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RINGS WITH GENERALIZED COMMUTATORS IN THE NUCLEI

Dedicated to my father on his 85th birthday

CHEN-TE YEN

Abstract. Let R be a prime weakly Novikov ring and T} = [[[...[[R, R], R] ..., R], R], R] where

e

kR's
k is a positive integer. We prove that if T), C N; N N, or Tx, C N,,, N N, then R is associative
or Ty = 0. Moreover, if T} is contained in two of the three nuclei, and k = 2 or k = 3 then
the same conclusions hold. We also consider such rings with derivations. Some similar results of

weakly M-rings are obtained.

1. Introduction

Let R be a nonassociative ring. We shall denote the associator and commutator by
(z,y,2) = (zy)z —z(yz) and [z,y] = zy — yz for all z,y, z in R respectively. In any ring
R, one has the following nuclei:

Ny ={n € R|(n,R,R) =0} — left nucleus,
Ny, ={n € R|(R,n,R) =0} — middle nucleus,
N, ={n € R|(R,R,n) =0} — right nucleus.

N =N, N,, NN, — nucleus.

A ring R is called simple if R is the only nonzero ideal of R. Thus, R?> = R.

A ring R is called semiprime if the only ideal of R which squares to zero is the zero ideal.
A ring R is called prime if the product of any two nonzero ideals of R is nonzero. Note
that each associator and commutator are linear in each argument. Thus N;, V,, and N,
are additive subgroups of (R, +). If S is a nonempty subset of a ring R, then the ideal
of R generated by S is < S >. A ring R is called weakly Novikov [4] if R satisfies the
following identity.

(w,z,yz) = y(w,x,z) forall w,z,y,z in R. (1)
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An additive mapping d on a ring R is called a derivation if d(zy) = d(z)y + zd(y)
holds for all z,y in R. For any ring R, let Ty, = [[[...[[R, R], R] ..., R], R], R] where k

v

kl‘{’s
is a positive integer. Note that 7> = [R, R] and T3 = [[R, R], R]. We also note that
[R,Ty] = [Tk, R] C T, where k is a positive integer. Obviously, we have the following

identities.
Ty + TR =Ty + RT}, for all positive integers k. (2)
d(R) + d(R)R = d(R) + Rd(R). (3)
d((z,y,2)) = (d(z),y, z) + (z,d(y), 2) + (z,y,d(z)) for all z,y,z in R. (4)
S(z,y,2) = (2,9, 2)+(y, 2, 2) + (2, 2, y) = 2y, 2] + [y2, x|+ [22, y]
for all z,y,z in R. (5)

We shall use the Teichmiiller identity

(wz,y,2) — (w,zy, 2) + (w,z,yz) = w(z,y,2) + (w,z,y)z for all w,z,y,z in R, (6)

which is valid in every ring.
As a consequence of (6), we have that N;, N,, and N, are associative subrings of R.
Suppose that n € N; Then with w = n in (6) we obtain

(nz,y,z) =n(z,y,z) forall z,y,z in R and n in V. (7)
Suppose that m € N,. Then with z =m in (6) we get
(w,z,ym) = (w,z,y)m for all w,z,y in R and m in N,. (8)
Suppose that j € N;N N,,. Then with z = j in (6) we have
(wj,y,z) = (w,jy,z) forall w,y,zin R and j in N; N N,,. 9)

Definition 1. Let A be the associator ideal of a ring R.

Ordinary by (6) A can by characterized as all finite sums of associators and left
multiples of associators. In view of (1) it suffices to take all finite sums of associators
if R is a weakly Novikov ring. Hence, in this case A = (R, R, R). In the paper, we
consider rings with generalized commutators in the nuclei. There had been other results

concerning rings in which [R, R] C N;. For example Thedy [5], Kleinfeld [1], Kleinfeld
and Kleinfeld [2] as well as Kleinfeld and Smith [3].

Definition 2. For any ring R, let V}, = T} + RT}, for all positive integers k.
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2. Results of Weakly Novikov Rings

Lemma 1. If R is a weakly Novikov ring, then RN, C N, and A- N, = (R,R,R) -
N, =0.

Proof. Let z € N, and w,z,y € R. Then by (8) and (1), we have (w,z,y)z =
(w,z,yz) = y(w,z,2z) = 0. Thus, we get A-N,, = (R,R,R)- N, =0 and RN, C N,, as
desired.

By (2) and the result of [8], we have the

Lemma 2. If R is a ring such that T}, is contained in two of the three nuclei, then
Vi is an ideal of R for every positive integer k.
In the sequel, for the convenience we denote Ty, and Vi, by T and V respectively.

Theorem 1. If R is a prime weakly Novikov ring such that T C NyN N, or T C
Ny N N, then R is associative or T = 0.

Proof. Using T C N, and Lemma 1, we get
A-V=A-(T+RT)=0. (10)

By Lemma 2 and the primeness of R, (10) implies A = 0 or V' = 0. Thus, R is associative
orT =0.

Lemma 3. If R is a weakly Novikov ring such that T C Ny N N,y,, then

(R,R,TYR=0 (11)

Proof. Note that [R,T] = [T, R] C T. Using this, the hypotheses, (6),(1),(9) and (7),
forall y € T, and w,z,z € R we have (w,z,y)z = w(z,y,2) + (w,z,y)z = (wz,y,2) —
(’LU,:L’y,Z)-f-(’LU,:L‘,yZ) = —(’LU, [m,y],z)— (w,ym,z)—l—y(w,m,z) = —(wy,m,z)+y(w,m,z) =
—([w,y], z, 2) — (yw, x, 2) + y(w, z,z) =0, Hence, we get (R, R,T)R = 0,as desired.

Theorem 2. Let R be a prime weakly Novikov ring such that T C Ny N N,,. If
S(z,y,z) € Ny, for all x,y,z in R, or [T, (R, R, R)] = 0, then R is associative or T = 0.

Proof. Assume that S(x,y,z) € N, for all z,y,z in R. Using this, (5) and
the hypotheses, for all z € T and y,z € R we get (y,z,z) = (x,y,2) + (y,2,2) +
(z,xz,y) = S(x,y,z) € Np,. Thus, (R,R,T) C Ny,. Applying this, (1) and (11), we have
(R,R,RT)R=R(R,R,T)-R=R-(R,R,T)R=0.

Combining this with (11) results in

(R,R,V)R = 0. (12)

Assume that [T, (R, R, R)] = 0. Using this, (1), (11) and (6), and noting that [T, R] C
T, for all w,z,y,t € R, and z € T we have (w,z,y)z -t = z(w,z,y) - t = (w,z, 2y)t =
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(’LU, T, [Z, y])t+(w7 z, yz)t = 'LU(Z’, Y, Z)t+(w7 T, y)Zt+('LU, ry, Z)t_ ('LUZ’, Y, Z)t = ’LU(QZ, Y, Z) :
t+ (w,z,y)z -t and so (z,y,wz)t = w(z,y, z) -t = 0. Combining this with (11), we also
obtain (12).

Using (1) and (12), we see that < (R,R,T) >= (R, R,V). By the semiprimeness of
R, (12), implies (R, R,V) = 0. Hence, V C N,

Consequently, T' C N. By Theorem 1, R is associative or 7' = 0.

In [3], Kleinfeld and Smith had proved that if R is a prime left alternative ring with
[R,R] C N; and characteristic# 2,3 then R is associative. A linearization of the left
alternative identity shows that N; = N,,. We have the similar result for the weakly
Novikov ring case.

Theorem 3. If R is a prime weakly Novikov ring such that [R, R] is contained in
two of the three nuclei, then R is associative or commutative.
In the latter case, N, = 0 or R is associative.

Proof. In view of Theorem 1, we may assume [R, R] C N; N Np,,. Let B = [R, R] +
R[R, R]. By Lemma 2, B is an ideal of R. Using Lemma 3,
we get
(R,R,[R,R])R=0. (13)

Applying (5) and [R,R] C N; N Ny, for all z,y,z € R we have S(z,y,2) = (z,y,2) +
(y,z,2) + (2,2,y) € NyN Nyp,. Let z € [R, R]. Then we get (y,z,2) € Ny N Ny,. Thus,
we obtain (R, R,[R, R]) C Ny N N,,,. Using this and (13), we have R(R,R[R,R])- R =
R- (R7 R, [R7 R])R =
Hence, applying this, (1) and (13), and noting that B is an ideal of R, we obtain that
(R,R,B)-R=0and < (R,R,[R, R]) >= (R, R, B). Thus, by the semiprimeness of R we
get (R,R,B) =0 and so [R, R] C N,.. By Theorem 1, R is associative or commutative.
Assume that R is commutative. Thus we have N, R = RN, C N, and A- N, =0 by
Lemma 1. Hence N, is an ideal of R. By the primeness of R,A - N, = 0 implies A = 0
or N, =0.

By Theorem 3, we obtain the

Corollary 1. If R is a prime weakly Novikov ring such that [R, R] is contained in
two of the three nuclei with N, # 0 or [R, R] # 0, then R is associative, that is N, = R.

In the sequel, for the convenience we denote V3 by D.

Lemma 4. If R is a weakly Novikov ring such that [[R,R],R] C N; N N,, then
(RaRaD) (RaRaR) = 0, where < (RaRaD) (R7R7 )+ (R7R7 )R+ R -
(R,R,D)R.

Proof. Let D = [[R, R], R] + R[[R, R], R] and [[R, R],R] C N; N N,,,. By Lemma 3,
we obtain
(R, R,[[R, R], R))R = 0. (14)
Thus (14) implies
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Assume that y € [[R, R], R] and w,z,z,u,v,t € R. Using (14), the hypotheses and (5)
we have z(w,z,y) = [z, (v, z,y)] = [z, S(w,z,y)] € [[R, R], R] € N; N Ny, and so by (1)
twice we get (1, 2, [2,y])+(w, 7, 2) = (1,2, [z, y]) + (1,2, 42) = (w, 7, 24) = 2(w, z,y) €
N; N Ny, Applying these, (1) and (15) we obtain the following two inclusions.

(R7 R; R[[Ra R]7 R]) = R(R7 R7 [[R7 R]7 R]) - NN Ny, (16)

Then (17) implies
[R,R],R]IA-R=[[R,R],R]- AR C [[R,R],RJAC N,. (18)
Combined (15) with (16) results in
(R,R,D) C N;. (19)

Using (1), (17), (7) and (18), we have (w, z,yz)(u,v,t) = y(w,z, 2)-(u,v,t) = (y(w,z,2)-
u,v,t) = 0. Hence applying this, (2) and (14) we obtain

(R,R,D)A = (R,R,D)(R,R,R) =0. (20)

Then by (20), (19), (7) and (1) we get 0 = (R,R,D)(R,R,R) = (R,R,D)R, R, R) and
0=(R,R,D)(R,R,R) = (R,R,(R,R,D)R). Thus, by these, (14) and (1) we have

R(R,R,[[R,R],R]))- R = (R,R,D)RC N,NN,. (21)

Let z € R(R, R, [[R, R], R]) and w,y,z € R. Then by (16) and (1) we get z € N; N N,
and wz € (R,R,D). Hence by (9) and (19), we obtain (w,zy,z) = (wz,y,z) = 0.
Combined this, (1), (14) and (21) results in

(R,R,D)RC N. (22)

Using (1), (19) and (22) we see that < (R,R,D) >= (R,R,D) + (R,R,D)R+ R -
(R, R, D)R.
Combined (19) with (20) results in

(R,R,D)R- A= (R,R,D)-RAC (R,R,D)A =0. (23)

Apping (22) and (23), we get {R-(R,R,D)R}-A=R-{(R,R,D)R-A} = 0. Thus using
this, (20) and (23), we have < (R, R, D) > - A =0, as desired.

Theorem 4. If R is a prime weakly Novikov ring such that [[R, R]R] is contained in
two of the three nuclei, then R is associative of [[R, R], R] = 0.

Proof. In view of Theorem 1, we may assume [[R, R], R] C N; N Np,.
Let D = [[R, R], R] + R|[[R, R], R]. Then by Lemma 4 we obtain < (R,R,D) > - A =0,
where < (R,R,D) >= (R,R,D)+ (R,R,D)R+ R - (R,R,D)R. By the semiprimeness
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of R, this implies < (R, R, D) >= 0. Hence [[R, R], R] C N,.. Thus by Theorem 1, R is
associative or [[R, R], R] = 0.

By Theorem 4, we have the

Corollary 2. If R is a prime weakly Novikov ring such that [[R, R], R] is contained
in two of the three nuclei with [[R, R], R] # 0, then R is associative.
The following is very easy.

Remark 1. If R is a simple weakly Novikov ring such that 7" C N,., then R is
associative or T' = 0.

Proof. Assume that R = A = (R,R,R). By Lemma 1, we have RT = AT = 0.
Thus, we get TR = [T, R] C T. Hence, we see that < T >=T. By the simplicity of R,
we obtain 7" = 0, as desired.

Remark 2. If R is a semiprime weakly Novikov ring such that (R, R, R) C N; or
(R,R,R) C N, then R is associative.

Proof. We see that the associator ideal A of R is all finite sums of associators.
Assume that (R, R, R) C N;. Then by this and (7), for all w € (R, R, R) and z,y,z € R
we get w(z,y, z) = (wz,y,2) € (4, R,R) =0.

Thus, we have (R, R, R)(R, R,R) = 0 and so A2 = 0.
Assume that (R, R, R) C N,.. Then by Lemma 1, we obtain

(R,R,R)(R,R,R) = (R,R,R(R,R,R)) = (R, R, A) =

In either case, we have A? = 0. By the semiprimeness of R, this implies A = 0. Thus,
R is associative.
In view of Theorem 1 of [6], we have the

Remark 3. If R is a semiprime weakly Novikov ring with a derivation d such that
d(R) C N,, then d(A) = 0. Moreover, if R is prime such that d(R) C N; N N, or
d(R) C N,,, N N, then R is associative or d = 0.

Proof. By the definition of d, d(R) C N,, (8), (1) and A = (R,R,R), for all
w,x,y,z,t € R we get (w,z,y)d(z) = (w, z,yd(z)) = y(w,z,d(z)) =0, (w,z,y) - td(z) =
(w,z,y)t - d(z) = 0 and so d(y)(w,x, z) = (w,z,d(y)z) = z,d(y)z) + (w,z,yd(z)) =
(w,z,d(yz)) = 0.

Let E = d(R) + Rd(R). Then the above three equalities imply

(w

A-E=0andd(R)-A=0. (24)

Using (24), we have that d(A)R C d(A) and Rd(A) C d(A). Hence < d(A) >=d(A). Ap-
plying (4), we see that d(A) C A. Thus by (24), d(4)- A = 0 and so by the semiprimeness
of R, this implies d(A) = 0.
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Assume that R is prime such that d(R) C N;N N, or d(R) C N,,, N N,.. Then by (3)
and the result of [8], E is an ideal of R. By the primeness of R, (24) implies A = 0 or
E = 0. Hence, R is associative or d = 0.

In Remark 3, if R is a semiprime weakly Novikov ring with a derivation d such that
d(R) C N,, then d(A) = 0. Hence, the results of [7] can be applied.

3. Results of weakly M-rings

In the sequel, we denote T} and Vi by T and V respectively.
A ring R is called a weakly M-ring if R satisfies the following identity.

(w,zy,2) = z(w,y, z) for all w,z,y,z in R. (25)
Note that if R is a weakly M-ring then by (6) and (25) we obtain A = (R, R, R).

Theorem 5. If R is a prime weakly M-ring such that T'C NN N,, or T'C N,,, N N,.,
then R is associative or T' = 0.

Proof. Note that [T, R] C T. Using this, T C N,, and (25), for all z € T and
’LU,y,Z,t € R we have CE(’LU,y,Z) = :L“(w,y,z) - y('LU,CE,Z) = ('LU,CEy,Z) - (’LU,y:L’,Z) =
(w,[z,y],2) =0, and so tz - (w,y,z) =t - x(w,y,z) = 0. These two identities yield

V-A=0 (26)

Since V is an ideal of R, by the primeness of R, (26) implies A = 0 or V = 0. Hence,
R is associative or T' = 0.

The following three remarks are similar to those in section 2. The proofs are also
similar, so we omit it.

Remark 4. If R is a simple weakly M-ring such that 7' C N,,, then R is associative
or T =0.

Remark 5. If R is a semiprime weakly M-ring such that (R, R, R) C N,,, then R is
associative.

Remark 6. If R is a prime weakly M-ring with a derivation d such that d(R) C
NN N, or d(R) C N,,, N N,., then R is associative or d = 0.

Finally, we ask if the theorem or the remark is valid for the other cases.
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