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RINGS WITH GENERALIZED COMMUTATORS IN THE NUCLEI
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CHEN-TE YEN

Abstract. Let R be a prime weakly Novikov ring and Tk = [[[: : : [[R;R]; R] : : : ; R]; R]; R]
| {z }

kR0s

where

k is a positive integer. We prove that if Tk � Nl \Nr or Tk � Nm \ Nr then R is associative

or Tk = 0. Moreover, if Tk is contained in two of the three nuclei, and k = 2 or k = 3 then

the same conclusions hold. We also consider such rings with derivations. Some similar results of

weakly M-rings are obtained.

1. Introduction

Let R be a nonassociative ring. We shall denote the associator and commutator by

(x; y; z) = (xy)z � x(yz) and [x; y] = xy� yx for all x; y; z in R respectively. In any ring

R, one has the following nuclei:

Nl = fn 2 Rj(n;R;R) = 0g � left nucleus,

Nm = fn 2 Rj(R; n;R) = 0g � middle nucleus,

Nr = fn 2 Rj(R;R; n) = 0g � right nucleus.

N = Nl \Nm \Nr � nucleus.

A ring R is called simple if R is the only nonzero ideal of R. Thus, R2 = R.

A ring R is called semiprime if the only ideal of R which squares to zero is the zero ideal.

A ring R is called prime if the product of any two nonzero ideals of R is nonzero. Note

that each associator and commutator are linear in each argument. Thus Nl; Nm and Nr

are additive subgroups of (R;+). If S is a nonempty subset of a ring R, then the ideal

of R generated by S is < S >. A ring R is called weakly Novikov [4] if R satis�es the

following identity.

(w; x; yz) = y(w; x; z) for all w; x; y; z in R: (1)
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An additive mapping d on a ring R is called a derivation if d(xy) = d(x)y + xd(y)

holds for all x; y in R. For any ring R, let Tk = [[[: : : [[R;R]; R] : : : ; R]; R]; R]
| {z }

kR0s

where k

is a positive integer. Note that T2 = [R;R] and T3 = [[R;R]; R]. We also note that

[R; Tk] = [Tk; R] � Tk, where k is a positive integer. Obviously, we have the following

identities.

Tk + TkR = Tk +RTk for all positive integers k: (2)

d(R) + d(R)R = d(R) +Rd(R): (3)

d((x; y; z)) = (d(x); y; z) + (x; d(y); z) + (x; y; d(z)) for all x; y; z in R: (4)

S(x; y; z) = (x; y; z)+(y; z; x)+(z; x; y)=[xy; z]+[yz; x]+[zx; y]

for all x; y; z in R: (5)

We shall use the Teichm�uller identity

(wx; y; z)� (w; xy; z) + (w; x; yz) = w(x; y; z) + (w; x; y)z for all w; x; y; z in R; (6)

which is valid in every ring.

As a consequence of (6), we have that Nl; Nm and Nr are associative subrings of R.

Suppose that n 2 Nl Then with w = n in (6) we obtain

(nx; y; z) = n(x; y; z) for all x; y; z in R and n in Nl: (7)

Suppose that m 2 Nr. Then with z = m in (6) we get

(w; x; ym) = (w; x; y)m for all w; x; y in R and m in Nr: (8)

Suppose that j 2 Nl \Nm. Then with x = j in (6) we have

(wj; y; z) = (w; jy; z) for all w; y; z in R and j in Nl \Nm: (9)

De�nition 1. Let A be the associator ideal of a ring R.

Ordinary by (6) A can by characterized as all �nite sums of associators and left

multiples of associators. In view of (1) it su�ces to take all �nite sums of associators

if R is a weakly Novikov ring. Hence, in this case A = (R;R;R). In the paper, we

consider rings with generalized commutators in the nuclei. There had been other results

concerning rings in which [R;R] � Nl. For example Thedy [5], Kleinfeld [1], Kleinfeld

and Kleinfeld [2] as well as Kleinfeld and Smith [3].

De�nition 2. For any ring R, let Vk = Tk +RTk for all positive integers k.
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2. Results of Weakly Novikov Rings

Lemma 1. If R is a weakly Novikov ring, then RNr � Nr and A �Nr = (R;R;R) �

Nr = 0.

Proof. Let z 2 Nr and w; x; y 2 R. Then by (8) and (1), we have (w; x; y)z =

(w; x; yz) = y(w; x; z) = 0. Thus, we get A �Nr = (R;R;R) �Nr = 0 and RNr � Nr, as

desired.

By (2) and the result of [8], we have the

Lemma 2. If R is a ring such that Tk is contained in two of the three nuclei, then

Vk is an ideal of R for every positive integer k.

In the sequel, for the convenience we denote Tk and Vk by T and V respectively.

Theorem 1. If R is a prime weakly Novikov ring such that T � Nl \ Nr or T �

Nm \Nr, then R is associative or T = 0.

Proof. Using T � Nr and Lemma 1, we get

A � V = A � (T +RT ) = 0: (10)

By Lemma 2 and the primeness of R, (10) implies A = 0 or V = 0. Thus, R is associative

or T = 0.

Lemma 3. If R is a weakly Novikov ring such that T � Nl \Nm, then

(R;R; T )R = 0 (11)

Proof. Note that [R; T ] = [T;R] � T . Using this, the hypotheses, (6),(1),(9) and (7),

for all y 2 T , and w; x; z 2 R we have (w; x; y)z = w(x; y; z) + (w; x; y)z = (wx; y; z) �

(w; xy; z)+(w; x; yz) = �(w; [x; y]; z)�(w; yx; z)+y(w; x; z) = �(wy; x; z)+y(w; x; z) =

�([w; y]; x; z)� (yw; x; z) + y(w; x; z) = 0, Hence, we get (R;R; T )R = 0,as desired.

Theorem 2. Let R be a prime weakly Novikov ring such that T � Nl \ Nm. If

S(x; y; z) 2 Nm for all x; y; z in R, or [T; (R;R;R)] = 0, then R is associative or T = 0.

Proof. Assume that S(x; y; z) 2 Nm for all x; y; z in R. Using this, (5) and

the hypotheses, for all x 2 T and y; z 2 R we get (y; z; x) = (x; y; z) + (y; z; x) +

(z; x; y) = S(x; y; z) 2 Nm. Thus, (R;R; T ) � Nm. Applying this, (1) and (11), we have

(R;R;RT )R = R(R;R; T ) � R = R � (R;R; T )R = 0.

Combining this with (11) results in

(R;R; V )R = 0: (12)

Assume that [T; (R;R;R)] = 0. Using this, (1), (11) and (6), and noting that [T;R] �

T , for all w; x; y; t 2 R, and z 2 T we have (w; x; y)z � t = z(w; x; y) � t = (w; x; zy)t =
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(w; x; [z; y])t+(w; x; yz)t = w(x; y; z)�t+(w; x; y)z �t+(w; xy; z)t�(wx; y; z)t = w(x; y; z)�

t+ (w; x; y)z � t and so (x; y; wz)t = w(x; y; z) � t = 0. Combining this with (11), we also

obtain (12).

Using (1) and (12), we see that < (R;R; T ) >= (R;R; V ). By the semiprimeness of

R, (12), implies (R;R; V ) = 0. Hence, V � Nr

Consequently, T � N . By Theorem 1, R is associative or T = 0.

In [3], Kleinfeld and Smith had proved that if R is a prime left alternative ring with

[R;R] � Nl and characteristic6= 2,3 then R is associative. A linearization of the left

alternative identity shows that Nl = Nm. We have the similar result for the weakly

Novikov ring case.

Theorem 3. If R is a prime weakly Novikov ring such that [R;R] is contained in

two of the three nuclei, then R is associative or commutative.

In the latter case, Nr = 0 or R is associative.

Proof. In view of Theorem 1, we may assume [R;R] � Nl \Nm. Let B = [R;R] +

R[R;R]. By Lemma 2, B is an ideal of R. Using Lemma 3,

we get

(R;R; [R;R])R = 0: (13)

Applying (5) and [R;R] � Nl \ Nm, for all x; y; z 2 R we have S(x; y; z) = (x; y; z) +

(y; z; x) + (z; x; y) 2 Nl \ Nm. Let x 2 [R;R]. Then we get (y; z; x) 2 Nl \ Nm. Thus,

we obtain (R;R; [R;R]) � Nl \ Nm. Using this and (13), we have R(R;R[R;R]) � R =

R � (R;R; [R;R])R = 0.

Hence, applying this, (1) and (13), and noting that B is an ideal of R, we obtain that

(R;R;B) �R = 0 and < (R;R; [R;R]) >= (R;R;B). Thus, by the semiprimeness of R we

get (R;R;B) = 0 and so [R;R] � Nr. By Theorem 1, R is associative or commutative.

Assume that R is commutative. Thus we have NrR = RNr � Nr and A �Nr = 0 by

Lemma 1. Hence Nr is an ideal of R. By the primeness of R,A �Nr = 0 implies A = 0

or Nr = 0.

By Theorem 3, we obtain the

Corollary 1. If R is a prime weakly Novikov ring such that [R;R] is contained in

two of the three nuclei with Nr 6= 0 or [R;R] 6= 0, then R is associative, that is Nr = R.

In the sequel, for the convenience we denote V3 by D.

Lemma 4. If R is a weakly Novikov ring such that [[R;R]; R] � Nl \ Nm then

< (R;R;D) > � (R;R;R) = 0, where < (R;R;D) >= (R;R;D) + (R;R;D)R + R �

(R;R;D)R.

Proof. Let D = [[R;R]; R] + R[[R;R]; R] and [[R;R]; R] � Nl \Nm. By Lemma 3,

we obtain

(R;R; [[R;R]; R])R = 0: (14)

Thus (14) implies

(R;R; [[R;R]; R]) � Nl: (15)
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Assume that y 2 [[R;R]; R] and w; x; z; u; v; t 2 R. Using (14), the hypotheses and (5)

we have z(w; x; y) = [z; (w; x; y)] = [z; S(w; x; y)] 2 [[R;R]; R] � Nl \Nm and so by (1)

twice we get (w; x; [z; y])+y(w; x; z) = (w; x; [z; y])+(w; x; yz) = (w; x; zy) = z(w; x; y) 2

Nl \Nm. Applying these, (1) and (15) we obtain the following two inclusions.

(R;R;R[[R;R]; R]) = R(R;R; [[R;R]; R]) � Nl \Nm: (16)

[[R;R]; R]A = [[R;R]; R](R;R;R) � Nl: (17)

Then (17) implies

[[R;R]; R]A � R = [[R;R]; R] �AR � [[R;R]; R]A � Nl: (18)

Combined (15) with (16) results in

(R;R;D) � Nl: (19)

Using (1), (17), (7) and (18), we have (w; x; yz)(u; v; t) = y(w; x; z)�(u; v; t) = (y(w; x; z)�

u; v; t) = 0. Hence applying this, (2) and (14) we obtain

(R;R;D)A = (R;R;D)(R;R;R) = 0: (20)

Then by (20), (19), (7) and (1) we get 0 = (R;R;D)(R;R;R) = ((R;R;D)R;R;R) and

0 = (R;R;D)(R;R;R) = (R;R; (R;R;D)R). Thus, by these, (14) and (1) we have

R(R;R; [[R;R]; R]) � R = (R;R;D)R � Nl \Nr: (21)

Let x 2 R(R;R; [[R;R]; R]) and w; y; z 2 R. Then by (16) and (1) we get x 2 Nl \Nm

and wx 2 (R;R;D). Hence by (9) and (19), we obtain (w; xy; z) = (wx; y; z) = 0.

Combined this, (1), (14) and (21) results in

(R;R;D)R � N: (22)

Using (1), (19) and (22) we see that < (R;R;D) >= (R;R;D) + (R;R;D)R + R �

(R;R;D)R.

Combined (19) with (20) results in

(R;R;D)R � A = (R;R;D) �RA � (R;R;D)A = 0: (23)

Apping (22) and (23), we get fR � (R;R;D)Rg �A = R � f(R;R;D)R �Ag = 0. Thus using

this, (20) and (23), we have < (R;R;D) > � A = 0, as desired.

Theorem 4. If R is a prime weakly Novikov ring such that [[R;R]R] is contained in

two of the three nuclei, then R is associative of [[R;R]; R] = 0.

Proof. In view of Theorem 1, we may assume [[R;R]; R] � Nl \Nm.

Let D = [[R;R]; R] + R[[R;R]; R]. Then by Lemma 4 we obtain < (R;R;D) > � A = 0,

where < (R;R;D) >= (R;R;D) + (R;R;D)R + R � (R;R;D)R. By the semiprimeness
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of R, this implies < (R;R;D) >= 0. Hence [[R;R]; R] � Nr. Thus by Theorem 1, R is

associative or [[R;R]; R] = 0.

By Theorem 4, we have the

Corollary 2. If R is a prime weakly Novikov ring such that [[R;R]; R] is contained

in two of the three nuclei with [[R;R]; R] 6= 0, then R is associative.

The following is very easy.

Remark 1. If R is a simple weakly Novikov ring such that T � Nr, then R is

associative or T = 0.

Proof. Assume that R = A = (R;R;R). By Lemma 1, we have RT = AT = 0.

Thus, we get TR = [T;R] � T . Hence, we see that < T >= T . By the simplicity of R,

we obtain T = 0, as desired.

Remark 2. If R is a semiprime weakly Novikov ring such that (R;R;R) � Nl or

(R;R;R) � Nr then R is associative.

Proof. We see that the associator ideal A of R is all �nite sums of associators.

Assume that (R;R;R) � Nl. Then by this and (7), for all w 2 (R;R;R) and x; y; z 2 R

we get w(x; y; z) = (wx; y; z) 2 (A;R;R) = 0.

Thus, we have (R;R;R)(R;R;R) = 0 and so A2 = 0.

Assume that (R;R;R) � Nr. Then by Lemma 1, we obtain

(R;R;R)(R;R;R) = (R;R;R(R;R;R)) = (R;R;A) = 0

In either case, we have A2 = 0. By the semiprimeness of R, this implies A = 0. Thus,

R is associative.

In view of Theorem 1 of [6], we have the

Remark 3. If R is a semiprime weakly Novikov ring with a derivation d such that

d(R) � Nr, then d(A) = 0. Moreover, if R is prime such that d(R) � Nl \ Nr or

d(R) � Nm \Nr, then R is associative or d = 0.

Proof. By the de�nition of d, d(R) � Nr, (8), (1) and A = (R;R;R), for all

w; x; y; z; t 2 R we get (w; x; y)d(z) = (w; x; yd(z)) = y(w; x; d(z)) = 0, (w; x; y) � td(z) =

(w; x; y)t � d(z) = 0 and so d(y)(w; x; z) = (w; x; d(y)z) = (w; x; d(y)z) + (w; x; yd(z)) =

(w; x; d(yz)) = 0.

Let E = d(R) +Rd(R). Then the above three equalities imply

A � E = 0 and d(R) � A = 0: (24)

Using (24), we have that d(A)R � d(A) and Rd(A) � d(A). Hence < d(A) >= d(A). Ap-

plying (4), we see that d(A) � A. Thus by (24), d(A) �A = 0 and so by the semiprimeness

of R, this implies d(A) = 0.
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Assume that R is prime such that d(R) � Nl \Nr or d(R) � Nm \Nr. Then by (3)

and the result of [8], E is an ideal of R. By the primeness of R, (24) implies A = 0 or

E = 0. Hence, R is associative or d = 0.

In Remark 3, if R is a semiprime weakly Novikov ring with a derivation d such that

d(R) � Nr, then d(A) = 0. Hence, the results of [7] can be applied.

3. Results of weakly M-rings

In the sequel, we denote Tk and Vk by T and V respectively.

A ring R is called a weakly M-ring if R satis�es the following identity.

(w; xy; z) = x(w; y; z) for all w; x; y; z in R: (25)

Note that if R is a weakly M-ring then by (6) and (25) we obtain A = (R;R;R).

Theorem 5. If R is a prime weakly M-ring such that T � Nl\Nm or T � Nm\Nr,

then R is associative or T = 0.

Proof. Note that [T;R] � T . Using this, T � Nm and (25), for all x 2 T and

w; y; z; t 2 R we have x(w; y; z) = x(w; y; z) � y(w; x; z) = (w; xy; z) � (w; yx; z) =

(w; [x; y]; z) = 0, and so tx � (w; y; z) = t � x(w; y; z) = 0. These two identities yield

V � A = 0 (26)

Since V is an ideal of R, by the primeness of R, (26) implies A = 0 or V = 0. Hence,

R is associative or T = 0.

The following three remarks are similar to those in section 2. The proofs are also

similar, so we omit it.

Remark 4. If R is a simple weakly M-ring such that T � Nm, then R is associative

or T = 0.

Remark 5. If R is a semiprime weakly M-ring such that (R;R;R) � Nm, then R is

associative.

Remark 6. If R is a prime weakly M-ring with a derivation d such that d(R) �

Nl \Nm or d(R) � Nm \Nr, then R is associative or d = 0.

Finally, we ask if the theorem or the remark is valid for the other cases.
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