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BOUNDS FOR UNIFORM RESOLVENT CONDITIONS

YIN CHEN

Abstract. For a bounded linear operator on a Banach space, the uniform resolvent con-

dition implies the absolute summability of the powers of the operator. In this paper, we

study the bounds for the absolute sum of the powers of an operator that satisfies the uni-

form resolvent condition. Some known bounds on general Banach spaces as well as on

finite-dimensional Banach spaces are improved.

1. Introduction

Let X be a Banach space and T be a bounded linear operator on X . T is said to satisfy the

uniform resolvent condition if there is a constant U such that

‖(λ−T )−1‖≤U (1.1)

for all |λ| ≥ 1. Clearly, if T satisfies uniform resolvent condition, then its spectrum σ(T ) is a

subset of the open unit disk. In fact, σ(T ) is a subset of smaller disk of radius 1−1/U by (3.2)

in Section 3.

In the stability study of operators on Banach spaces, one often needs to estimate the

growth rate of the powers of the operators. We say that the powers of T are absolutely summable

if there is a constant B such that ∞
∑

n=0

‖T n‖≤ B. (1.2)

If the powers of T are absolutely summable (1.2), then using the power expansion of the

resolvent, we can easily see that T satisfies the uniform resolvent condition (1.1) with U ≤ B .

On the other side, Lubich and Nevanlinna [2] proved that (1.1) implies (1.2) too. They

even obtained a bound for B , that is, B ≤ eU 2(1+ ln(2U )). Since then, several papers have

been published in searching the best possible growth rate of B . The following is a summary

of the progress on this direction.

Lubich and Nevalinna [2] (1991) : eU 2(1+ ln(2U ))

Nevalinna [3] (1997) : 6U 2 −6U +1

Chen [1] (2000) and Nevalinna [4] (2001) : 4U 2 −4U +1
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In this paper, we will improve the bound of B to 3U 2 +1. We will also improve the corre-

sponding bounds for operators on the finite-dimensional spaces.

2. Some lemmas

Lemma 2.1. If T satisfies the uniform resolvent condition (1.1) with U ≥ 1, then for each real

number q with 0 < q < 1, T satisfies

‖(λ−T )−1‖≤
U

1−q
(2.1)

for all λ such that

|λ| ≥ 1−
q

U
.

Proof. Suppose T satisfies (1.1). Let q be any positive real number less than 1 and let p be any

complex number such that |p| = q . If |λ| ≥ 1, then
∥

∥

∥

p

U
(λ−T )−1

∥

∥

∥≤ q,

which implies that 1− p

U (λ−T )−1 is invertible and
∥

∥

∥

∥

(

1−
p

U
(λ−T )−1

)−1
∥

∥

∥

∥

≤
1

1−q
.

Now

1−
p

U
(λ−T )−1 = (λ−T )−1

(

λ−
p

U
−T

)

thus λ− p

U −T is invertible, and
∥

∥

∥

∥

(

λ−
p

U
−T

)−1
∥

∥

∥

∥

≤
∥

∥

∥

∥

(

1−
p

U
(λ−T )−1

)−1
∥

∥

∥

∥

∥

∥(λ−T )−1
∥

∥≤
U

1−q
.

Let |µ| ≥ 1− q

U . Set λ=µ+ µq

|µ|U , and p = µq

|µ| . Then |λ| = |µ|+ q

U ≥ 1 and λ− p

U =µ. Thus we have

∥

∥(µ−T )−1
∥

∥≤
U

1−q
. ���

The following is a collection of some easy results of calculus which will be used in the

next sections.

Lemma 2.2. If 0 < x < 1, then

∞
∑

n=N

(n +1)xn = xN (1−x)−2(N +1−N x), (2.2)

and the functions

g (t ) = x t (t +1− t x)

and

h(t )= ln t +ex t

are decreasing and increasing respectively for t > 0.
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Proof. We know for 0 < x < 1,

∞
∑

n=N

(n +1)xn =
d

d x

∞
∑

n=N

xn+1 =
d

d x

(

xN+1

1−x

)

= xN (1−x)−2(N +1−N x),

which proves (2.2).

For 0 < x < 1, we know ln x < 0, ln x +1−x < 0, thus for t > 0,

g ′(t )= x t (t +1− t x) ln x +x t (1−x) = x t [t (1−x) ln x + ln x +1−x] < 0,

which implies g (t ) is decreasing on (0,∞).

Set h1(t ) = 1+ t x t e ln x. Then h′
1(t ) = ex t ln x(1+ t ln x). It follows that for 0 < x < 1, h1(t )

has absolute minimum 0 over (0,∞) at t =− 1
ln x . Now

h′(t )=
1

t
+ex t ln x =

h1(t )

t
≥ 0.

Hence h(t ) is increasing on (0,∞). ���

3. Some improved bounds

In this section, we will give some better bounds for B . First we have an estimate for the

powers of T .

Theorem 3.1. If T satisfies the uniform resolvent condition (1.1) with a constant U ≥ 1, then

for all positive integer n and any positive real number q that is less than 1,

‖T n‖≤
U

1−q

(

1−
q

U

)n+1

. (3.1)

Proof. Suppose T satisfies (1.1), then by Lemma 2.1, we know that T satisfies (2.1) for all q

and λ such that 0 < q < 1 and |λ| ≥ 1− q
U . Thus for any positive integer n

T n =
1

2πi

∫

|λ|=1− q

U

λn(λ−T )−1dλ.

It follows that

‖T n‖≤
(

1−
q

U

)n+1 U

1−q
,

which completes the proof. ���

From Lemma 2.1, we see that

σ(T ) ⊆
{

|z| : |z| ≤ 1−
1

U

}

. (3.2)

Thus if U = 1, then σ(T ) = {0}, and T is quasinilpotent. In fact, by Theorem 3.1, we know that

if U = 1, then ‖T ‖≤ 1−q . Letting q → 1−, we have T = 0. Hence
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Corollary 3.2. If T satisfies (1.1) with U = 1, then T = 0.

Now the bound (2U −1)2 in [1, 4] is just an easy consequence of Theorem 3.1.

Corollary 3.3. If T satisfies (1.1) with a constant U ≥ 1, then T satisfies (1.2) with B ≤ (2U−1)2.

Proof. By Theorem 3.1, we have

∞
∑

n=1

‖T n‖ ≤
∞
∑

n=1

(

1−
q

U

)n+1 U

1−q

=
(U −q)2

q(1−q)
.

Taking q = U
2U−1 , we get

∞
∑

n=1

‖T n‖ ≤ 4U (U −1).

or ∞
∑

n=0

‖T n‖≤ (2U −1)2. ���

When U is large, the bound in the above corollary is equivalent to 4U 2. If we minimize

each term in Theorem 1, we can reduce the bound to 3U 2.

Theorem 3.4. If T satisfies the uniform resolvent condition (1.1) with a constant U > 1, then T

satisfies (1.2) with B < 3U 2 +1.

Proof. For each positive integer n, set

fn(q) =
(

1−
q

U

)n+1 U

1−q
.

By (3.1), we know ‖T n‖≤ fn(q) for 0 < q < 1. In particular, letting q → 0+, we see that

‖T n‖≤ fn(0) =U .

Let N = ⌊U⌋+1. Since

fn
′(q) =

(

1−
q

U

)n 1

(1−q)2
(nq −n −1+U ),

we see that if n ≥ N > U , then we can choose q = 1− U−1
n

which is positive and less than 1,

and hence by (3.1)

‖T n‖ ≤ fn

(

1−
U −1

n

)

≤ (n +1)

(

1+
1

n

)n (

1−
1

U

)n

< e(n +1)

(

1−
1

U

)n

,
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where the last inequality holds since the sequence
(

1+ 1
n

)n
is increasing to e . Hence

∞
∑

n=N

‖T n‖ ≤
∞
∑

n=N

(n +1)e

(

1−
1

U

)n

= eU 2

(

1−
1

U

)N [

N +1−N

(

1−
1

U

)]

.

Applying Lemma 2.2 on the right side of the above inequality with N >U , we know

∞
∑

n=N

‖T n‖ < eU 2

(

1−
1

U

)U [

U +1−U

(

1−
1

U

)]

= 2eU 2

(

1−
1

U

)U

.

It is easy to verify that
(

1− 1
x

)x
is increasing. It follows

(

1− 1
U

)U < 1
e and hence we have

∞
∑

n=N

‖T n‖< 2U 2.

Therefore

∞
∑

n=0

‖T n‖= 1+
⌊U⌋
∑

n=1

‖T n‖+
∞
∑

n=⌊U⌋+1

‖T n‖

< 1+U⌊U⌋+2U 2

≤ 3U 2 +1. ���

4. On finite dimensional spaces

When the dimension of X is finite, Lubich and Nevanlinna found a better bound with

B ≤ 2edU (1+ ln(2U )). This bound can also be improved.

Theorem 4.1. On a Banach space of dimension d, the uniform resolvent condition implies

∞
∑

n=0

‖T n‖ ≤U (
p

lnU +1)2d . (4.1)

Proof. Set Γ= {|z| = 1− q

U
}. By using partial integration, we can get

T n =
1

2πi(n +1)

∫

Γ

λn+1(λ−T )−2dλ.

Let u, v be any two unit vectors respectively in X and X ′. Set

q(λ) = 〈v, (λ−T )−1u〉.

Then following the same idea as in the proof of Theorem 2.3 of [2] (also see the proof on page

137 of [5]), we have

|〈v,T nu〉| ≤
1

2π(n +1)

(

1−
q

U

)n+1
∫

Γ

|q ′(λ)||dλ|.
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But
∫

Γ

|q ′(λ)||dλ| ≤ 2πd ·max
Γ

|q(λ)| (by Spijker’s Lemma)

≤ 2πd
U

1−q
.

It follows that

‖T n‖ ≤
1

n +1

(

1−
q

U

)n+1 U

1−q
d . (4.2)

Since ∞
∑

n=1

1

n
r n =− ln(1− r ) for 0 < r < 1,

we have,

∞
∑

n=0

‖T n‖ ≤
∞
∑

n=0

U

1−q
d

1

n +1

(

1−
q

U

)n+1

=
U

1−q
d

(

− ln
q

U

)

.

Taking q = 1

1+
p

lnU
, we have

∞
∑

n=0

‖T n‖ ≤ Ud
lnU − ln q

1−q

= Ud

(

lnU

1−q
+ ln

(

1+
1−q

q

)

1

1−q

)

≤ Ud

(

lnU

1−q
+

1

q

)

= Ud
(p

lnU +1
)2

,

which is (4.1). ���

Note that the bound Ud
(p

lnU +1
)2

is better than 2edU (1+ln(2U )). In [2], it was proved

that under Euclidean norm, B ≤ 2Ud . (4.1) is even better than this bound when U is close to

1. When U is large, we can improve (4.1) further.

Theorem 4.2. On a Banach space of dimension d, the uniform resolvent condition implies

∞
∑

n=0

‖T n‖≤Ud (lnU +1)+1.

Proof. We see in the proof of Theorem 3.4, we eventually show that the function
(

1− q

U

)n+1
(1−

q)−1 has minimum at q = 1− U−1
n when n >U −1. Set N = ⌊U⌋. Then by (4.2), if n ≥ N , then

‖T n‖≤ d

(

1−
1

U

)n (

1+
1

n

)n

≤ ed

(

1−
1

U

)n

.
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So

∞
∑

n=N

‖T n‖ ≤
∞
∑

n=N

ed

(

1−
1

U

)n

= edU

(

1−
1

U

)N

We see that for any n, if we take q → 0+ in (4.2), then

‖T n‖ ≤
Ud

n +1
.

Thus

∞
∑

n=0

‖T n‖ = 1+
N−1
∑

n=1

‖T n‖+
∞
∑

n=N

‖T n‖

≤ 1+
N−1
∑

n=1

Ud

n +1
+edU

(

1−
1

U

)N

≤ 1+Ud

[

ln N +e

(

1−
1

U

)N ]

≤ 1+Ud

[

lnU +e

(

1−
1

U

)U ]

≤ 1+Ud (lnU +1),

where the second inequality is from the estimate of harmonic series
∑k

n=1
1
n < lnk+1, the third

comes from Lemma 2.2, and the fourth is from the fact the function
(

1− 1
U

)U
is increasing to

1
e . ���
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