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A SOLUTION OF ONE PROBLEM OF COMPLEX INTEGRATION

�ZIVORAD TOMOVSKI AND KOSTADIN TREN�CEVSKI

Abstract. In this paper the following identity
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is proved, where the integration is done over a curve with tangent vector at 0 toward the positive

part of x-axis.

1. Formulation of the problem.

K. Tren�cevski has set the following numerical expansion
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where the integration is done over a curve with tangent vector at 0 toward the positive

part of x-axis.

This problem has not appeared until now in the literature and it is a subject of our

consideration. However, applying some known results obtained by D. S. Mitrinovi�c, J. D.

Ke�cki�c [1] and M. R. Spiegel [2], this identity �nally is proved by the author �Z. Tomovski.

2. Solution of the problem.

Let F (z) =
R1
z

e
�t

tp
dt, where p > 0 and Rez > 0. In [2], p.288-289, was proved the

following identity
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We have
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Let us evaluate the integral I =
R 1
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dt. By putting u = 1=t and applying the

identity (2.1), we obtain
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Integrating by parts, we obtain
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According to (2.2) and (2.3), we obtain
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Then, according to (2.4) and (2.5), we obtain
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Then we shall apply the following identity, obtained by D. S. Mitrinovi�c and J. D. Ke�cki�c

in [1], p.146.
nX

k=0

(�1)k
�
n

k

�
1

ak + b
=

n!an

b(a+ b)(2a+ b) � � � (na+ b)
:

The left-hand side of this identity is in fact, equal to (1=b)F (�n; b=a; 1 + b=a; 1) and so

it is merely a specialized version of the Chu-Vandermonde summation theorem for the

�nite Gauss hypergeometric series: F (�n; b; c; 1) with b replaced by b=a and c = 1+ b=a.
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That �nishes the proof.

Remark. In [3] was proved the following numerical identity
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Then, we shall apply the well-known formulae (see [1], p145)
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