ON A SUBCLASS OF BAZILEVIČ FUNCTIONS

S. ABDUL HALIM

Abstract

For $\alpha>0,0 \leq \beta<1$, we denote $B_{1}(\alpha, \beta)$ to be the class of normalised analytic functions satisfying the condition $\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha-1} f^{\prime}(z)>\beta$ for z in the unit disc $D=\{z:|z|<$ 1\}. Sharp estimates for $\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha}$ is established. In fact a more generalished result concerning iterated integrals is obtained.

1. Introduction

For $\alpha>0,0 \leq \beta<1$, let $B_{1}(\alpha, \beta)$ be the class of Bazilevič functions defined in the unit disc $D=\{z:|z|<1\}$ normalized such that $f(0)=0, f^{\prime}(0)=1$ and satisfying.

$$
\operatorname{Re} \frac{z^{1-\alpha} f^{\prime}(z)}{f(z)^{1-\alpha}}>\beta, z \in D
$$

We note that $B_{1}(1,0) \equiv R$, the class of functions whose derivative has positive real part. Macgregor [6] studied this class and Hallenbeck [4] showed the sharp result below

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right) \geq-1+\frac{2}{r} \log (1+r)>-1+2 \log 2
$$

for $z=r e^{i \theta} \in D$.
The class $B_{1}(\alpha) \equiv B_{1}(\alpha, 0)$ was first looked at by Singh [9] and later followed by other authors including [5] and [10]. The sharp estimate for the lower bound of $\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha}$ was established for $B_{1}(\alpha)$ and further extended to include estimates for the real part of some iterated integral operators in [3]. The author in [1] and [2] give some results concerning the class $B_{1}(\alpha, \beta)$. In [7] the following result was attained by Owa and Obradovič:

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha}>(1+2 \alpha \beta) /(1+2 \alpha) \quad \text { for } z \in D
$$

We now give a sharp result for this and generalise further to the real part of some iterated integral operators.

[^0]
2. Results

First, for $z \in D, a>-1$ and $n=1,2,3, \ldots$, define

$$
\begin{equation*}
I_{n}(z)=\frac{a+1}{z^{a+1}} \int_{0}^{z} t^{a} I_{n-1}(t) d t \tag{1}
\end{equation*}
$$

where $I_{0}(z)=(f(z) / z)^{\alpha}$.
Theorem 2.1. Let $f \in B_{1}(\alpha, \beta)$ and $z=r e^{i \theta} \in D$. Then for $n \geq 0$,

$$
\begin{equation*}
\operatorname{Re} I_{n}(z) \geq \gamma_{n}(r)>\gamma_{n}(1) \tag{2}
\end{equation*}
$$

and

$$
\gamma_{n}(r)<1
$$

where for $n=1,2,3, \ldots$

$$
\gamma_{n}(r)=\frac{a+1}{r^{a+1}} \int_{0}^{r} \rho^{a} \gamma_{n-1}(\rho) d \rho
$$

and

$$
\gamma_{0}(r)=\frac{\alpha(1-\beta)}{r^{\alpha}} \int_{0}^{r} \rho^{\alpha-1}\left(\frac{1-\rho}{1+\rho}\right) d \rho+\beta
$$

Equality is attained for the function f_{0} defined by

$$
f_{0}(z)=\left(\alpha \int_{0}^{z} t^{\alpha-1}\left(\frac{(1-t)(1-\beta)}{(1+t)}+\beta\right) d t\right)^{1 / \alpha}
$$

We note that when $n=0$, the theorem gives the sharp lower bound for $\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha}$ i.e.

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha} \geq \gamma_{0}(r)=1+2 \alpha(1-\beta) \sum_{j=1}^{\infty} \frac{(-r)^{j}}{(j+\alpha)}
$$

This improves Owa and Obradovićs result [loc. cit]. Furthermore, in the cae $n=1$, the sharp result also improves that of Owa et al. [8] for the class $B_{1}(1, \beta)$.

In order to prove the above Theorem, we first require the following Lemma.
Lemma 2.1. Let $\gamma_{n}(r)$ be defined as in Theorem 2.1. Then for fixed r and $n \geq 1$,

$$
\gamma_{n-1}(r)<\gamma_{n}(r)
$$

Proof of Lemma. We use induction. However, first we prove the following inequality

$$
\begin{equation*}
\frac{r^{a}}{(1+r)^{2}}\left[(1+a)\left(1-r^{2}\right)-2 r\right]<\alpha(1+a) \gamma^{a-\alpha} \int_{0}^{\gamma} \rho^{\alpha-1}\left(\frac{1-\rho}{1+\rho}\right) d \rho \tag{3}
\end{equation*}
$$

Observe that for $0<r<1, \alpha>0$ and $a>-1$, the inequality below is true.

$$
0<\frac{2 r(1-r)}{(1+a)(1+r)}+\frac{2 \alpha r}{1+a}+2 r
$$

With the introduction of the term $\alpha\left(1-r^{2}\right)$ to both sides of the inequality, this implies

$$
\alpha\left(1-r^{2}\right)-2 r<\frac{2 r}{(1+a)(1+r)}\{(1-r)+\alpha(1+r)\}+\alpha(1-r)(1+r)
$$

and, on multiplying throughout by $\frac{r^{\alpha-1}}{(1+r)^{2}}$, we have

$$
\frac{r^{\alpha-1}}{(1+r)^{2}}\left(\alpha-\alpha r^{2}-2 r\right)<\frac{2 r^{\alpha}}{(1+a)(1+r)^{3}}\{(1+\alpha)(1+r)-2 r\}+\frac{\alpha(1-r) r^{\alpha-1}}{(1+r)}
$$

Integrating both sides from 0 to r and using the Comparison Theorem, we obtain

$$
\begin{aligned}
& \int_{0}^{r} \frac{\rho^{\alpha-1}}{(1+\rho)^{2}}\left(\alpha-2 \rho-\alpha \rho^{2}\right) d \rho \\
& <\alpha \int_{0}^{r} \frac{\rho^{\alpha-1}(1-\rho)}{(1+\rho)} d \rho+\frac{2}{1+a} \int_{0}^{r} \frac{\rho^{\alpha}}{(1+\rho)^{3}}((1+\alpha)(1+\rho)-2 \rho) d \rho
\end{aligned}
$$

which implies

$$
\frac{r^{\alpha}(1-r)}{1+r}<\alpha \int_{0}^{r} \frac{\rho^{\alpha-1}(1-\rho)}{(1+\rho)} d \rho+\frac{2}{1+a}\left(\frac{r^{\alpha+1}}{(1+r)^{2}}\right)
$$

Next, multiplying both sides by the term $r^{a-\alpha}(1+a)$ gives inequality (3).
And, after integrating both sides of (3), we have

$$
r^{a+1}\left(\frac{1-r}{1+r}\right)<\alpha(1+a) \int_{0}^{r} \rho^{a-\alpha} \int_{0}^{\rho} \xi^{\alpha-1}\left(\frac{1-\xi}{1+\xi}\right) d \xi d \rho
$$

which implies that $\gamma_{0}<\gamma_{1}$.
Next, note that

$$
\begin{aligned}
\gamma_{k}-\gamma_{k+1} & =\frac{a+1}{r^{a+1}} \int_{0}^{r} \rho^{a}\left[\gamma_{k-1}(\rho)-\gamma_{k}(\rho)\right] d \rho \\
& <0
\end{aligned}
$$

and so the Lemma follows by induction.
Proof of Theorem 2.1. We again use induction. Suppose first that $n=0$. Then since $f \in B_{1}(\alpha, \beta) \exists$ a function p with $p(0)=1$ and $R e p(z)>0$ such that

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha}=\alpha \operatorname{Re} \frac{1}{z^{\alpha}} \int_{0}^{z} t^{\alpha-1}[p(t)(1-\beta)+\beta] d t
$$

Write $t=\rho e^{i \theta}$ so that

$$
\begin{aligned}
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha} & =\frac{\alpha}{r^{\alpha}} \int_{0}^{r} \rho^{\alpha-1}\left[1-\beta \operatorname{Rep}\left(\rho e^{i \theta}\right)+\beta\right] d \rho \\
& \geq \frac{\alpha}{r^{\alpha}} \int_{0}^{r} \rho^{\alpha-1}\left[\frac{(1-\beta)(1-\rho)}{1+\rho}+\beta\right] d \rho \\
& =\gamma_{o}(r),
\end{aligned}
$$

since $\operatorname{Re} p(z) \geq(1-r) /(1+r)$ for $|z|=r<1$ (see [6]). Elementary calculus now shows that for $0<\rho<r<1, \gamma_{0}(1)<\gamma_{0}(r)<1$.
Next from (1)

$$
\begin{aligned}
\operatorname{Re}_{n+1}(z) & =\operatorname{Re} \frac{a+1}{z^{a+1}} \int_{0}^{z} t^{a} I_{n}(t) d t \\
& =\frac{a+1}{r^{a+1}} \int_{0}^{r} \rho^{a} \operatorname{Re} I_{n}\left(\rho e^{i \theta}\right) d \rho \\
& \geq \gamma_{n+1}(r),
\end{aligned}
$$

where the inequality follows by induction. This proves the first inquality in (2).
Now

$$
\gamma_{n}(r)=1+2 \alpha(1+a)^{n}(1-\beta) \sum_{j=1}^{\infty} \frac{(-r)^{j}}{(j+\alpha)(j+a+1)^{n}}
$$

and so for $n \geq 1$, this series is absolutely convergent. Suitably rearranging pairs of terms in $\gamma_{n}(r)$ as

$$
\begin{aligned}
\gamma(n)= & 1-2 \alpha(1+a)^{n}(1-\beta)\left(\frac{r}{(1+\alpha)(2+a)^{n}}-\frac{r^{2}}{(2+\alpha)(3+a)^{n}}\right) \\
& -2 \alpha(1+a)^{n}(1-\beta)\left(\frac{r^{3}}{(3+\alpha)(4+a)^{n}}-\frac{r^{4}}{(4+\alpha)(5+a)^{n}}\right)+\cdots \\
= & 1-2 \alpha(1+a)^{n}(1-\beta) \sum_{k=1}^{\infty}\left(\frac{r^{2 k-1}}{(2 k-1+\alpha)(2 k+a)^{n}}-\frac{r^{2 k}}{(2 k+\alpha)(2 k+1+a)^{n}}\right),
\end{aligned}
$$

shows that $\gamma_{n}(r)<1$.
Finally, we show that $\gamma_{n}(r)>\gamma_{n}(1)$ (the second inequality in (2)). Using Lemma 2.1 in the following

$$
r \gamma_{n}^{\prime}(r)+(a+1) \gamma_{n}(r)=(a+1) \gamma_{n-1}(r)
$$

shows that for a fixed $n \geq 1, r \gamma_{n}^{\prime}(r)<0$. Hence $\gamma_{n}(r)$ decreases with r as $r \rightarrow 1$. This completes the proof of the Theorem.

To obtain the sharp lower bound for $\operatorname{Re}\left(\frac{f(z)}{z}\right)$ requires the following Lemma, which is elementary and as such we have omitted the proof.

Lemma 2.2. Let $z \in \mathbb{C}$ with Rez $\geq \sigma>0$ where σ is a constant. Then for fixed m, with $0<m<1$,

$$
R e z^{m} \geq \sigma^{m}
$$

With the above Lemma, one can easily deduce the following theorems.
Theorem 2.2. Let $f \in B_{1}(\alpha, \beta)$. Then for $z=r e^{i \theta} \in D$ and $\alpha \geq 1$,

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right)>\gamma_{0}(1)^{1 / \alpha}
$$

where γ_{0} is defined as in Theorem 2.1.
Theorem 2.3. If $f \in B_{1}(\alpha, \beta)$ then for $0 \leq \beta<1$,

$$
\operatorname{Re} \sqrt{\frac{f(z)}{z}}>\left(1+2(1-\beta) \ln \left(\frac{2}{e}\right)\right)^{1 / 2}
$$

The function $f(z)=-z(1-2 \beta)-2(1-\beta) \log (1-z)$ illustrates that the result is sharp.
Proof. Let $\alpha=1$ in Theorem 2.2. Then Lemma 2.2 with $m=1 / 2$ gives us the result.

Remark. The above result improves that of Owa, Fukui and Altintas [8].

References

[1] S. Abdul Halim, Some Bazilevič functions of order β, Internat. J. Math. \& Math. Sci. 14 (1991), 283-288.
[2] ——, On the coefficients of some Bazilevič functions of order β, J. Ramanujan Math. Soc. 4 (1989), 53-64.
[3] S. A. Halim and D. K. Thomas, A note on Bazilevič function, Internat. J. Math. \& Math. Sci. 14 (1991), 821-824.
[4] D. J. Hallenbeck, Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc. 192(1974), 285-292.
[5] R. R. London and D. K. Thomas, The derivative of Bazilevič functions, Proc. Amer. Math. Soc. 104(1988), 235-238.
[6] T. H. Macgregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 9(1962), 532-537.
[7] S. Owa and M. Obradović, Certain subclasses of Bazilevič functions of type α, Internat. J. Math. \& Math. Sci. 9(1986), 347-359.
[8] S. Owa, S. Fukui and O. Altinias, Notes on certain subclass of close-to-convex functions, C. R. Math. Rep. Acad. Sci. Canada 10 (1988), 125-130.
[9] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc. 38 (1973), 261-271.
[10] D. K. Thomas, On a subclass of Bazilevič functions, Internat, J. Math. \& Math. Sci. 8(1985), 779-783.

Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia.

[^0]: Received March 1, 2001.
 2000 Mathematics Subject Classification. Primary 30C45.
 Key words and phrases. Bazilevič functions and integral operators.

