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MEROMORPHIC FUNCTIONS WHOSE CERTAIN DIFFERENTIAL
POLYNOMIAL SHARE A POLYNOMIAL

SUJOY MAJUMDER AND RAJIB MANDAL

Abstract. In this paper, we use the idea of normal family to investigate the unique-
ness problems of meromorphic functions when certain non-linear differential polyno-
mial sharing a non-zero polynomial with certain degree. We obtain some results which
will not only rectify the recent results of P. Sahoo and H. Karmakar [10] but also improve
and generalize some recent results of L. Liu [7], H. Y. Xu, T. B. Cao and S. Liu [13] and P.
Sahoo and H. Karmakar [10] in a large extent.

1. Introduction, Definitions and Results

In this paper by meromorphic functions we shall always mean meromorphic functions

in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite complex
number. We say that f and g share a CM, provided that f — a and g — a have the same zeros
with the same multiplicities. Similarly, we say that f and g share a IM, provided that f —a
and g — a have the same zeros ignoring multiplicities. Let k € NU {0} U {oo}. For a € C U {oo} we
denote by Ei(a; f) the set of all a-points of f, where an a-point of multiplicity m is counted
m times if m < k and k+ 1 times if m > k. If Ex(a; f) = Ex(a; ), we say that f, g share the
value a with weight k.

Let m € NU {oo} and a € C U {oco}. We denote by E,;(a; f) the set of all a-points of f with
multiplicities not exceeding m, where an a-point is counted according to its multiplicity. Also
we denote by Em) (a; f) the set of distinct a-points of f(z) with multiplicities not greater than
m. If Epy(a; ) = Epy(a; g), we say that a is a m-order pseudo common value of f and g. If for
some a € CU {00}, Eoo)(@; f) = Eoo)(@; 8)(Eoo) (@; ) = Eoo)(a@; 8)) e say that f, g share the value
a CM (IM).
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We adopt the standard notations of value distribution theory (see [5]). For a non-constant
meromorphic function f, we denote by T'(r, f) the Nevanlinna characteristic of f and by
S(r, f) any quantity satisfying S(r, f) = o{T'(r, f)} as r — oo possibly outside a set of finite linear
measure.

A meromorphic function a(z) is called a small function with respect to f, if T(r,a) =
S(r, f). We denote by T'(r) the maximum of T'(r, f) and T'(r, g). The notation S(r) denotes any
quantity satisfying S(r) = o(T(r)) as r — oo, outside of a possible exceptional set of finite
linear measure. Throughout this paper, we denote by p(f), p(f) and A(f) the lower order of
f, the order of f and the exponent of convergence of zeros of f respectively (see [5, 15]).

Let f be a transcendental meromorphic function in the complex plane such that p(f) =

p < oo. A complex number a is said to be a Borel exceptional value (see [15]) if

log™ N(r, a;
hmsupw<
r—o0 logr

For the sake of simplicity we also use the notations m* := y,m, where y;, =0if u =0, y,, = 1if
u#0.
In 1959, W. K. Hayman (see [5], Corollary of Theorem 9) proved the following theorem.

Theorem A. Let f be a transcendental meromorphic function and n € N\ {1,2}. Then f" f' =1

has infinitely many solutions.

Theorem A was extended by Chen [3] in the following manner.

Theorem B. Let f be a transcendental entire function and n, k € N with n = k+1. Then
(% —1 has infinitely many zeros.

In 2002, Fang [4] proved the following result.

Theorem C. Let f, g be two non-constant entire functions and let n, k e N with n > 2k +4. If
(f”)(k) and (g”)(k) share 1 CM, then either f(z) = c1e‘* and g(z) = coe”“?, wherec, c1, ¢ €C
satis]f'ying(—l)k(cl )" (nc)?k =1 or f=tg forteC suchthatt" =1.

In 2008, L. Liu [7] proved the following.

Theorem D. Let f, g be two non-constant meromorphic functions and let n, m, k € N and
A, e C such that ||+l £ 0. IFE; (L, (f* A f™ +u)®) = E;(1, (g (Ag™ + w)®) and one of the
following conditions holds:

() I=2andn>3m* +3k+8;

2 l=1andn>4m™* +5k+10;

3) I=0andn>6m*+9k +14.
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Then
(i) whenAp#0,ifm=2andd(oo; f) > ——
f=8
(i) when Au =0, if f,g # oo, then either f = tg, where t € C such that Mtmt =1 or flz2) =

—CZ

then f = g; ifm=1 and O(oc; ) > ==, then

n+m’ n+1’

c1e* and g(z) = coe” %, wherec, cy, ¢, € C such that
(DR (ere)™ ™ (n+ m*)*F =1 or (=DFp2(cre)™ ™ (n+ m*)*F =1.

Regarding Theorem D, following question arises.

Question 1. How two meromorphic functions f and g are related, if the condition
E (1, (f™(uf™+ M®y = E(1, (8" (ug"+ A)%)) in Theorem D is replaced with the condition
Ep(L, (f*(uf™+M))®) = En(1, (8" (g™ + 1)) 2

In 2012, Xu et al. [13] answer the above question by proving the following results which

also improve Theorem D in some sense.

TheoremE. Let f, g be two non-constant meromorphic functions and let n, m, k e N withn >
Br+Bm*+2 and A, peC suchthat|Al+|ul # 0. IFEy (L, (f " (wf™+AN®) = Ep (1, (8" (ug™+
MO and Ey (1, (F(uf™ + A)®) = By, (8" (ug™ + )W), where L € N\ (1,2}, then the con-
clusions of Theorem D still hold.

Theorem F. Let f, g be two non-constant meromorphic functions and let n, m, k € N with
n>3k+3m*+6 and A, u € C such that |A|+|ul # 0. IFE; (1, (F*(uf™+A)%) = E; (A, (g™ (ug™+
W) and Exy (1, (f*(uf™ + A)®) = Ex(1, (8" (ug™ + A)®), where | € N\ {1,2,3}, then the
conclusions of Theorem D still hold.

Observing Theorems E and F, Sahoo and Karmakar [10] asked the following question.

Question 2. What can be said about the relationship between two meromorphic functions f
and g, if (f”P(f))(k) and (g”P(g))(k) share a non-zero polynomial, where P(z) = Z?io aizi is
any non-zero polynomial, ay, ai,...,a, € C?

Let us define m** = m, if P(z) # ag; m** =0, if P(z) = ay.

In the direction of the above question, Sahoo and Karmakar [10] obtained the following

results.

Theorem G. Let f, g be two transcendental meromorphic ﬁmctions p be a non-zero polyno-
mial of degree q and n, k € N, m € NU{0} with n > max{3 B+l 3 m* + 2 k+2q}. Suppose that
either k, q are co-prime or k > q, when q = 2. Let El) (p, (f”P(f))(k)) = El) (p, (g”P(g))(k)) and
Ey(p, (f”P(f))(k)) = Ey(p, (g”P(g))(k)), where P(z) = alz is any non-zero polynomial
and l € N\{1,2}. Then the following conclusions hold.
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() IfP(2) = ?io aizi is not a monomial, then either f = tg, t € C such that t% =1, where
d=n+m,..n+m-i...,n), am—; #0 for somei =0,1,2,...,m or f and g satisfy the
algebraic equation R(f, g) =0, where R(f, g) is given by

R(wy, wo) = wi(@mwi* +...+ ayw; + ap) — wy (anwy" +...+ ay ws + ao).

(i) When P(2) = ay or P(z) = a,y2"™, then either f = tg, t € C such that t"*"™ =1 or f(2) =
b1e"?@ and g(z) = bye PP where Q is a polynomial without constant such that Q' = p;
b, by, by € C such that ai(nb)*(b1by)" = -1 or a%,((n+ m)b)? (b1 bp)"*™ = —1.

Theorem H. Let f, g be two transcendental meromorphic functions, p be a non-zero polyno-
mial of degree q and n, k € N, m e NU{0} with n > max{3k +3m** +6, k +2q}. Suppose that
either k, q are co-prime or k > q, when q = 2. Let E;y(p, (f"P(f)®) = E} (p, (g"P(g)F) and
Ea(p, (f"P()®) = Exy (p, (g"P(g)F), wherel € N\ 1{1,2,3}. Then the conclusions of Theorem
G still hold .

Remark 1. In the proof of Theorem 1 [10], one can easily point out a number of gaps.

Firstly the authors [10] declare that Lemma 10 [10] can be proved in the line of the proof
of Lemma 9 [21]. But this is not possible here. Actually in Lemma 9 [21], f, g share co IM.
But in Lemma 10 [10], authors did not consider the condition “ f, g share co IM”. Therefore
existence of Lemma 10 [10] is questionable here.

Secondly in the proof of Lemma 11 [10] there is a big gap. From the relation
(@ f™ ™) (amg"™™)' = p?
authors conclude that f = e* and g = eP. Again from the relation
(amfn+m)(k)(amgn+m)(k) = p2 (1.1)
authors conclude that
N(r,00;ap f"™) + N(1,0; an f™) = O(log r). (1.2)

The calculations are not true. A question arises: When zeros of f(g) are neutralized by the
poles of g(f) ? Actually the authors did not consider this case. As for example we consider
the case. Suppose k=4, m=1, g=1and n=7. Let 2y be a zero of f of multiplicity 2. One
can easily think that z, is a simple pole of g. It is clear that z, is a zero of (a, f"*"™® of
multiplicity 12 and a pole of (a,,g"""™)® of multiplicity 12. This shows that zeros of f(g)
can be neutralized by the poles of g(f). Also poles of f can be neutralized by the zeros of
(amg’”m)(k), but not the zeros of g. As a result from (1.1) we can not easily arrive at (1.2).

Therefore existence of Lemma 11 [10] is questionable here.
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Finally, since Lemmas 9 and 10 [10] play an important role in proving Theorems 1 and 2

[10], so existence of Theorem 1 [10] as well as Theorem 2 [10] are questionable here.

The above discussion is sufficient enough to make oneself inquisitive to investigate the
accurate form of Theorems G and H. In this paper we study Theorem 1 [10] as well as Theorem

2 [10] again in more general form with out help of Lemma 10 [10] as well as Lemma 11 [10] .

Also it is quite natural to ask the following questions.
Question 3. Can the lower bound of n be further reduced in Theorems G and H ?

Question 4. Can one remove the condition “Suppose that either k, g are co-prime or k > g,
when g =2” in Theorems G and H ?

Question 5. Can one remove the condition f # co, g # oo keeping all the conclusions intact
when Ay =0in Theorems D, E, F 2

2. Main results

In this paper, we always use P(z) denoting an arbitrary polynomial of degree n as follows:
n . S
P2)=) aiz' = a,[[(z= )", @1
i=0 i=1

where ay, ay,...,a,(# 0) € C and ¢ € C(j=1,2,...,5) aredistinct and [, l5,...,ls, s, n, ke N
such that Zle l; = n.Alsowe let [ = max{ly, l, ..., s} and e be the zero of P(z) of multiplicity /.
From (2.1) we have P(z) = (z— e)! P, (z), where P, (z) is a polynomial in degree n— [ = m(= 0),

say. We also use P;(z;) as an arbitrary non-zero polynomial defined by

s m )
Piz)=a,[[(a+e-c) =Y bizl, 2.2)
i=1 i=0
1;i#1

where z; = z— e and deg(P;(z1)) = m = 0. Obviously P(z) = Z{Pl (z1).

Taking the possible answers of the above questions into backdrop we obtain the following
results which are not only rectify Theorems G, H, but also improve and generalize Theorems
D-H.

Theorem 1. Let f, g be two transcendental meromorphic functions and p be a non-zero poly-
nomial with deg(p) < 1 -1, where m e NU {0}, k, ] € N such that | > ?k + %m + 23—8. Suppose
Ep(p, P(fNP) = Ep(p, P(g)N®) and Exy(p, P(f)P) = Eny (p, (P(g) V), where P(z) is defined
asin(2.1) andleN\{1,2}. Now

(I) when P1(z,) is not a monomial, then one of the following three cases holds
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(I1) f(z)—e=t(g(z)—e) fort € C such that t% =1, where
do=GCD(+m,....l+m—1i,...,1), by,—; #0 for somei =0,1,...,m;

(I2) fi=f—eandg = g— e satisfy the algebraic equation R(f1, g1) =0, where
R(w1,w7) = w{(bmw{” + Dby 0™ .+ by) —wé(bmwg’l + bm_lwg"‘l +...+ by);

1
13) (PP = p?;

(II) when Py(zy) is a monomial, say P(zy) = biz{ #0, wherei€{0,1,...,m}, then one of the

following two cases holds

(1) f—e=t(g—e) forteC suchthatt'* =1,

(I12) if p € C, then f(2) = 16?9 + e and g(z) = coe % + e, where Q(z) = [ p()dt,
¢, ¢1, ¢z € C such that b?(clcz)l”((l + i)c)2 =—1; if p(z) = b e C\ {0}, then f(z) =
c3e* +e and g(z) = cye”“* + e, where c, c3, ¢4 € C such that (—l)kb?(6364)l+i((l +
i)c)** = b,

In particular when p(f) > 2 and p € C\ {0}, then (I3) does not hold.

Theorem 2. Let f, g be two transcendental meromorphic functions and p be a non-zero poly-
nomial with deg(p) < 1 -1, where m e NU {0}, k, | € N such that ]l > 3k+3m+6. Suppose
Ep(p, P(MN®) = Ep(p, (P(g)P) and Ex (p, (P(f)P) = Ex (p, (P(g)), where P(z) is defined
asin (2.1) and l e N\{1,2,3}. Then the conclusion of Theorem 1 holds.

With the help of Theorem 1.5 [8] and Theorem 1 we get the following corollary immedi-
ately.

Corollary 1. Let f, g be two transcendental meromorphic functions and p be a non-zero poly-
nomial with deg(p) < [ -1, where m e NU {0}, k, | € N such that | > 3k + m + 8. Suppose
(P(f))(k) —p and (P(g))(k) — p share (0,2). Then the conclusion of Theorem 1 holds.

We now explain some definitions and notations which are used in the paper.

Definition 1 ([6]). For a € CuU{oo} we denote by N(r, a; f |=1) the counting function of simple
a points of f. For m € N we denote by N(r,a; f |< m) (N(r,a; f |= m)) the counting func-
tion of those a points of f whose multiplicities are not greater (less) than m where each a
point is counted according to its multiplicity. N(r,a; f |< m) (N(r,a; f |= m)) are defined
similarly, where in counting the a-points of f we ignore the multiplicities. Also N(r,a; f |<
m), N(r,a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are defined analogously.

Definition 2 ([17]). For a€ CU {oo} and p e Nwe let N, (r, a; f) = Zleﬁ(r, a; fl=1).
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Definition 3. Let a,b € C U{oo} and p € N. We denote by N(r, aflzplg=>b (N(r, afl=z
p | g # b)) the reduced counting function of those a-points of f with multiplicities = p, which

are the b-points (not the b-points) of g.

Definition 4 ([5]). Let a € CuU {oo} and k € N. We define

O(a; f) = 1 - limsup % and 84(a; f) = 1 limsup NkT((rr,c;)f)

3. Lemmas

Let i be a meromorphic function in C. Then # is called a normal function if there exists

a positive real number M such that h*(z) < M, for all z € C, where

| (2)]

# _
" = P

denotes the spherical derivative of 4. Let & be a family of meromorphic functions in a do-
main D c C. We say that % is normal in D if every sequence {f,},, <% contains a subsequence
which converges spherically and uniformly on the compact subsets of D (see [11]).

Let F and G be two non-constant meromorphic functions defined in C. We denote by H

the function as follows:

F// 2F/ )_(G// ZG/ )

= _ o 3.1
(F’ F-1) ¢ G-1 G0

Lemmall ([14]). Let f be a non-constant meromorphic function and let a,(z)(#0), ay—1(2),...,
ay(z) be meromorphic functions such that T(r, a;(z)) = S(r, f) fori =0,1,2,...,n. Then

T(r,anf"+ an f" ' +...+ a1 f +ag) =nT(r, f) + S, f).
Lemma 2 ([20]). Let f be a non-constant meromorphic function and p, k e N. Then

Ny (10 f®) = T (1, £O) = T, ) + Ny (1,0, ) + S, ),

Ny (1,0 £ ) = kNr,00 )+ Ny (1,0 ) + (7, .

Lemma 3 ([12]). Let f, g be two non-constant meromorphic functions and k, n € N such that
n>2k+1. If(fMHP = (gMW, then f = tg for t € C such that t"* = 1.

Lemma 4. Let f, g be two non-constant meromorphic functions. Let [, k € N and m € NuU {0}
such thatl > m+ 3k. Suppose (P(f))(k) = (P(g))(k), where P(z) be defined as in (2.1). Now

(I) when P1(z,) is not a monomial, then one of the following two cases holds:
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(li) f(z)—e=t(g(z)—e) forteC such that t% =1, where
do=GCD(l+m,...,.l+m—1i,....,1), by,_; #0 for some i =0,1,...,m;
(Lii) f1=f—eandg, =g-— e satisfy the equation R(f1,g1) =0, where

R(wi,w>) = w{(bmwi" + bm_lw{”_l +...+ by —wé(bmwén + bm_lwg”_l +...+ by).

(II) when P)(z1) is a monomial, say P (z;) = biz{ 20, wherei€{0,1,...,m}, then
f—e=t(g—e) forteC such that t'*' =1.

Proof. We have (P(f))® = (P(g))®. Integrating we get (P(f)*V = (P(g))*~V + ¢;_;. If pos-
sible suppose ci_1 # 0. Now in view of Lemma 2 for p = 1 and using the second fundamental

theorem we get

nT(rf)=T(P(f)+0Q1)

< T(r, P(FN* D) =N, 0; PN V) + Ni.(r, 0 P(f)) + S(r, f)

< N1, 0; (P(MN D)+ N(r,00; ) + N(r, c—1; (PP F) = N (r,0; (P(F) %)
+Ni(r,0; P(f)) + S(r, f)

< N(r,00; f) + N(1,0; (P(g) V) + Ni.(r,0; P() + S(, f)

< N(r,00; f) + (k= 1)N(r,00; g) + Ni.(,0; P(g)) + Ny (r,0; P()) + S(r, f)

< N(r,00; f) + (k—=1)N(r,00;8) + kN(r,e;8) + N(1,0; P(g) | g # €) + kN(r, ¢; f)
+N(,0; P(f) | f #e)+S(r, )

sn=-Il+k+)TrH+n-1+2k-1)T(r,g)+S(r, /)+S(r, 8

<(@2n-21+3k) T(r)+S(r).

Similarlywe getn T'(r, g) < (2n—214+3k) T(r)+S(r). Combining these we get (2l—-n—-3k) T(r) <
S(r), which is a contradiction since [ > m+3k. Therefore c¢;_; = 0. So (P(f))(k_l) = (P(g))(k_l).
Proceeding in this way we get (P(f))’ = (P(g))'. Integrating we get P(f) = P(g) + ¢. If possible
let ¢y # 0. Using the second fundamental theorem we get

nT(r,f)=T(r,P(f)+0Q1)
< N(r,0; P(f)) + N(r,00; P(f)) + N(r, co; P(f))
< N(r,0; P(f)) + N(r,00; f) + N(r,0; P(g))
<sm-1+2) T(r,f)+(n—1+1) T(r,g) + S(r, f)
<@2n-21+3) T(r)+S(r).

Similarly we get n T'(r, g) < (2n—21+3) T(r)+ S(r). Combining these we get (2] —n—-3) T'(r) <
S(r), which is a contradiction since [ > m + 3. Therefore ¢y = 0 and so P(f) = P(g), i.e.,

FL B f + by f 4 4 Do) = gL (b g + b1+ + by), (3.2)
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where f; = f —e and g; = g — e. Suppose P;(z;) is not a monomial.

Leth= g. If h is a constant, then substituting f; = g1 h into (3.2) we deduce that
l+m y,l+m b+m-1,731+m-1 Lol _
Dng (W™ = 1) + by g1 (h 1) +...+cglh!-1)=

which implies h% = 1, where dy =GCD(l+m,...,l+m-1i,...,1), by,_; # 0 for some i =
0,1,...,m. Thus f; = tgy, i.e.,, f(z) —e = t(g(z) —e) for t € C such that t% =1, where dy =
GCD(l+m,....l+m—1i,...,1), by,—; #0forsome i = 0,1,..., m. If h is not a constant, then we
know by (3.2) that f; and g; satisfying the equation R(f1, g1) = 0, where R(w,w2) = wi(bmw{”+
b1 4+ bg) — 0l (B0 + b8 + L+ by).

Suppose P;(z;) is a monomial, say P;(z;) = b,-z{ # 0, where i € {0,1,...,m}. Then by
Lemma 3 we have f — e = t(g — e) for ¢ € C such that t/*? = 1. This proves the proof. O

Lemma 5. Let f, g be two non-constant meromorphic functions and let F = (P(f))(k) la, G=
(P(g) X/ a, where P(z) be defined as in (2.1), a be a small function with respect to f, g and
meNuU{0}, k, l e Nsuch thatl > m+3k+3. Suppose H=0. Then either(P(f))(k) (P(g))(k) =a?,
where (P(f))® — a and (P(g))® — a share0 CM or (P(f)® = (P(g))®).

Proof. We have H = 0. By integration, we get =d-—--,whered € C\ {0}, i.e.,

(G 1Zr

where F; = (P( f))(k) and G; = (P(g))(k) This shows that 2=% and =% share 0 CM and so
F, — a and G — a share 0 CM. Finally, by integration we get

1 _bG+a-b
F-1~ G-1

) (3.3)

where a(# 0), b € C. We now consider the following cases.

Casel.letb#0and a# b. If b= -1, from (3.3) we have F = ey Therefore N(r,a+1;G) =
N(r,00; F) = N(r,00; f)+S(r, f). So in view of Lemma 2 and the second fundamental theorem

we get

nT(r,g) = T(r,P(f))+0(Q)
< T(r,G) + N1 (1,0; P(8)) - N(1,0; G)
< N(r,00;G) + N(1,0;G) + N(r,a+1;G) + Ni41(r,0; P(g)) = N(1,0;G) + S(1, &)
< N(r,00;8) + (k+1)N(r,e;g) + N(r,0; P(g) | g # e) + N(r,00; f) + S(r, &)
s T H+n-1+k+2)T(r,g)+Sr, )+S(r,9).
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Suppose that there exists a set I with infinite measure such that T'(r, f) < T(r,g) for r € I. So
for r € I'we have (I - k—3) T(r,g) < S(r, g), which is a contradiction since [ > k + 3.

If b # -1, from (3.3) we obtain that F — (1+ 3) = b(—) So N(r,2:4;G) = N(r,00; F) =
b

N(r,00; )+ S(r, f). Using Lemma 2 and the same argument as used in the case when b = -1
we can get a contradiction.

Case2. Letb#0and a=b. If b=—1, then from (3.3) we have FG = a?, i.e., (P(f))F (P(g)* =
a?, where (P(f))* — a and (P(g))k —a share 0 CM.
If b # —1, from (3.3) we have & F = m Therefore N(r, 1er,G) N(r,0; F). So in view of
Lemma 2 and the second fundamental theorem we get
nT(r,g) < T(r,G)+ Ny1(r,0;P(8)) — N(1,0;G) + S(r, 8)
1
< N(r 00; G)+N(r 0; G)+N(r b 3 G) + Niy1 (1,05 P(g))—N(r 0;,G)+S(r,8)
< N(r,00; §) + N11(r,0; P(8)) + N(1,0; F) + S(r, )
< N(r,00; §) + Nies1(1,0; P(8)) + Nics1 (1, 0; P(f)) + kN (r,00; f) + S(r, f) + S(1, 8)
sn=-Il+k+2)T(r,e)+(n—=1+2k+1)T(r, /)+S(r, /) +S(r,8).

So for r € Iwe have (2l-n—3k-3) T(r,g) < S(r, g), which is a contradiction since [ > m+3k+3.

Case 3. Let b = 0. From (3.3) we obtain F = % If a # 1 then we obtain N(r,1 - a;G) =
N(r,0; F). We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and so F = G,
ie, (P(f)HP = (P(g)®. This completes the proof. O

Lemma6 ([15], Theorem 1.24). Suppose that f is a non-constant meromorphic function in the
complex plane and k e N. Then

N(r,0; f®) < N(,0; f) + kN (r,00; f) + Oog T(r, f) +logr),
as r — oo, outside of a possible exceptional set of finite linear measure.

Lemma 7 ([5], Lemma 3.5). Suppose that F is meromorphic in a domain D and set f = =
Then forneN,

F(”)_fn n(n 1)

——— "2 anf" T+ bafH? 4 Pues (),

where a,, = %n(n— 1)(n-2),b, = %n(n— 1)(n—2)(n—-3) and P,_3(f) is a differential polynomial
with constant coefficients, which vanishes identically for n < 3 and has degree n—3 whenn > 3.

Lemma 8 ([2], Lemma 1). Let f be a meromorphic function on C. If f has bounded spherical
derivative on C, then p(f) < 2. If in addition f is entire, then p(f) < 1.
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Lemma 9 ([15], Theorem 2.11). Let f be a transcendental meromorphic function in the com-
plex plane such that p(f) > 0. If f has two distinct Borel exceptional values in the extended
complex plane, then u(f) = p(f) and p(f) e NU {oco}.

Lemma 10 ([18]). Let F be a family of meromorphic functions in the unit disc A such that all
zeros of functions in F have multiplicity greater than or equal to | and all poles of functions
in F have multiplicity greater than or equal to j and a be a real number satisfying—l < a < j.
Then F is not normal in any neighborhood of zy € A, if and only if there exist
(i) pointsz, €A, z;, — 2y,

(ii) positive numbers p,, p, — 0" and

(iii) functions f,€F,
such that p,* fu(zn + pnQ) — g({) spherically locally uniformly inC, where g is a non-constant
meromorphic function. The function g may be taken to satisfy the normalisation g ({) <
g"(0)=1( Q).

Lemma 11. Let f, g be two transcendental entire functions and p be a non-zero polynomial
with deg(p) < n— 1, where n, k € N such that n > max{2k, k + 2}. Suppose (f)®(g"® = p?,
where (f)® — p and (g™)® — p share0 CM. Now (i) if p € C, then f(z) = ¢,e“?? and g(z) =
ce” Q@ where Q(z) = foz p(tdt,c, cy, c2 € C such that (nc)?(c1co)"™ = —1; (ii) ifp(z)=beC\
{0}, then f(2) = c3e?* and g(z) = c4e~ %%, wherecs, ¢4, d € C such that (—1)*(c3c4)" (nd)?* = b2.

Proof. The proof of lemma follows from the proof of Lemma 11 [1]. Oa

Lemma 12. Let f, g be two transcendental meromorphic functions and p be a non-zero poly-
nomial with deg(p) < n—1, where n, k € N such that n > max{2k, k +2}. Suppose (f")* (g™®
= p?, where (f"® — p and (g")® — p share 0 CM. Now (i) if p ¢ C, then f(z) = ¢,e‘?? and
g(2) = ;e where Q(2) = [ p(Ddt, c, c1, c2 € C such that (nc)?(c1c2)" = —1; (ii) if p(2) =
b e C\{0}, then f(z) = cze%? and g(z) = cae” % wherecs, ¢4, d € C such that (—1)*(c5cq) ™ (nd)?*
=D

Proof. Suppose

We consider the following cases.

Case 1. Suppose o is a Picard exceptional value of both f and g. Then f and g are transcen-
dental entire functions. Remaining part follows from Lemma 11.

Case 2. Suppose oo is not a Picard exceptional value of either f or g, or both of f and g.

First we suppose oo is a Picard exceptional value of g. Let zy be a zero of f with multiplic-
ity qo. Clearly z is a zero of (f™)® with multiplicity nqo — k. Now from (3.4) we observe that
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zo must be a zero of p with multiplicity nqo— k. Since deg(p) < n—1 and n > 2k, from (3.4) we
conclude that either f has no zeros or f has finitely many zeros. Therefore in either cases we
have N(r,0; f) = O(logr) as r — oo.

Next we suppose oo is not a Picard exceptional value of g. Let z; (p(z1) # 0) be a zero of
f with multiplicity g;. Clearly z; is a zero of (f™)® with multiplicity ng; — k. From (3.4) we
observe that z; must be a pole of g with multiplicity r;, say. Note that z; is a pole of (g")©) with
multiplicity nry + k. Therefore ng; — k = nry + k and so g; > r1. Now nq; — k = nry + k implies
that n(q; —r1) = 2k. Since n > 2k, we arrive at a contradiction. This shows that z; is a zero of p
and so we have N(r,0; f) = O(logr) as r — co. Similarly we can prove that N(r,0; g) = O(logr)
as r — oo.

Let H=f", H=g" F = %I and G = %. Let & = {F,} and ¢4 = {G,}, where F,(z) =
Flz+w) = 229 414 G, (2) = Gz +w) = H(Z“”), z € C. Clearly & and ¢ are two families

p(z+w) p(z+w)
of meromorphic functions defined on C. We now consider following two sub-cases.

Sub-case 2.1. Suppose one of the families & and ¥, say &, is normal on C. Then by Marty’s
theorem F*(w) = Ff) (0) = M for some M > 0 and for all w € C. Hence by Lemma 8 we have
p(F) < 2. Now from (3.4) we have

o(f) = P(%) = P(fn) = p((f")(k)) - P((g")(k)) - p(g") = p(g?) =p(g) =2 (3.5)

From (3.4), (3.5) and Lemma 6 we have
2

(n+k) N(r,00; f) < N(r,00; (fH)*®) = N(r’oo; (g’;)(k))

< N(1,0;(gM™®) + 0(logr)
< N(r,0;8") + k N(r,00;g™) + O(logr) < k N(r,00; g) + O(logr),

as r — oo. Similarly (n + k) N(r,00;g) < k N(r,00; f) + O(logr), as r — co. Therefore we have
N(r,00; f) + N(r,00;g) < O(logr), as r — oco. This shows that f and g have at most finitely
many poles. On the other hand f and g have at most finitely many zeros. Let

f:%e“ and g:%eﬁ, (3.6)
where P, P>, Q1 and Q- are non-zero polynomials and a and  are non-constant polynomi-
als. Since every zeros of f(z) are the poles of g(z) as well as the zeros of p(z), it follows that
deg(P;) < deg(Q-). Similarly deg(P») < deg(Qy). Let Ry = % and R, = %. Since f and g are
transcendental meromorphic functions, from (3.6) we have p(f) > 0 and p(g) > 0. We observe
from (3.5) and Lemma 9 that u(f) = p(f) = 1 or u(f) = p(f) = 2 and so deg(a) < 2. Similarly

we have deg(f) < 2. Now from (3.6) and Lemma 7 we have

(fMHW = ((a’+%)k+P;_l(a’+§—i))ARfe"“, 3.7)
1 1
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!

= (- i+ e

where A, Be C\ {0} and P, _ (a’ )( (,B’ )) is a differential polynomial of degree at

most k—1ina'+ R—/(,B’ R/ ) Now from (3.4), (3.7) and (3.8)

! ! ! /

AB((af+R—1)’“+P,:_1(a'+§—1))((ﬁ'+2—2)’“+Pz-l(ﬁ'+§—i))e"“*m=$'

ie.,
! !

e e [ R S e R AU

where P*, Q* are non-constant polynomials and p. is a non-zero polynomial. Since P*, Q,

a and f are non-constant polynomials, from (3.9) we have a + 8 = d;, where d; € C. Therefore
a’ + B = 0. Now from (3.9) we have

/ !

AB((a’ + %)k +P;§_1(a’ + %))((— a + %)k +P;§_1(— o+ %))e”dl = (P*Q")"p%. (3.10)

Letting |z| — oo, we see that 2k deg(a’) = ndeg(P*Q*) +2deg(p.). Since deg(a’) <1 and n >

2k, we arrive at a contradiction.

Sub-case 2.2. Suppose that one of the families & and ¥, say % is not normal on C. Then
there exists at least one zy € A such that & is not normal z;, we assume that zy = 0. Now by
Marty’s theorem there exists a sequence of meromorphic functions {F(z + w;)} < &, where
z€{z:|z| <1} and {w;} = C is some sequence of complex numbers such that F#* (wj) — oo, as
lwj| — oco. Note that p has only finitely many zeros. So there exists a r > 0 such that p(z) #0

in D ={z:|z| = r}. Since p(z) is a polynomial, for all z € C satisfying |z| = r, we have

p(2) '(2)

M
— <1, p(2)#0. (3.11)
p(Z) |z|

Also since w; — oo as j — oo, without loss of generality we may assume that [w;| > r + 1 for
all j. Let D; ={z:|z| <1} and

H(wj+z)

Fwi+z)= ————.
Witz p(wj+z)

Since |wj + z| = |w| - |z|, it follows that w; + z € D for all z € D;. Also since p(z) # 0in D, it
follows that p(w; + z) # 0 in Dy for all j. Then by Lemma 10 there exist

(i) points zj, Izjl <1,

(ii) positive numbers p phPj— ot,

(iii) a subsequence {F(w; +z;+ p ()} of {F(w; + z)}
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such that
hjQ)=p; F@;+2z;+p;0) — h(),
ie.,
kH(wj+zj +ij)
p(wj+zj +ij)

hj(€)=p; — h(0) (3.12)

spherically locally uniformly in C, where /() is some non-constant meromorphic function
such that h*({) < h*(0) = 1. Now from Lemma 8 we see that p(h) < 2. In the proof of Zalcman’s
lemma (see [9, 19] ) we see that

1 # #
PjZij) and F"(bj) = F"(wj), (3.13)

where b; = w; + zj. Note that

p’(wj+zj+pj{)
pwj+zj+p;l)

0, (3.14)

as j — oo. By Hurwitz’s theorem we can see that the multiplicity of every zero and pole of
h(() is a multiple of n. Therefore we can deduce that i = h”, where h is some non-constant
meromorphic function in the complex plane. We now prove that

H(k)(wj+zj+pj{)

p(wj+zj+ij)

(hj ™ = — h® Q). (3.15)

Note that from (3.12)

e H @42 4050
I plwj+zi+pjl)

e P@j+2i+050)
I prwj+zi+pi))
Pwj+zi+p))
/ pwj+zj+p;l)

=R +p Hwj+zj+p;0)

=) +p hj(). (3.16)

—kr1 H@jtzitp;)

Now from (3.12), (3.14) and (3.16) we observe that P; @, 2,7p;0)

— h'({). Suppose

I
Lt Y@ +2i4p,0)

—hP©.
O st 400 ©

Let
H(l)(wj+zj+pj{)
pwj+zj+p;i()

Gy =p;*"!

Then G;({) — h'Y({). Note that

—k+1+1 H(Hl)(wf +Zj +Pj()
J p(wj+zj+ij)

—k+1+1 pl(w]' +zj+p;0)

. HD (w4 254 0
/ prwj+zj+pd) j*2i+p0

=GO +p
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Pwj+zi+p))
Tpwj+zj+p;0)

=G +p G;(0. 3.17)

—kr1+1 H" V@) +2+p50)

So from (3.14) and (3.17) we see that P; P 12,40;0

— G0, ie,

—k+1+1 HUH)(‘”] t2Znt Pj()

I pwj+zj+p;l)

_ h;l-{-l) (().

Then by mathematical induction we get desired result (3.15). Let

Gy = L2 +pi0. (3.18)
/ pwj+zj+p;l)

From (3.4) we have

H(k)(wj+Zj+pj() I:I(k)(wj+Zj+pj() _1
pwj+zi+p;l) plwj+zj+p;l)

and so from (3.15) and (3.18) we get
(hj @)W ;0 ® =1, (3.19)
From (3.15), (3.19) and formula of higher derivatives we can deduce that h i) — hi@©),ie.,

H(wj+zj+pj()

— ), 3.20
@z M@ (3.20)

spherically locally uniformly in C, where fll ({) is some non-constant meromorphic function
in the complex plane. By Hurwitz’s theorem we can see that the multiplicity of every zero and
pole of Q) isa multiple of n. Therefore we can deduce that h, = h™, where h is some non-
constant meromorphic function in the complex plane. Therefore (3.20) can be rewritten as
h i) — (), spherically locally uniformly in C and so

(hj ™ — ("™ (3.21)
spherically locally uniformly in C. From (3.15), (3.19) and (3.21) we get
RPN =1. (3.22)
Since p(h) <2, from (3.22) we see that
p(h) = p(h") = p(A"®) = p(A"¥) = p(h™) = p() <2. (3.23)

Let {, be a zero of h with multiplicity qo. Note that { is a zero of (k™M™ with multiplicity
nqo— k. From (3.22) we see that {y must be a pole of h with multiplicity ry, say. Note that
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(o is a pole of (™% with multiplicity nry + k. Therefore nqgy— k = nryo+ k and so gy > ry.
Now nqo — k = nro + k implies that n(qo — ro) = 2k. Since n > 2k, we arrive at a contradiction.

Therefore h # 0. Similarly we can prove that h #0. From (3.22), (3.23) and Lemma 6 we have

(n+ k) N(r,00 ) < N(r,00; (2")®) = N(r,00; #)
(hm®

< N(r,0; (R"H®) + O(log r)
< N(r,0; i’ + k N(r,00; ") + O(log 1) < k N(r,00; ) + O(log r),

as r — oo. Similarly (n + k) N(r,00; fz) < k N(r,00; h) + O(logr), as r — oco. Therefore we have
N(r,00; 1) + N(r,00; ) < O(logr), as r — oo. This shows that & and & have at most finitely
many poles. Let

h= Leo‘2 and i1 = ieﬁz, (3.24)

Ps Qs

where P3, Q3 are non-zero polynomials and a», f, are non-constant polynomials. Since h
and h are transcendental meromorphic functions, from (3.24) we have p(h) > 0 and p (/) > 0.
We observe from (3.23) and Lemma 9 that (k) = p(h) = 1 or u(h) = p(h) = 2 and so deg(h) < 2.
Similarly we have deg(/) < 2. Next in the same manner as in Sub-case 2.1, we get 2k deg(ay) =
ndeg(P3Qs3). Since deg(a’z) <1 and n > 2k, we can deduce that P3, Q3 € C. This shows that co
is a Picard exceptional value of both 2 and . Combining this with Theorem 1 in Fang [4] and
the assumption n > 2k, we get

h(z) = ¢1e°% and h(z) = &e” (3.25)

where ¢, ¢, & € C such that (~1)¥(¢;&)"(nc)?* = 1. Since h = h", from (3.12) and (3.25) we
have
h;({) ) .F/(w]' +Zj +p]{) . h) _
hiQ) " Fwj+zj+pi()  hQ)

nc, (3.26)

spherically locally uniformly in C. From (3.13) and (3.26) we get

'F’(wj+zj) | _ 1+|F(wj+z)P? IF'(wj+z)l  1+|F(;+z) B h’(0)|

Pj ; = =nlcl,
F(wj+zj) |F (wj+zj)| IF(a)j+zj)| IF(a)j+zj)| h(0)
which implies that
lim F(w; + zj) #0,00. (3.27)
j—oo

From (3.12) and (3.27) we see that

hj(0) = p7*F(w;+z)) — 0. (3.28)
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Again from (3.12) and (3.25) we have
hj(0) — h(0) = ¢y (3.29)
Now from (3.28) and (3.29) we arrive at a contradiction. This completes the proof. Oa

From Lemma 12 we have the following lemma.

Lemma 13. Let f, g be two transcendental meromorphic functions and p be a non-zero poly-
nomial with deg(p) < n—1, where n, k € N with n > max{2k, k+2}. Let (f —a)»™® - p, (g -
a)y™® —p share0 CM and ((f—a)”)(k)((g—a)”)(k) = pz. Now () ifp €C, then f(z) = c1eQ@ 1+ q
and g(z) = coe” %@ + a, where Q(z) = [y p(t)dt, c, c1, ¢ € C such that (nc)?(cic2)" = —1; (ii)
if p(z) = b e C\{0}, then f(z) = cse® + a and g(z) = caie” % + a, whered, cs, ¢4 € C such that
(=¥ (esca) " (nd)** = b2,

Lemma 14. Let f, g be two transcendental meromorphic functions and let m, n, k € N such
that n>2k. Let P(z) = 1" | a;z' be a non-zero polynomial such that P(z) is not a monomial.
If(f”P(f))(k)(g”P(g))(k) =1, then f is of order at most 2.

Proof. We have
(PP (g"Pgn™ =1. (3.30)

Without loss of generality we may assume that a,,, ap # 0. Let & = {f,,} and ¢4 = {g,,}, where
fw(2) = f(z+w) and g, (z) = g(z+w), z € C. Clearly & and ¥ are two families of meromorphic

functions defined on C. We now consider following two sub-cases.

Sub-case 2.1. Suppose one of the families & and ¥, say &, is normal on C. Then by Marty’s
theorem f#(w) = fu’f(O) < M for some M > 0 and for all w € C. By Lemma 8, p(f) <2.

Sub-case 2.2. Suppose one of the families & and ¢, say % is not normal on C. Then there
exists at least one zj € A such that & is not normal zy, we assume that zo = 0. Now by Marty’s
theorem there exists a sequence of meromorphic functions {f(z+w;)} ¢ %, where z€ {z : |z| <
1} and {w;} = C is some sequence of complex numbers such that f# (wj) — oo, as |wj| — oo.
Then by Lemma 10 there exist
(i) pointszj, |zjl<]1,
(ii) positive numbers p;, p; — 07,
(iii) a subsequence {f(w;+zj+p;{) = fi(zj+p;()} of {f (w; + z)}

such that

_k
hj@=p;" fj(zj+p;O) = h(©) (3.31)
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spherically locally uniformly in C, where k({) is some non-constant meromorphic function
such that #*({) < h*(0) = 1. Now from Lemma 8 we see that p(h) < 2. In the proof of Zalcman’s
lemma (see [9, 19] ) we see that

and f*(bj) = f*(w)), (3.32)

1
pPj= f#(bj)

where b; = w; + zj. Now (3.31) yields

km k (k)
(amp; RO+t @rp! WO + aoh Q)

(k)
= (amfj”+m(zj +pi0)+...+ a1]°j"+1(zj +p;0)+ aofj"(zj + pj()) — ap(h"()®, (3.33)
- _k
spherically locally uniformly in C. Next we suppose h;({) = P; "gj(zj +p (). Therefore

m k. . (k)
(ampj" h]’.’+m(C)+...+a1pJT’ h;’“(()-i-doh;l(())

— ( n+m n+l1

(k)
amg; " (Zj+pjl)+...+arg; (zj+ij)+aog]’-’(zj+ij)) : (3.34)

Now from (3.30), (3.33) and (3.34) we have
km (k) km ~ (k)
(ampj” RO+ aoh;?(c)) (ampj" R+t aoh;‘({)) =1.  (3.35)
Letting j — oo, from (3.33), (3.35) and the formula of higher derivatives we can deduce that

km 7 ~ A
amp ' h;’*m(() +.o+ aoh;?(() — aph1 ), (3.36)

spherically locally uniformly in C, where h1(¢) is some non-constant meromorphic function
in the complex plane. Now from (3.33), (3.35) and (3.36) we observe that

a2 (K™ ()™ =1. (3.37)

By Hurwitz’s theorem we can see that the multiplicity of every zero and pole of h1 () is a mul-
tiple of n. Therefore we can deduce that hy = h", where I is some non-constant meromorphic
function in the complex plane. Therefore (3.36) can be rewritten as
km . .
ampj" I’Z;H—m(() +...+ (/l()h;l(() — aoh”(C),
km . -
spherically locally uniformly in C and so (ampj" h;”m((f) +...+ aoh’.l(())(k) — ag(h™(()®
spherically locally uniformly in C. From (3.37) we see that aZ(h"(()® (h"(()® = 1. Now
by applying Sub-case 2.2 of Lemma 12, we arrive at a contradiction.

This completes the proof. O
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Lemma 15. Let f and g be two transcendental meromorphic functions such that
Ep(p; ()T = Ey(p; (P(g)*) and Eyy(p; (P(fNHW) = Eyy(p; (P()X), wherel € N\ {1,2},
P(z) be defined as in (2.1) and p(z)(# 0) is a polynomial. If

8 2
Mur = (5 +5K) ©(0, P(f) + (k+2) ©(co, P(g)) + 00, P()) + ©(0, P(g))
5 5
+30k+1(0, P(f) +81c1(0, P(8)) > 2 (k +5), (3.38)
then H=0.

Proof. Proof of lemma follows from Lemma 8 [10]. Oa

Lemma 16. Let f and g be two transcendental meromorphic functions such that
Ep(p; (P(MNE) = E)y(p; (P(8)®) and Ez (p; (P(f)®) = By (p; (P(g)F), where 1 e N\{1,2,3},
P(z) be defined as in (2.1) and p(z)(# 0) is a polynomial. If

1
Bo1 = (5k+2) [©(c0, /) + ©(00, 8)] +©10, /) +0(0,8) + 5541 (0, /) + 6141(0,8)
> (k+7), (339

then H = 0.
Proof. Proof of lemma follows from Lemma 9 [10]. Oa

4. Proof of the Theorem

Proof of Theorem 1. Let F = P(f) and G = P(g). Then we see that El)(p;F(k)) = El)(p; Gy
and Eyy (p; F®) = Eyy(p; G®), where I € N\ {1,2}. Note that

O(c0; P(f)) = l—limsup%jff(g))
=1 llfnjgop nTw f) >1 llfnjip nTw, f) = T T (4.1)
8ks1(0; P(f) = 1_1imsup%?é;()f>)
Zh}zlNkH(r’O;(f_Clj)lj)"‘Nk+1(r,0; (f —cph
T Lj
>1 llfnjgop nT(r’f)
2 1 - limsup &~ DTGN + K+ DTG [+ S0,)
r—o00 nT(I‘,f)
s+k I-k-1
= - ' 4.2)

n n
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OO;P(f) =1 —ﬁmsul’%

TS N0 (f =)+ N0 (f —ep)h)

J

> 1-limsup

r—00 nT(r, f)
> 1-limsup (s-DTN+ TN +S0 /) >1-2> l_—l 4.3)
r—o0 nT(r, f) n n
Similarly we have
n-1 l—k- -
O(oo; P(g)) = T’ 0x+1(0; P(g) = T and O(0;P(g) = 7 (4.4)

Now in view (3.38) and (4.1)-(4.4) we obtain

i (530 e S S ()
:(E+§k)l+r—1 I-1 S(I—k—l).

+ —
l+r l+r 3 l+r

11

Since [ > 13—3k+ ST+ 28 we get Ay > g(k+5). Therefore by Lemma 15 we have H = 0.

Then theorem follows from Lemmas 4, 5, 13 and 14. Oa

Proof of Theorem 2. Using Lemma 16, theorem can be proved in the line of the proof of

Theorem 1. So we omit the details. O

(1]

(2]

N3 0=

=

(8]

(91

(10]

(11]
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