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MEROMORPHIC FUNCTIONS WHOSE CERTAIN DIFFERENTIAL

POLYNOMIAL SHARE A POLYNOMIAL

SUJOY MAJUMDER AND RAJIB MANDAL

Abstract. In this paper, we use the idea of normal family to investigate the unique-

ness problems of meromorphic functions when certain non-linear differential polyno-

mial sharing a non-zero polynomial with certain degree. We obtain some results which

will not only rectify the recent results of P. Sahoo and H. Karmakar [10] but also improve

and generalize some recent results of L. Liu [7], H. Y. Xu, T. B. Cao and S. Liu [13] and P.

Sahoo and H. Karmakar [10] in a large extent.

1. Introduction, Definitions and Results

In this paper by meromorphic functions we shall always mean meromorphic functions

in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite complex

number. We say that f and g share a CM, provided that f −a and g −a have the same zeros

with the same multiplicities. Similarly, we say that f and g share a IM, provided that f − a

and g −a have the same zeros ignoring multiplicities. Let k ∈N∪ {0}∪ {∞}. For a ∈C∪ {∞} we

denote by Ek (a; f ) the set of all a-points of f , where an a-point of multiplicity m is counted

m times if m ≤ k and k + 1 times if m > k . If Ek (a; f ) = Ek (a; g ), we say that f , g share the

value a with weight k .

Let m ∈N∪ {∞} and a ∈ C∪ {∞}. We denote by Em)(a; f ) the set of all a-points of f with

multiplicities not exceeding m, where an a-point is counted according to its multiplicity. Also

we denote by E m)(a; f ) the set of distinct a-points of f (z) with multiplicities not greater than

m. If Em)(a; f ) = Em)(a; g ), we say that a is a m-order pseudo common value of f and g . If for

some a ∈C∪ {∞}, E∞)(a; f ) = E∞)(a; g )(E∞)(a; f ) = E∞)(a; g )) we say that f , g share the value

a CM (IM).
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We adopt the standard notations of value distribution theory (see [5]). For a non-constant

meromorphic function f , we denote by T (r, f ) the Nevanlinna characteristic of f and by

S(r, f ) any quantity satisfying S(r, f ) = o{T (r, f )} as r →∞ possibly outside a set of finite linear

measure.

A meromorphic function a(z) is called a small function with respect to f , if T (r, a) =

S(r, f ). We denote by T (r ) the maximum of T (r, f ) and T (r, g ). The notation S(r ) denotes any

quantity satisfying S(r ) = o(T (r )) as r −→ ∞, outside of a possible exceptional set of finite

linear measure. Throughout this paper, we denote by µ( f ), ρ( f ) and λ( f ) the lower order of

f , the order of f and the exponent of convergence of zeros of f respectively (see [5, 15]).

Let f be a transcendental meromorphic function in the complex plane such that ρ( f ) =

ρ ≤∞. A complex number a is said to be a Borel exceptional value (see [15]) if

limsup
r−→∞

log+ N (r, a; f )

log r
< ρ.

For the sake of simplicity we also use the notations m∗ := χµm, where χµ = 0 if µ= 0, χµ = 1 if

µ 6= 0.

In 1959, W. K. Hayman (see [5], Corollary of Theorem 9) proved the following theorem.

Theorem A. Let f be a transcendental meromorphic function and n ∈N\ {1,2}. Then f n f ′ = 1

has infinitely many solutions.

Theorem A was extended by Chen [3] in the following manner.

Theorem B. Let f be a transcendental entire function and n, k ∈ N with n ≥ k + 1. Then

( f n)(k) −1 has infinitely many zeros.

In 2002, Fang [4] proved the following result.

Theorem C. Let f , g be two non-constant entire functions and let n, k ∈N with n > 2k +4. If

( f n)(k) and (g n)(k) share 1 CM, then either f (z) = c1ecz and g (z) = c2e−cz , where c , c1, c2 ∈ C

satisfying (−1)k (c1c2)n(nc)2k = 1 or f ≡ t g for t ∈C such that t n = 1.

In 2008, L. Liu [7] proved the following.

Theorem D. Let f , g be two non-constant meromorphic functions and let n, m, k ∈ N and

λ, µ ∈C such that |λ|+|µ| 6= 0. If El (1, ( f n(λ f m +µ))(k)) =El (1, (g n (λg m +µ))(k)) and one of the

following conditions holds:

(1) l ≥ 2 and n > 3m∗+3k +8;

(2) l = 1 and n > 4m∗+5k +10;

(3) l = 0 and n > 6m∗+9k +14.
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Then

(i) when λµ 6= 0, if m ≥ 2 and δ(∞; f ) > 3
n+m

, then f ≡ g ; if m = 1 and Θ(∞; f ) > 3
n+1

, then

f ≡ g ;

(ii) when λµ = 0, if f , g 6= ∞, then either f ≡ t g , where t ∈ C such that t n+m∗

= 1 or f (z) =

c1ecz and g (z) = c2e−cz , where c , c1, c2 ∈C such that

(−1)kλ2(c1c2)n+m∗

((n +m∗)c)2k = 1 or (−1)kµ2(c1c2)n+m∗

((n +m∗))2k = 1.

Regarding Theorem D, following question arises.

Question 1. How two meromorphic functions f and g are related, if the condition

El (1, ( f n(µ f m +λ))(k)) = El (1, (g n (µg m +λ))(k)) in Theorem D is replaced with the condition

El)(1, ( f n(µ f m +λ))(k)) =El)(1, (g n (µg m +λ))(k)) ?

In 2012, Xu et al. [13] answer the above question by proving the following results which

also improve Theorem D in some sense.

Theorem E. Let f , g be two non-constant meromorphic functions and let n, m, k ∈N with n >

13
3

k+ 13
3

m∗+ 28
3

and λ, µ ∈C such that |λ|+|µ| 6= 0. If E l)(1, ( f n(µ f m+λ))(k)) = E l)(1, (g n (µg m+

λ))(k)) and E1)(1, ( f n(µ f m +λ))(k)) = E1)(1, (g n (µg m +λ))(k)), where l ∈N \ {1,2}, then the con-

clusions of Theorem D still hold.

Theorem F. Let f , g be two non-constant meromorphic functions and let n, m, k ∈ N with

n > 3k+3m∗+6 andλ, µ ∈C such that |λ|+|µ| 6= 0. If E l)(1, ( f n(µ f m+λ))(k)) = E l)(1, (g n (µg m+

λ))(k)) and E2)(1, ( f n(µ f m +λ))(k)) = E2)(1, (g n (µg m +λ))(k)), where l ∈ N \ {1,2,3}, then the

conclusions of Theorem D still hold.

Observing Theorems E and F, Sahoo and Karmakar [10] asked the following question.

Question 2. What can be said about the relationship between two meromorphic functions f

and g , if ( f nP( f ))(k) and (g n P(g ))(k) share a non-zero polynomial, where P(z) =
∑m

i=0 ai zi is

any non-zero polynomial, a0, a1, . . . , am ∈C ?

Let us define m∗∗ = m, if P(z) 6= a0; m∗∗ = 0, if P(z) ≡ a0.

In the direction of the above question, Sahoo and Karmakar [10] obtained the following

results.

Theorem G. Let f , g be two transcendental meromorphic functions, p be a non-zero polyno-

mial of degree q and n, k ∈N, m ∈N∪{0} with n > max{ 13
3 k+

11
3 m∗∗+

28
3 ,k+2q}. Suppose that

either k , q are co-prime or k > q, when q ≥ 2. Let E l)(p, ( f nP( f ))(k)) = E l)(p, (g nP(g ))(k)) and

E1)(p, ( f nP( f ))(k)) = E1)(p, (g n P(g ))(k)), where P(z) =
∑m

i=0 ai zi is any non-zero polynomial

and l ∈N\ {1,2}. Then the following conclusions hold.
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(i) If P(z) =
∑m

i=0 ai zi is not a monomial, then either f ≡ t g , t ∈ C such that t d = 1, where

d = (n +m, . . .n +m − i . . . ,n), am−i 6= 0 for some i = 0,1,2, . . . ,m or f and g satisfy the

algebraic equation R( f , g ) = 0, where R( f , g ) is given by

R(w1, w2) = w n
1 (am w m

1 + . . .+a1w1 +a0)−w n
2 (am w m

2 + . . .+a1w2 +a0).

(ii) When P(z) = a0 or P(z) = am zm , then either f ≡ t g , t ∈ C such that t n+m∗∗

= 1 or f (z) =

b1ebQ(z) and g (z) = b2e−bQ(z), where Q is a polynomial without constant such that Q ′= p;

b, b1, b2 ∈C such that a2
0(nb)2(b1b2)n =−1 or a2

m((n +m)b)2(b1b2)n+m =−1.

Theorem H. Let f , g be two transcendental meromorphic functions, p be a non-zero polyno-

mial of degree q and n, k ∈ N, m ∈N∪ {0} with n > max{3k +3m∗∗+6,k +2q}. Suppose that

either k , q are co-prime or k > q, when q ≥ 2. Let E l)(p, ( f nP( f ))(k)) = E l)(p, (g n P(g ))(k)) and

E2)(p, ( f nP( f ))(k))= E2)(p, (g nP(g ))(k)), where l ∈N\{1,2,3}. Then the conclusions of Theorem

G still hold .

Remark 1. In the proof of Theorem 1 [10], one can easily point out a number of gaps.

Firstly the authors [10] declare that Lemma 10 [10] can be proved in the line of the proof

of Lemma 9 [21]. But this is not possible here. Actually in Lemma 9 [21], f , g share ∞ IM.

But in Lemma 10 [10], authors did not consider the condition “ f , g share ∞ IM”. Therefore

existence of Lemma 10 [10] is questionable here.

Secondly in the proof of Lemma 11 [10] there is a big gap. From the relation

(am f n+m)′(am g n+m)′ ≡ p2

authors conclude that f = eα and g = eβ. Again from the relation

(am f n+m)(k)(am g n+m)(k)
≡ p2 (1.1)

authors conclude that

N (r,∞; am f n+m)+N (r,0; am f n+m) =O(log r ). (1.2)

The calculations are not true. A question arises: When zeros of f (g ) are neutralized by the

poles of g ( f ) ? Actually the authors did not consider this case. As for example we consider

the case. Suppose k = 4, m = 1, q = 1 and n = 7. Let z0 be a zero of f of multiplicity 2. One

can easily think that z0 is a simple pole of g . It is clear that z0 is a zero of (am f n+m)(k) of

multiplicity 12 and a pole of (am g n+m)(k) of multiplicity 12. This shows that zeros of f (g )

can be neutralized by the poles of g ( f ). Also poles of f can be neutralized by the zeros of

(am g n+m)(k), but not the zeros of g . As a result from (1.1) we can not easily arrive at (1.2).

Therefore existence of Lemma 11 [10] is questionable here.
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Finally, since Lemmas 9 and 10 [10] play an important role in proving Theorems 1 and 2

[10], so existence of Theorem 1 [10] as well as Theorem 2 [10] are questionable here.

The above discussion is sufficient enough to make oneself inquisitive to investigate the

accurate form of Theorems G and H. In this paper we study Theorem 1 [10] as well as Theorem

2 [10] again in more general form with out help of Lemma 10 [10] as well as Lemma 11 [10] .

Also it is quite natural to ask the following questions.

Question 3. Can the lower bound of n be further reduced in Theorems G and H ?

Question 4. Can one remove the condition “Suppose that either k , q are co-prime or k > q ,

when q ≥ 2” in Theorems G and H ?

Question 5. Can one remove the condition f 6= ∞, g 6= ∞ keeping all the conclusions intact

when λµ= 0 in Theorems D, E, F ?

2. Main results

In this paper, we always use P(z) denoting an arbitrary polynomial of degree n as follows:

P(z) =
n
∑

i=0

ai zi
= an

s
∏

i=1

(z −cli
)li , (2.1)

where a0, a1, . . . , an(6= 0) ∈ C and cl j
∈ C ( j = 1,2, . . . , s) are distinct and l1, l2, . . . , ls , s, n, k ∈ N

such that
∑s

i=1 li =n. Also we let l = max{l1, l2, . . . , ls } and e be the zero of P(z) of multiplicity l .

From (2.1) we have P(z) = (z −e)l P∗(z), where P∗(z) is a polynomial in degree n − l = m(≥ 0),

say. We also use P1(z1) as an arbitrary non-zero polynomial defined by

P1(z1) = an

s
∏

i=1
li 6=l

(z1 +e −cli
)li =

m
∑

i=0

bi zi
1, (2.2)

where z1 = z −e and deg(P1(z1)) = m ≥ 0. Obviously P(z) = z l
1P1(z1).

Taking the possible answers of the above questions into backdrop we obtain the following

results which are not only rectify Theorems G, H, but also improve and generalize Theorems

D-H.

Theorem 1. Let f , g be two transcendental meromorphic functions and p be a non-zero poly-

nomial with deg(p) ≤ l −1, where m ∈N∪ {0}, k , l ∈N such that l > 13
3

k + 11
3

m + 28
3

. Suppose

E l)(p, (P( f ))(k))= E l)(p, (P(g ))(k)) and E1)(p, (P( f ))(k)) = E1)(p, (P(g ))(k)), where P(z) is defined

as in (2.1) and l ∈N\ {1,2}. Now

(I) when P1(z1) is not a monomial, then one of the following three cases holds
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(I1) f (z)−e ≡ t (g (z)−e) for t ∈C such that t d0 = 1, where

d0 =GC D(l +m, . . . , l +m − i , . . . , l ), bm−i 6= 0 for some i = 0,1, . . . ,m;

(I2) f1 = f −e and g1 = g −e satisfy the algebraic equation R( f1, g1) = 0, where

R(ω1,ω2) =ωl
1(bmωm

1 +bm−1ω
m−1
1 + . . .+b0)−ωl

2(bmωm
2 +bm−1ω

m−1
2 + . . .+b0);

(I3) (P( f ))(k)(P(g ))(k) ≡ p2;

(II) when P1(z1) is a monomial, say P1(z1) = bi zi
1 6≡ 0, where i ∈ {0,1, . . . ,m}, then one of the

following two cases holds

(II1) f −e ≡ t (g −e) for t ∈C such that t l+i = 1,

(II2) if p 6∈ C, then f (z) = c1ecQ(z) + e and g (z) = c2e−cQ(z) + e, where Q(z) =
∫z

0 p(t )d t ,

c , c1, c2 ∈ C such that b2
i

(c1c2)l+i
(

(l + i )c
)2

= −1; if p(z) = b ∈ C \ {0}, then f (z) =

c3ecz + e and g (z) = c4e−cz + e, where c , c3, c4 ∈ C such that (−1)k b2
i

(c3c4)l+i
(

(l +

i )c
)2k

= b2.

In particular when ρ( f ) > 2 and p ∈C\ {0}, then (I3) does not hold.

Theorem 2. Let f , g be two transcendental meromorphic functions and p be a non-zero poly-

nomial with deg(p) ≤ l − 1, where m ∈ N∪ {0}, k , l ∈ N such that l > 3k + 3m + 6. Suppose

E l)(p, (P( f ))(k)) = E l)(p, (P(g ))(k)) and E2)(p, (P( f ))(k)) =E2)(p, (P(g ))(k)), where P(z) is defined

as in (2.1) and l ∈N\ {1,2,3}. Then the conclusion of Theorem 1 holds.

With the help of Theorem 1.5 [8] and Theorem 1 we get the following corollary immedi-

ately.

Corollary 1. Let f , g be two transcendental meromorphic functions and p be a non-zero poly-

nomial with deg(p) ≤ l − 1, where m ∈ N∪ {0}, k , l ∈ N such that l > 3k +m + 8. Suppose

(P( f ))(k) −p and (P(g ))(k) −p share (0,2). Then the conclusion of Theorem 1 holds.

We now explain some definitions and notations which are used in the paper.

Definition 1 ([6]). For a ∈C∪{∞} we denote by N (r, a; f |= 1) the counting function of simple

a points of f . For m ∈ N we denote by N (r, a; f |≤ m) (N (r, a; f |≥ m)) the counting func-

tion of those a points of f whose multiplicities are not greater (less) than m where each a

point is counted according to its multiplicity. N (r, a; f |≤ m) (N (r, a; f |≥ m)) are defined

similarly, where in counting the a-points of f we ignore the multiplicities. Also N (r, a; f |<

m), N (r, a; f |> m), N (r, a; f |< m) and N (r, a; f |> m) are defined analogously.

Definition 2 ([17]). For a ∈C∪ {∞} and p ∈N we let Np (r, a; f )=
∑p

i=1
N (r, a; f |≥ i ).
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Definition 3. Let a,b ∈ C ∪ {∞} and p ∈N. We denote by N (r, a; f | ≥ p | g = b) (N (r, a; f | ≥

p | g 6= b)) the reduced counting function of those a-points of f with multiplicities ≥ p , which

are the b-points (not the b-points) of g .

Definition 4 ([5]). Let a ∈C∪ {∞} and k ∈N. We define

Θ(a; f ) = 1− limsup
r−→∞

N (r, a; f )

T (r, f )
and δk (a; f ) = 1− limsup

r−→∞

Nk (r, a; f )

T (r, f )
.

3. Lemmas

Let h be a meromorphic function in C. Then h is called a normal function if there exists

a positive real number M such that h#(z) ≤ M , for all z ∈C, where

h#(z) =
|h′(z)|

1+|h(z)|2

denotes the spherical derivative of h. Let F be a family of meromorphic functions in a do-

main D ⊂C. We say that F is normal in D if every sequence { fn}n ⊆F contains a subsequence

which converges spherically and uniformly on the compact subsets of D (see [11]).

Let F and G be two non-constant meromorphic functions defined in C. We denote by H

the function as follows:

H =

(F ′′

F ′
−

2F ′

F −1

)

−

(G ′′

G ′
−

2G ′

G −1

)

. (3.1)

Lemma 1 ([14]). Let f be a non-constant meromorphic function and let an(z)(6≡ 0), an−1(z),. . . ,

a0(z) be meromorphic functions such that T (r, ai (z)) = S(r, f ) for i = 0,1,2, . . . ,n. Then

T (r, an f n
+an−1 f n−1

+ . . .+a1 f +a0) =nT (r, f )+S(r, f ).

Lemma 2 ([20]). Let f be a non-constant meromorphic function and p, k ∈N. Then

Np

(

r,0; f (k)
)

≤ T
(

r, f (k)
)

−T (r, f )+Np+k (r,0; f )+S(r, f ),

Np

(

r,0; f (k)
)

≤ k N(r,∞; f )+Np+k (r,0; f )+S(r, f ).

Lemma 3 ([12]). Let f , g be two non-constant meromorphic functions and k , n ∈N such that

n > 2k +1. If ( f n)(k) ≡ (g n)(k), then f ≡ t g for t ∈C such that t n = 1.

Lemma 4. Let f , g be two non-constant meromorphic functions. Let l , k ∈N and m ∈N∪ {0}

such that l >m +3k. Suppose (P( f ))(k) ≡ (P(g ))(k), where P(z) be defined as in (2.1). Now

(I) when P1(z1) is not a monomial, then one of the following two cases holds:
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(Ii) f (z)−e ≡ t (g (z)−e) for t ∈C such that t d0 = 1, where

d0 =GC D(l +m, . . . , l +m − i , . . . , l ), bm−i 6= 0 for some i = 0,1, . . . ,m;

(Iii) f1 = f −e and g1 = g −e satisfy the equation R( f1, g1) = 0, where

R(ω1,ω2) =ωl
1(bmωm

1 +bm−1ω
m−1
1 + . . .+b0)−ωl

2(bmωm
2 +bm−1ω

m−1
2 + . . .+b0).

(II) when P1(z1) is a monomial, say P1(z1) = bi zi
1 6≡ 0, where i ∈ {0,1, . . . ,m}, then

f −e ≡ t (g −e) for t ∈C such that t l+i = 1.

Proof. We have (P( f ))(k) ≡ (P(g ))(k). Integrating we get (P( f ))(k−1) ≡ (P(g ))(k−1)+ck−1. If pos-

sible suppose ck−1 6= 0. Now in view of Lemma 2 for p = 1 and using the second fundamental

theorem we get

n T (r, f ) = T (r,P( f ))+O(1)

≤ T (r, (P( f ))(k−1))−N (r,0; (P( f ))(k−1))+Nk (r,0;P( f ))+S(r, f )

≤ N (r,0; (P( f ))(k−1))+N (r,∞; f )+N (r,ck−1; (P( f ))(k−1))−N (r,0; (P( f ))(k−1))

+Nk (r,0;P( f ))+S(r, f )

≤ N (r,∞; f )+N (r,0; (P(g ))(k−1))+Nk (r,0;P( f ))+S(r, f )

≤ N (r,∞; f )+ (k −1)N (r,∞; g )+Nk (r,0;P(g ))+Nk (r,0;P( f ))+S(r, f )

≤ N (r,∞; f )+ (k −1)N (r,∞; g )+k N (r,e ; g )+N (r,0;P(g ) | g 6= e)+k N(r,e ; f )

+N (r,0;P( f ) | f 6= e)+S(r, f )

≤ (n − l +k +1) T (r, f )+ (n − l +2k −1) T (r, g )+S(r, f )+S(r, g )

≤ (2n −2l +3k) T (r )+S(r ).

Similarly we get n T (r, g ) ≤ (2n−2l+3k) T (r )+S(r ). Combining these we get (2l−n−3k) T (r ) ≤

S(r ), which is a contradiction since l > m+3k . Therefore ck−1 = 0. So (P( f ))(k−1) ≡ (P(g ))(k−1).

Proceeding in this way we get (P( f ))′ ≡ (P(g ))′. Integrating we get P( f ) ≡P(g )+c0. If possible

let c0 6= 0. Using the second fundamental theorem we get

n T (r, f ) = T (r,P( f ))+O(1)

≤ N (r,0;P( f ))+N (r,∞;P( f ))+N (r,c0;P( f ))

≤ N (r,0;P( f ))+N (r,∞; f )+N (r,0;P(g ))

≤ (n − l +2) T (r, f )+ (n − l +1) T (r, g )+S(r, f )

≤ (2n −2l +3) T (r )+S(r ).

Similarly we get n T (r, g ) ≤ (2n−2l +3) T (r )+S(r ). Combining these we get (2l −n−3) T (r ) ≤

S(r ), which is a contradiction since l >m +3. Therefore c0 = 0 and so P( f ) ≡P(g ), i.e.,

f l
1 (bm f m

1 +bm−1 f m−1
1 + . . .+b0)≡ g l

1(bm g m
1 +bm−1g m−1

1 + . . .+b0), (3.2)
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where f1 = f −e and g1 = g −e . Suppose P1(z1) is not a monomial.

Let h =
f1

g1
. If h is a constant, then substituting f1 = g1h into (3.2) we deduce that

bm g l+m
1 (hl+m

−1)+bm−1g b+m−1
1 (hl+m−1

−1)+ . . .+c0g l
1(hl

−1) ≡ 0,

which implies hd0 = 1, where d0 = GC D(l + m, . . . , l + m − i , . . . , l ), bm−i 6= 0 for some i =

0,1, . . . ,m. Thus f1 ≡ t g1, i.e., f (z)− e ≡ t (g (z)− e) for t ∈ C such that t d0 = 1, where d0 =

GC D(l +m, . . . , l +m − i , . . . , l ), bm−i 6= 0 for some i = 0,1, . . . ,m. If h is not a constant, then we

know by (3.2) that f1 and g1 satisfying the equation R( f1, g1) = 0, where R(ω1,ω2) =ωl
1(bmωm

1 +

bm−1ω
m−1
1 + . . .+b0)−ωl

2(bmωm
2 +bm−1ω

m−1
2 + . . .+b0).

Suppose P1(z1) is a monomial, say P1(z1) = bi zi
1 6≡ 0, where i ∈ {0,1, . . . ,m}. Then by

Lemma 3 we have f −e ≡ t (g −e) for t ∈C such that t l+i = 1. This proves the proof. ���

Lemma 5. Let f , g be two non-constant meromorphic functions and let F = (P( f ))(k)/α, G =

(P(g ))(k)/α, where P(z) be defined as in (2.1), α be a small function with respect to f , g and

m ∈N∪{0}, k , l ∈N such that l > m+3k+3. Suppose H ≡ 0. Then either (P( f ))(k)(P(g ))(k) ≡α2,

where (P( f ))(k) −α and (P(g ))(k) −α share 0 CM or (P( f ))(k) ≡ (P(g ))(k).

Proof. We have H ≡ 0. By integration, we get F ′

(F−1)2 ≡ d G ′

(G−1)2 , where d ∈C\ {0}, i.e.,

( F1−α
α

)′

(F1−α
α

)2
≡ d

(G1−α
α

)′

(G1−α
α

)2
,

where F1 = (P( f ))(k) and G1 = (P(g ))(k). This shows that
F1−α
α and

G1−α
α share 0 CM and so

F1 −α and G1 −α share 0 CM. Finally, by integration we get

1

F −1
≡

bG +a −b

G −1
, (3.3)

where a(6= 0),b ∈C. We now consider the following cases.

Case 1. Let b 6= 0 and a 6= b. If b =−1, from (3.3) we have F ≡
−a

G−a−1
. Therefore N (r, a +1;G) =

N (r,∞;F ) = N (r,∞; f )+S(r, f ). So in view of Lemma 2 and the second fundamental theorem

we get

n T (r, g ) = T (r,P( f ))+O(1)

≤ T (r,G)+Nk+1(r,0;P(g ))−N (r,0;G)

≤ N (r,∞;G)+N (r,0;G)+N (r, a +1;G)+Nk+1(r,0;P(g ))−N (r,0;G)+S(r, g )

≤ N (r,∞; g )+ (k +1)N (r,e ; g )+N (r,0;P(g ) | g 6= e)+N (r,∞; f )+S(r, g )

≤ T (r, f )+ (n − l +k +2) T (r, g )+S(r, f )+S(r, g ).
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Suppose that there exists a set I with infinite measure such that T (r, f ) ≤ T (r, g ) for r ∈ I . So

for r ∈ I we have (l −k −3) T (r, g )≤ S(r, g ), which is a contradiction since l > k +3.

If b 6= −1, from (3.3) we obtain that F − (1+ 1
b ) ≡ −a

b2
(

G+
a−b

b

) . So N (r, b−a
b ;G) = N (r,∞;F ) =

N (r,∞; f )+S(r, f ). Using Lemma 2 and the same argument as used in the case when b =−1

we can get a contradiction.

Case 2. Let b 6= 0 and a = b. If b =−1, then from (3.3) we have FG ≡α2, i.e., (P( f ))(k)(P(g ))(k) ≡

α2, where (P( f ))k −α and (P(g ))k −α share 0 CM.

If b 6= −1, from (3.3) we have 1
F ≡

bG
(1+b)G−1 . Therefore N (r, 1

1+b ;G) = N (r,0;F ). So in view of

Lemma 2 and the second fundamental theorem we get

n T (r, g ) ≤ T (r,G)+Nk+1(r,0;P(g ))−N (r,0;G)+S(r, g )

≤ N (r,∞;G)+N (r,0;G)+N (r,
1

1+b
;G)+Nk+1(r,0;P(g ))−N (r,0;G)+S(r, g )

≤ N (r,∞; g )+Nk+1(r,0;P(g ))+N (r,0;F )+S(r, g )

≤ N (r,∞; g )+Nk+1(r,0;P(g ))+Nk+1(r,0;P( f ))+k N (r,∞; f )+S(r, f )+S(r, g )

≤ (n − l +k +2) T (r, g )+ (n − l +2k +1) T (r, f )+S(r, f )+S(r, g ).

So for r ∈ I we have (2l−n−3k−3) T (r, g ) ≤ S(r, g ), which is a contradiction since l > m+3k+3.

Case 3. Let b = 0. From (3.3) we obtain F ≡ G+a−1
a

. If a 6= 1 then we obtain N (r,1− a;G) =

N (r,0;F ). We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and so F ≡G ,

i.e., (P( f ))(k) ≡ (P(g ))(k). This completes the proof. ���

Lemma 6 ([15], Theorem 1.24). Suppose that f is a non-constant meromorphic function in the

complex plane and k ∈N. Then

N (r,0; f (k)) ≤ N (r,0; f )+k N(r,∞; f )+O(log T (r, f )+ log r ),

as r →∞, outside of a possible exceptional set of finite linear measure.

Lemma 7 ([5], Lemma 3.5). Suppose that F is meromorphic in a domain D and set f =
F ′

F .

Then for n ∈N,

F (n)

F
= f n

+
n(n −1)

2
f n−2 f ′

+an f n−3 f ′′
+bn f n−4( f ′)2

+Pn−3( f ),

where an =
1
6

n(n−1)(n−2), bn =
1
8

n(n−1)(n−2)(n−3) and Pn−3( f ) is a differential polynomial

with constant coefficients, which vanishes identically for n ≤ 3 and has degree n−3 when n > 3.

Lemma 8 ([2], Lemma 1). Let f be a meromorphic function on C. If f has bounded spherical

derivative on C, then ρ( f )≤ 2. If in addition f is entire, then ρ( f ) ≤ 1.
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Lemma 9 ([15], Theorem 2.11). Let f be a transcendental meromorphic function in the com-

plex plane such that ρ( f ) > 0. If f has two distinct Borel exceptional values in the extended

complex plane, then µ( f ) = ρ( f ) and ρ( f ) ∈N∪ {∞}.

Lemma 10 ([18]). Let F be a family of meromorphic functions in the unit disc ∆ such that all

zeros of functions in F have multiplicity greater than or equal to l and all poles of functions

in F have multiplicity greater than or equal to j and α be a real number satisfying −l <α< j .

Then F is not normal in any neighborhood of z0 ∈∆, if and only if there exist

(i) points zn ∈∆, zn → z0,

(ii) positive numbers ρn , ρn → 0+ and

(iii) functions fn ∈ F ,

such that ρ−α
n fn(zn +ρnζ) → g (ζ) spherically locally uniformly in C, where g is a non-constant

meromorphic function. The function g may be taken to satisfy the normalisation g #(ζ) ≤

g #(0) = 1(ζ ∈C).

Lemma 11. Let f , g be two transcendental entire functions and p be a non-zero polynomial

with deg(p) ≤ n −1, where n, k ∈N such that n > max{2k ,k +2}. Suppose ( f n)(k)(g n )(k) ≡ p2,

where ( f n)(k) −p and (g n)(k) −p share 0 CM. Now (i) if p 6∈ C, then f (z) = c1ecQ(z) and g (z) =

c2e−cQ(z), where Q(z) =
∫z

0 p(t )d t , c , c1, c2 ∈C such that (nc)2(c1c2)n =−1; (ii) if p(z)= b ∈C\

{0}, then f (z) = c3edz and g (z) = c4e−dz , where c3, c4, d ∈C such that (−1)k (c3c4)n(nd )2k = b2.

Proof. The proof of lemma follows from the proof of Lemma 11 [1]. ���

Lemma 12. Let f , g be two transcendental meromorphic functions and p be a non-zero poly-

nomial with deg(p) ≤ n−1, where n, k ∈N such that n > max{2k ,k+2}. Suppose ( f n)(k)(g n )(k)

≡ p2, where ( f n)(k) −p and (g n )(k) −p share 0 CM. Now (i) if p 6∈ C, then f (z) = c1ecQ(z) and

g (z) = c2e−cQ(z), where Q(z) =
∫z

0 p(t )d t , c , c1, c2 ∈C such that (nc)2(c1c2)n =−1; (ii) if p(z)=

b ∈C\{0}, then f (z) = c3edz and g (z) = c4e−dz , where c3, c4, d ∈C such that (−1)k (c3c4)n(nd )2k

= b2.

Proof. Suppose

( f n)(k)(g n)(k)
≡ p2. (3.4)

We consider the following cases.

Case 1. Suppose ∞ is a Picard exceptional value of both f and g . Then f and g are transcen-

dental entire functions. Remaining part follows from Lemma 11.

Case 2. Suppose ∞ is not a Picard exceptional value of either f or g , or both of f and g .

First we suppose ∞ is a Picard exceptional value of g . Let z0 be a zero of f with multiplic-

ity q0. Clearly z0 is a zero of ( f n)(k) with multiplicity nq0 −k . Now from (3.4) we observe that
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z0 must be a zero of p with multiplicity nq0−k . Since deg(p)≤ n−1 and n > 2k , from (3.4) we

conclude that either f has no zeros or f has finitely many zeros. Therefore in either cases we

have N (r,0; f ) =O(log r ) as r →∞.

Next we suppose ∞ is not a Picard exceptional value of g . Let z1 (p(z1) 6= 0) be a zero of

f with multiplicity q1. Clearly z1 is a zero of ( f n)(k) with multiplicity nq1 −k . From (3.4) we

observe that z1 must be a pole of g with multiplicity r1, say. Note that z1 is a pole of (g n)(k) with

multiplicity nr1+k . Therefore nq1−k = nr1+k and so q1 > r1. Now nq1−k = nr1+k implies

that n(q1−r1) = 2k . Since n > 2k , we arrive at a contradiction. This shows that z1 is a zero of p

and so we have N (r,0; f ) =O(log r ) as r →∞. Similarly we can prove that N (r,0; g ) =O(log r )

as r →∞.

Let H = f n , Ĥ = g n , F =
H
p

and G =
Ĥ
p

. Let F = {Fω} and G = {Gω}, where Fω(z) =

F (z +ω) = H(z+ω)
p(z+ω)

and Gω(z) = G(z +ω) = Ĥ (z+ω)
p(z+ω)

, z ∈ C. Clearly F and G are two families

of meromorphic functions defined on C. We now consider following two sub-cases.

Sub-case 2.1. Suppose one of the families F and G , say F , is normal on C. Then by Marty’s

theorem F #(ω) = F #
ω(0) ≤ M for some M > 0 and for all ω ∈ C. Hence by Lemma 8 we have

ρ(F )≤ 2. Now from (3.4) we have

ρ( f ) = ρ
( f n

p

)

= ρ( f n) =ρ(( f n)(k)) = ρ((g n)(k)) = ρ(g n)= ρ
(g n

p

)

= ρ(g )≤ 2. (3.5)

From (3.4), (3.5) and Lemma 6 we have

(n +k) N (r,∞; f ) ≤ N (r,∞; ( f n)(k)) = N
(

r,∞;
p2

(g n)(k)

)

≤ N (r,0; (g n)(k))+O(log r )

≤ N (r,0; g n)+k N (r,∞; g n )+O(log r ) ≤ k N (r,∞; g )+O(log r ),

as r →∞. Similarly (n +k) N (r,∞; g ) ≤ k N (r,∞; f )+O(log r ), as r →∞. Therefore we have

N (r,∞; f )+ N (r,∞; g ) ≤ O(log r ), as r → ∞. This shows that f and g have at most finitely

many poles. On the other hand f and g have at most finitely many zeros. Let

f =
P1

Q1
eα and g =

P2

Q2
eβ, (3.6)

where P1, P2, Q1 and Q2 are non-zero polynomials and α and β are non-constant polynomi-

als. Since every zeros of f (z) are the poles of g (z) as well as the zeros of p(z), it follows that

deg(P1) < deg(Q2). Similarly deg(P2) < deg(Q1). Let R1 =
P1

Q1
and R2 =

P2

Q2
. Since f and g are

transcendental meromorphic functions, from (3.6) we have ρ( f ) > 0 and ρ(g )> 0. We observe

from (3.5) and Lemma 9 that µ( f ) = ρ( f ) = 1 or µ( f ) = ρ( f ) = 2 and so deg(α) ≤ 2. Similarly

we have deg(β) ≤ 2. Now from (3.6) and Lemma 7 we have

( f n)(k)
=

((

α′
+

R ′
1

R1

)k
+P∗

k−1

(

α′
+

R ′
1

R1

))

ARn
1 enα, (3.7)
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(g n)(k)
=

((

β′
+

R ′
2

R2

)k
+P∗

k−1

(

β′
+

R ′
2

R2

))

BRn
2 enβ, (3.8)

where A, B ∈ C \ {0} and P∗
k−1

(

α′+
R ′

1

R1

)

(

P∗
k−1

(

β′+
R ′

2

R2

)

)

is a differential polynomial of degree at

most k −1 in α′+
R ′

1

R1

(

β′+
R ′

2

R2

)

. Now from (3.4), (3.7) and (3.8)

AB
((

α′
+

R ′
1

R1

)k
+P∗

k−1

(

α′
+

R ′
1

R1

))((

β′
+

R ′
2

R2

)k
+P∗

k−1

(

β′
+

R ′
2

R2

))

en(α+β)
=

p2

(R1R2)n
,

i.e.,

AB
((

α′
+

R ′
1

R1

)k
+P∗

k−1

(

α′
+

R ′
1

R1

))((

β′
+

R ′
2

R2

)k
+P∗

k−1

(

β′
+

R ′
2

R2

))

en(α+β)
= (P∗Q∗)n p2

∗, (3.9)

where P∗, Q∗ are non-constant polynomials and p∗ is a non-zero polynomial. Since P∗, Q∗,

α and β are non-constant polynomials, from (3.9) we have α+β= d1, where d1 ∈C. Therefore

α′+β′ = 0. Now from (3.9) we have

AB
((

α′
+

R ′
1

R1

)k
+P∗

k−1

(

α′
+

R ′
1

R1

))((

−α′
+

R ′
2

R2

)k
+P∗

k−1

(

−α′
+

R ′
2

R2

))

end1 = (P∗Q∗)n p2
∗. (3.10)

Letting |z| →∞, we see that 2k deg(α′) = n deg(P∗Q∗)+2deg(p∗). Since deg(α′) ≤ 1 and n >

2k , we arrive at a contradiction.

Sub-case 2.2. Suppose that one of the families F and G , say F is not normal on C. Then

there exists at least one z0 ∈ ∆ such that F is not normal z0, we assume that z0 = 0. Now by

Marty’s theorem there exists a sequence of meromorphic functions {F (z +ω j )} ⊂ F , where

z ∈ {z : |z| < 1} and {ω j } ⊂ C is some sequence of complex numbers such that F #(ω j ) →∞, as

|ω j | →∞. Note that p has only finitely many zeros. So there exists a r > 0 such that p(z) 6= 0

in D = {z : |z| ≥ r }. Since p(z) is a polynomial, for all z ∈C satisfying |z| ≥ r , we have

0 ←

∣

∣

∣

p ′(z)

p(z)

∣

∣

∣≤
M1

|z|
< 1, p(z) 6= 0. (3.11)

Also since w j →∞ as j →∞, without loss of generality we may assume that |w j | ≥ r +1 for

all j . Let D1 = {z : |z| < 1} and

F (w j + z) =
H (w j + z)

p(w j + z)
.

Since |w j + z| ≥ |w j |− |z|, it follows that w j + z ∈ D for all z ∈ D1. Also since p(z) 6= 0 in D, it

follows that p(ω j + z) 6= 0 in D1 for all j . Then by Lemma 10 there exist

(i) points z j , |z j | < 1,

(ii) positive numbers ρ j , ρ j → 0+,

(iii) a subsequence {F (ω j + z j +ρ jζ)} of {F (ω j + z)}
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such that

h j (ζ) = ρ−k
j F (ω j + z j +ρ jζ) → h(ζ),

i.e.,

h j (ζ) = ρ−k
j

H (ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
→ h(ζ) (3.12)

spherically locally uniformly in C, where h(ζ) is some non-constant meromorphic function

such that h#(ζ) ≤ h#(0) = 1. Now from Lemma 8 we see that ρ(h)≤ 2. In the proof of Zalcman’s

lemma (see [9, 19] ) we see that

ρ j =
1

F #(b j )
and F #(b j ) ≥ F #(ω j ), (3.13)

where b j =ω j + z j . Note that

p ′(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
→ 0, (3.14)

as j → ∞. By Hurwitz’s theorem we can see that the multiplicity of every zero and pole of

h(ζ) is a multiple of n. Therefore we can deduce that h = h̄n , where h̄ is some non-constant

meromorphic function in the complex plane. We now prove that

(h j (ζ))(k)
=

H (k)(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
→ h(k)(ζ). (3.15)

Note that from (3.12)

ρ−k+1
j

H ′(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
= h′

j (ζ)+ρ−k+1
j

p ′(ω j + z j +ρ jζ)

p2(ω j + z j +ρ jζ)
H (ω j + z j +ρ jζ)

= h′
j (ζ)+ρ j

p ′(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
h j (ζ). (3.16)

Now from (3.12), (3.14) and (3.16) we observe that ρ−k+1
j

H ′(ω j+z j+ρ j ζ)

p(ω j +z j+ρ jζ) → h′(ζ). Suppose

ρ−k+l
j

H (l)(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
→ h(l)(ζ).

Let

G j (ζ) = ρ−k+l
j

H (l)(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
.

Then G j (ζ) → h(l)(ζ). Note that

ρ−k+l+1
j

H (l+1)(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
= G ′

j (ζ)+ρ−k+l+1
j

p ′(ω j + z j +ρ jζ)

p2(ω j + z j +ρ jζ)
H (l)(ω j + z j +ρ jζ)



MEROMORPHIC FUNCTIONS WHOSE CERTAIN 179

= G ′
j (ζ)+ρ j

p ′(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
G j (ζ). (3.17)

So from (3.14) and (3.17) we see that ρ−k+l+1
j

H (l+1)(ω j +z j+ρ jζ)

p(ω j +z j+ρ jζ) →G ′
j
(ζ), i.e.,

ρ−k+l+1
j

H (l+1)(ω j + zn +ρ jζ)

p(ω j + z j +ρ jζ)
→ h(l+1)

j
(ζ).

Then by mathematical induction we get desired result (3.15). Let

(ĥ j (ζ))(k)
=

Ĥ (k)(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
. (3.18)

From (3.4) we have

H (k)(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)

Ĥ (k)(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
= 1

and so from (3.15) and (3.18) we get

(h j (ζ))(k)(ĥ j (ζ))(k)
= 1. (3.19)

From (3.15), (3.19) and formula of higher derivatives we can deduce that ĥ j (ζ) → ĥ1(ζ), i.e.,

Ĥ(ω j + z j +ρ jζ)

p(ω j + z j +ρ jζ)
→ ĥ1(ζ), (3.20)

spherically locally uniformly in C, where ĥ1(ζ) is some non-constant meromorphic function

in the complex plane. By Hurwitz’s theorem we can see that the multiplicity of every zero and

pole of ĥ1(ζ) is a multiple of n. Therefore we can deduce that ĥ1 = ĥn , where ĥ is some non-

constant meromorphic function in the complex plane. Therefore (3.20) can be rewritten as

ĥ j (ζ) → ĥn(ζ), spherically locally uniformly in C and so

(ĥ j (ζ))(k)
→ (ĥn(ζ))(k) (3.21)

spherically locally uniformly in C. From (3.15), (3.19) and (3.21) we get

(h̄n(ζ))(k)(ĥn(ζ))(k)
≡ 1. (3.22)

Since ρ(h)≤ 2, from (3.22) we see that

ρ(h)= ρ(h̄n) = ρ((h̄n)(k)) =ρ((ĥn)(k)) = ρ(ĥn) = ρ(ĥ) ≤ 2. (3.23)

Let ζ0 be a zero of h̄ with multiplicity q0. Note that ζ0 is a zero of (h̄n)(k) with multiplicity

nq0 − k . From (3.22) we see that ζ0 must be a pole of ĥ with multiplicity r0, say. Note that
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ζ0 is a pole of (ĥn)(k) with multiplicity nr0 + k . Therefore nq0 − k = nr0 + k and so q0 > r0.

Now nq0 −k = nr0 +k implies that n(q0 − r0) = 2k . Since n > 2k , we arrive at a contradiction.

Therefore h̄ 6= 0. Similarly we can prove that ĥ 6= 0. From (3.22), (3.23) and Lemma 6 we have

(n +k) N (r,∞; h̄) ≤ N (r,∞; (h̄n)(k))= N
(

r,∞;
1

(ĥn)(k)

)

≤ N (r,0; (ĥn)(k))+O(log r )

≤ N (r,0; ĥn)+k N (r,∞; ĥn)+O(log r )≤ k N (r,∞; ĥ)+O(log r ),

as r →∞. Similarly (n +k) N (r,∞; ĥ) ≤ k N (r,∞; h̄)+O(log r ), as r →∞. Therefore we have

N (r,∞; h̄)+ N (r,∞; ĥ) ≤ O(log r ), as r → ∞. This shows that h̄ and ĥ have at most finitely

many poles. Let

h̄ =
1

P3
eα2 and ĥ =

1

Q3
eβ2 , (3.24)

where P3, Q3 are non-zero polynomials and α2, β2 are non-constant polynomials. Since h̄

and ĥ are transcendental meromorphic functions, from (3.24) we have ρ(h̄) > 0 and ρ(ĥ) > 0.

We observe from (3.23) and Lemma 9 that µ(h̄) = ρ(h̄) = 1 or µ(h̄) =ρ(h̄) = 2 and so deg(h̄) ≤ 2.

Similarly we have deg(ĥ) ≤ 2. Next in the same manner as in Sub-case 2.1, we get 2k deg(α′
2) =

n deg(P3Q3). Since deg(α′
2) ≤ 1 and n > 2k , we can deduce that P3, Q3 ∈C. This shows that ∞

is a Picard exceptional value of both h̄ and ĥ. Combining this with Theorem 1 in Fang [4] and

the assumption n > 2k , we get

h̄(z) = c̄1ecz and ĥ(z) = ĉ2e−cz , (3.25)

where c , c̄1, ĉ2 ∈ C such that (−1)k (c̄1ĉ2)n(nc)2k = 1. Since h = h̄n , from (3.12) and (3.25) we

have

h′
j
(ζ)

h j (ζ)
= ρ j

F ′(w j + z j +ρ jζ)

F (w j + z j +ρ jζ)
→

h′(ζ)

h(ζ)
= nc , (3.26)

spherically locally uniformly in C. From (3.13) and (3.26) we get

ρ j

∣

∣

∣

F ′(ω j + z j )

F (ω j + z j )

∣

∣

∣=
1+|F (ω j + z j )|2

|F ′(ω j + z j )|

|F ′(ω j + z j )|

|F (ω j + z j )|
=

1+|F (ω j + z j )|2

|F (ω j + z j )|
→

∣

∣

∣

h′(0)

h(0)

∣

∣

∣=n|c |,

which implies that

lim
j→∞

F (ω j + z j ) 6= 0,∞. (3.27)

From (3.12) and (3.27) we see that

h j (0) = ρ−k
j F (ω j + z j ) →∞. (3.28)
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Again from (3.12) and (3.25) we have

h j (0) → h(0)= c̄n
1 . (3.29)

Now from (3.28) and (3.29) we arrive at a contradiction. This completes the proof. ���

From Lemma 12 we have the following lemma.

Lemma 13. Let f , g be two transcendental meromorphic functions and p be a non-zero poly-

nomial with deg(p) ≤ n −1, where n, k ∈N with n > max{2k ,k +2}. Let (( f −a)n)(k) −p, ((g −

a)n)(k)−p share 0 CM and (( f −a)n)(k)((g−a)n)(k) ≡ p2. Now (i) if p 6∈C, then f (z) = c1ecQ(z)+a

and g (z) = c2e−cQ(z) +a, where Q(z) =
∫z

0 p(t )d t , c , c1, c2 ∈ C such that (nc)2(c1c2)n =−1; (ii)

if p(z) = b ∈ C \ {0}, then f (z) = c3edz +a and g (z) = c4e−dz +a, where d , c3, c4 ∈ C such that

(−1)k (c3c4)n (nd )2k = b2.

Lemma 14. Let f , g be two transcendental meromorphic functions and let m, n, k ∈ N such

that n > 2k. Let P(z) =
∑m

i=0 ai zi be a non-zero polynomial such that P(z) is not a monomial.

If ( f nP( f ))(k)(g nP(g ))(k) ≡ 1, then f is of order at most 2.

Proof. We have

( f nP( f ))(k)(g n P(g ))(k)
≡ 1. (3.30)

Without loss of generality we may assume that am , a0 6= 0. Let F = { fω} and G = {gω}, where

fω(z) = f (z+ω) and gω(z) = g (z+ω), z ∈C. Clearly F and G are two families of meromorphic

functions defined on C. We now consider following two sub-cases.

Sub-case 2.1. Suppose one of the families F and G , say F , is normal on C. Then by Marty’s

theorem f #(ω) = f #
ω(0) ≤ M for some M > 0 and for all ω ∈C. By Lemma 8, ρ( f ) ≤ 2.

Sub-case 2.2. Suppose one of the families F and G , say F is not normal on C. Then there

exists at least one z0 ∈∆ such that F is not normal z0, we assume that z0 = 0. Now by Marty’s

theorem there exists a sequence of meromorphic functions { f (z+ω j )} ⊂F , where z ∈ {z : |z| <

1} and {ω j } ⊂ C is some sequence of complex numbers such that f #(ω j ) →∞, as |ω j | →∞.

Then by Lemma 10 there exist

(i) points z j , |z j | < 1,

(ii) positive numbers ρ j , ρ j → 0+,

(iii) a subsequence { f (ω j + z j +ρ jζ) = f j (z j +ρ jζ)} of { f (ω j + z)}

such that

h j (ζ) =ρ
−

k
n

j
f j (z j +ρ jζ) → h(ζ) (3.31)
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spherically locally uniformly in C, where h(ζ) is some non-constant meromorphic function

such that h#(ζ) ≤ h#(0) = 1. Now from Lemma 8 we see that ρ(h)≤ 2. In the proof of Zalcman’s

lemma (see [9, 19] ) we see that

ρ j =
1

f #(b j )
and f #(b j ) ≥ f #(ω j ), (3.32)

where b j =ω j + z j . Now (3.31) yields

(

amρ
km
n

j
hn+m

j (ζ)+ . . .+a1ρ
k
n

j
hn+1

j (ζ)+a0hn
j (ζ)

)(k)

=

(

am f n+m
j (z j +ρ jζ)+ . . .+a1 f n+1

j (z j +ρ jζ)+a0 f n
j (z j +ρ jζ)

)(k)
→ a0(hn(ζ))(k), (3.33)

spherically locally uniformly in C. Next we suppose ĥ j (ζ) = ρ
−

k
n

j
g j (z j +ρ jζ). Therefore

(

amρ
km
n

j
ĥn+m

j (ζ)+ . . .+a1ρ
k
n

j
ĥn+1

j (ζ)+a0ĥn
j (ζ)

)(k)

=

(

am g n+m
j (z j +ρ jζ)+ . . .+a1g n+1

j (z j +ρ jζ)+a0g n
j (z j +ρ jζ)

)(k)
. (3.34)

Now from (3.30), (3.33) and (3.34) we have

(

amρ
km
n

j
hn+m

j (ζ)+ . . .+a0hn
j (ζ)

)(k)(

amρ
km
n

j
ĥn+m

j (ζ)+ . . .+a0ĥn
j (ζ)

)(k)
≡ 1. (3.35)

Letting j →∞, from (3.33), (3.35) and the formula of higher derivatives we can deduce that

amρ
km
n

j
ĥn+m

j (ζ)+ . . .+a0ĥn
j (ζ) → a0ĥ1(ζ), (3.36)

spherically locally uniformly in C, where ĥ1(ζ) is some non-constant meromorphic function

in the complex plane. Now from (3.33), (3.35) and (3.36) we observe that

a2
0(hn(ζ))(k)(ĥ1(ζ))(k)

≡ 1. (3.37)

By Hurwitz’s theorem we can see that the multiplicity of every zero and pole of ĥ1(ζ) is a mul-

tiple of n. Therefore we can deduce that ĥ1 = ĥn , where ĥ is some non-constant meromorphic

function in the complex plane. Therefore (3.36) can be rewritten as

amρ
km
n

j
ĥn+m

j (ζ)+ . . .+a0ĥn
j (ζ) → a0ĥn(ζ),

spherically locally uniformly in C and so
(

amρ
km
n

j
ĥn+m

j
(ζ) + . . . + a0ĥn

j
(ζ)

)(k)
→ a0(ĥn(ζ))(k)

spherically locally uniformly in C. From (3.37) we see that a2
0(hn(ζ))(k)(ĥn(ζ))(k) ≡ 1. Now

by applying Sub-case 2.2 of Lemma 12, we arrive at a contradiction.

This completes the proof. ���
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Lemma 15. Let f and g be two transcendental meromorphic functions such that

E l)(p ; (P( f ))(k)) = E l)(p ; (P(g ))(k)) and E1)(p ; (P( f ))(k)) = E1)(p ; (P(g ))(k)), where l ∈ N \ {1,2},

P(z) be defined as in (2.1) and p(z)(6≡ 0) is a polynomial. If

∆1l =

(8

3
+

2

3
k
)

Θ(∞,P( f ))+ (k +2) Θ(∞,P(g ))+Θ(0,P( f ))+Θ(0,P(g ))

+
5

3
δk+1(0,P( f ))+δk+1(0,P(g )) >

5

3
(k +5), (3.38)

then H ≡ 0.

Proof. Proof of lemma follows from Lemma 8 [10]. ���

Lemma 16. Let f and g be two transcendental meromorphic functions such that

E l)(p ; (P( f ))(k)) = E l)(p ; (P(g ))(k)) and E2)(p ; (P( f ))(k)) =E2)(p ; (P(g ))(k)), where l ∈N\ {1,2,3},

P(z) be defined as in (2.1) and p(z)(6≡ 0) is a polynomial. If

∆2l =

(1

2
k +2

)

[Θ(∞, f )+Θ(∞, g )]+Θ(0, f )+Θ(0, g )+δk+1(0, f )+δk+1(0, g )

> (k +7), (3.39)

then H ≡ 0.

Proof. Proof of lemma follows from Lemma 9 [10]. ���

4. Proof of the Theorem

Proof of Theorem 1. Let F = P( f ) and G = P(g ). Then we see that E l)(p ;F (k)) = E l)(p ;G (k))

and E 1)(p ;F (k)) = E1)(p ;G (k)), where l ∈N\ {1,2}. Note that

Θ(∞;P( f )) = 1− limsup
r−→∞

N (r,∞;P( f ))

T (r,P( f ))

= 1− limsup
r−→∞

N (r,∞; f )

nT (r, f )
≥ 1− limsup

r−→∞

T (r, f )

nT (r, f )
≥ 1−

1

n
=

n −1

n
, (4.1)

δk+1(0;P( f )) = 1− limsup
r−→∞

Nk+1(r,0;P( f ))

T (r,P( f ))

≥ 1− limsup
r−→∞

∑s
j=1
l j 6=l

Nk+1(r,0; ( f −cl j
)l j )+Nk+1(r,0; ( f −cl )l )

nT (r, f )

≥ 1− limsup
r−→∞

(s −1)T (r, f )+ (k +1)T (r, f )+S(r, f )

nT (r, f )

≥ 1−
s +k

n
≥

l −k −1

n
, (4.2)
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Θ(0;P( f )) = 1− limsup
r−→∞

N (r,0;P( f ))

T (r,P( f ))

≥ 1− limsup
r−→∞

∑s
j=1
l j 6=l

N (r,0; ( f −cl j
)l j )+N (r,0; ( f −cl )l )

nT (r, f )

≥ 1− limsup
r−→∞

(s −1)T (r, f )+T (r, f )+S(r, f )

nT (r, f )
≥ 1−

s

n
≥

l −1

n
. (4.3)

Similarly we have

Θ(∞;P(g )) ≥
n −1

n
, δk+1(0;P(g )) ≥

l −k −1

n
and Θ(0;P(g )) ≥

l −1

n
. (4.4)

Now in view (3.38) and (4.1)-(4.4) we obtain

∆1l ≥

(14

3
+

5

3
k
) n −1

n
+2

l −1

n
+

8

3

( l −k −1

n

)

=

(14

3
+

5

3
k
) l + r −1

l + r
+2

l −1

l + r
+

8

3

( l −k −1

l + r

)

.

Since l > 13
3 k +

11
3 r +

28
3 , we get ∆1l >

5
3 (k +5). Therefore by Lemma 15 we have H ≡ 0.

Then theorem follows from Lemmas 4, 5, 13 and 14. ���

Proof of Theorem 2. Using Lemma 16, theorem can be proved in the line of the proof of

Theorem 1. So we omit the details. ���
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