms.

Theorem 4.1. Let M be a bi-slant submanifold of a Kenmotsu space forms M(c). Then

ρN ≤‖H ‖2 − (ρ−
c −3

4
)−

c +1

2n
+

3(c +1)

2n(n −1)
(d1 cos2θ1 +d2 cos2θ2). (4.2)

Proof. Let M be a bi-slant submanifold of a Kenmotsu space forms M (c) and let {e1, . . . ,en−1,en =
ξ} be an orthonormal frame on M and {en+1, . . . ,e2m+1} be normal orthonormal frame on M .

Equation (2.6) can be re-written as

R(X ,Y , Z ,W ) =
c −3

4
{g (Y , Z )g (X ,W )− g (X , Z )g (Y ,W )}

+
c +1

4
{g (X ,φW )g (Y ,φZ )− g (X ,φZ )g (Y ,φW )

−2g (X ,φY )g (Z ,φW )− g (X ,W )η(Y )η(Z )

+g (X , Z )η(Y )η(W )− g (Y , Z )η(X )η(W )
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+g (Y ,W )η(X )η(Z )}− g (h(X , Z ),h(Y ,W ))

+g (h(X ,W ),h(Y , Z )), (4.3)

which implies

τ =
c −3

8
n(n −1)+

c +1

8
{2(1−n)+3g 2(φe j ,ei )}+

2m−n+1
∑

r=1

∑

1≤i< j≤n

[hr
i i hr

j j − (hr
i j )2]

=
c −3

8
n(n −1)−

c +1

4
(n −1)+

3(c +1)

8
(d1 cos2θ1 +d2 cos2θ2)

+
2m−n+1

∑

r=1

∑

1≤i< j≤n

[hr
i i hr

j j − (hr
i j )2]. (4.4)

Similar as in the proof of Lemma 3.1, we get

n2‖H ‖2 −n2ρN ≥
2n

n −1

2m−n+1
∑

r=1

∑

1≤i< j≤n

[hr
i i hr

j j − (hr
i j )2]. (4.5)

Combining equations (4.4) and (4.5), we find

ρN ≤ ‖H ‖2 − (ρ−
c −3

4
)−

c +1

2n
+

3(c +1)

2n(n −1)
(d1 cos2θ1 +d2 cos2θ2). (4.6)

���

An immediate consequence of the Theorem 4.1 yields the following.

Corollary 4.2. Let M be a semi-slant submanifold of a Kenmotsu space forms M (c). Then

ρN ≤ ‖H ‖2 − (ρ−
c −3

4
)−

c +1

2n
+

3(c +1)

2n(n −1)
(d1 +d2 cos2θ2).

Corollary 4.3. Let M be a hemi-slant submanifold of Kenmotsu space forms M(c). Then

ρN ≤ ‖H ‖2 − (ρ−
c −3

4
)−

c +1

2n
+

3(c +1)

2n(n −1)
d1 cos2θ1.

Corollary 4.4. Let M be a CR-submanifold of a Kenmotsu space forms M (c). Then

ρN ≤ ‖H ‖2 − (ρ−
c −3

4
)−

c +1

2n
+

3(c +1)

2n(n −1)
d1.

Corollary 4.5. Let M be a slant submanifold of a Kenmotsu space forms M (c). Then

ρN ≤ ‖H ‖2 − (ρ−
c −3

4
)−

c +1

2n
+

3(c +1)

4(n −1)
cos2θ.

Corollary 4.6. Let M be a invariant submanifold of a Kenmotsu space forms M(c). Then

ρN ≤ ‖H ‖2 − (ρ−
c −3

4
)−

c +1

2n
+

3(c +1)

4(n −1)
.
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Corollary 4.7. Let M be a anti-invariant submanifold of a Kenmotsu space forms M(c). Then

ρN ≤ ‖H ‖2 − (ρ−
c −3

4
)−

c +1

2n
.

Remark 4.8. The proof of the Corollary 4.2 - Corollary 4.7 is similar to the Theorem 4.1. We

obtain the proof of the Corollary 4.2 - Corollary 4.5 with the help of Table 1 and Theorem 4.1.

The Corollary 4.6 and Corollary 4.7 is obtained by putting θ = 0 and θ = π
2 in Corollary 4.5

respectively.
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