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A NOTE ON TAUBERIAN THEOREMS FOR REGULARLY

GENERATED SEQUENCES

İBRAHİM C. ANAK AND ÜMİT TOTUR

Abstract. We prove some Tauberian theorems which generalize results in [5, Theorems 1 and 2] and [4, Theorem

3.2.2].

1. Introduction

Let (A) denote the Abel method of summability of a sequence (sn) of real numbers and S

the class of slowly oscillating sequences in the sense of Stanojević [7]. C. anak [1] proved the
following theorem known as the generalized Littlewood tauberian theorem [6].

Theorem 1.1. If sn → L(A) and (sn) ∈S , then sn → L.

Dik, Dik and C. anak [5] have generalized Theorem 1.1 by means of the concept of regularly
generated sequence. Recently, C. anak and Totur [2, 3] have proved some tauberian theorems

for which tauberian conditions are given in terms of control modulo of oscillatory behavior of

a sequence.

The object of this work is to show that the proof of the main results of Section 3 below and

their generalizations are essentially based on the following theorems.

Theorem 1.2. ([3]) If sn → L(A) and (ω(m)
n (s)) is (C ,1) slowly oscillating for any integer

m ≥ 1, then sn → L.

Theorem 1.3. ([2]) If sn → L(A) and ω
(m)
n (s) ≥−C for some C ≥ 0 and for any integer m ≥ 1,

then sn → L

(for relevant definitions, see Section 2.)

2. Definitions and basic properties

Suppose throughout that s = (sn) is a sequence of real numbers and any term with
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a negative index is zero. For a sequence (sn), denote
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where
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and ∆sn =

{

sn − sn−1, n ≥ 1

s0, n = 0
. Note that for any integer m ≥ 0, V (m)

n (∆σ(1)(s)) = V (m+1)
n (∆s).

For the sequence (sn),
sn −σ

(1)
n (s) =V (0)

n (∆s). (2.1)

Since σ
(1)
n (s) = s0 +

∑n
k=1

V (0)
k

(∆s)

k , we may write (2.1) as

sn =V (0)
n (∆s)+

n
∑

k=1

V (0)
k

(∆s)

k
+ s0. (2.2)

A sequence (sn) is said to be Abel summable to L, and we write sn → L(A) if
∑∞

n=0(sn − sn−1)xn

converges for 0 < x < 1 and tends to L as x → 1−. A sequence (sn) is said to be slowly oscil-
lating if lim

λ→1+
lim

n
max

n+1≤k≤[λn]
|sk − sn | = 0. A sequence (sn) is said to be (C ,1) slowly oscillating if

(σ(1)
n (s)) is slowly oscillating. A sequence (sn) is said to be moderately oscillating if, for λ > 1,

lim
n

max
n+1≤k≤[λn]

|sk − sn | <∞. Denote by M the class of moderately oscillating sequences.

It is shown in [4] that if (sn) is slowly oscillating, then (V (0)
n (∆s)) is bounded. It is clear, by

(2.2), that a sequence (sn) is slowly oscillating if and only if (V (0)
n (∆s)) is bounded and slowly

oscillating.
Denote by ω

(0)
n (s) = n∆sn the classical control modulo of the oscillatory behavior of (sn).

For each integer m ≥ 1, define recursively ω
(m)
n (s) = ω

(m−1)
n (s)−σ

(1)
n (ω(m−1)(s)), the general

control modulo of the oscillatory behavior of the sequence (sn) of order m.
For each integer m ≥ 1, all nonnegative integers n and for a sequence s = (sn) we define

inductively
(n∆)0sn = sn , (n∆)m sn = n∆((n∆)m−1sn).

Lemma 2.1. ([2]) For each integer m ≥ 1, ω(m)
n (s)= (n∆)mV (m−1)

n (∆s).

Let L be any linear space of sequences and B be a subclass of L . For each integer m ≥ 1,

define the class B
(m) = {(b(m)

n )|b(m)
n =

∑n
k=1

b(m−1)
k

k }, where (b(0)
n ) := (bn) ∈B. Let s = (sn) ∈L . If

sn = b(m)
n +

n
∑

k=1

b(m)
k

k
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for some b(m) = (b(m)
n ) ∈ B

(m), we say that the sequence (sn) is regularly generated by the

sequence (b(m)
n ) and b(m) is called a generator of (sn). The class of all sequences regularly

generated by sequences in B
(m) is denoted by U (B(m)).

Let B> denote the class of all sequences b = (bn) such that for every (bn) ∈B> there exists

Cb ≥ 0 such that bn ≥−Cb . U (B(m)
> ) can be defined in the same manner as in definition above.

Let B = S . It follows from the definition that if (sn) ∈U (S ), then (V (0)
n (∆s)) ∈U (S ) and

(σ(1)
n (s)) ∈ U (S (1)). If B is the class of all bounded and slowly sequences, then U (B) is the

class of all slowly oscillating sequences.

3. Main result

For the results in this section, we require the following lemma.

Lemma 3.1. Let s = (sn) ∈ L and k,m ≥ 0 be any integers. If (V (k)
n (∆s)) ∈ U (B(m)), then

(n∆)k+1V (k+1)
n (∆s) = bn .

( (bn) is as in Definition in Section 2.)

Proof. If (V (k)
n (∆s)) ∈U (B(m)), it then follows that

V (k)
n (∆s) =σ

(k−1)
n (s)−σ

(k)
n (s)= b(m)

n +

n
∑

j=1

b(m)
j

j
(3.1)

for some (b(m)
n ) ∈B

(m). From (3.1), we obtain

V (k−1)
n (∆s)−V (k)

n (∆s) = n∆b(m)
n +b(m)

n . (3.2)

Subtracting (3.2) from the arithmetic mean of (3.2), we have

(V (k−1)
n (∆s)−V (k)

n (∆s))− (V (k)
n (∆s)−V (k+1)

n (∆s)) = b(m−1)
n . (3.3)

(3.3) can be expressed as

n∆V (k)
n (∆s)−n∆V (k+1)

n (∆s) = b(m−1)
n ,

which implies (n∆)2V (k+1)
n (∆s) = b(m−1)

n . By repeating the same reasoning, we have

σ
(1)
n (ω(k+1)(s)) = (n∆)k+1V (k+1)

n (∆s) = b(0)
n = bn .

Theorem 3.2. If sn → L(A) and (V (m)
n (∆s))∈U (S (m)) for any integer m ≥ 1, then sn → L.

Proof. In Lemma 3.1, take B = S and k = m. Then σ
(1)
n (ω(m+1)(s)) = bn . If (bn) ∈ S ,

(ω(m+1)(s)) is (C ,1) slowly oscillating. By Theorem 1.2, we have sn → L.

Theorem 3.3. If sn → L(A) and (V (m−1)
n (∆s)) ∈U (S (m)) for any integer m ≥ 1, then sn → L.
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Proof. In Lemma 3.1, take B = S and k = m − 1. Then ω
(m+1)(s) = bn . If (bn) ∈ S,

(ω(m+1)(s)) is (C ,1) slowly oscillating. By Theorem 1.2, we have sn → L.

Similar results can be given for one-sidedly regularly generated sequences.

Theorem 3.4. If sn → L(A) and (V (m)
n (∆s))∈U (S (m)

> ) for any integer m ≥ 1, then sn → L.

Proof. In Lemma 3.1, take B =S and k = m−1. Thenω
(m+1)(s) = bn . Sinceσ(1)

n (ω(m+1)(s))=
ω

(m+1)
n (σ(1)(s)) and sn → L(A) implies σ(1)

n (s) → L(A), σ(1)
n (s) → L by Theorem 1.3.

Theorem 3.5. If sn → L(A) and (V (m−1)
n (∆s)) ∈U (S (m)

> ) for any integer m ≥ 1, then sn → L.

Proof. In Lemma 3.1, take B =S and k = m −1. Then ω
(m+1)(s) = bn . We have sn → L by

Theorem 1.2.

Corollary 3.6. If σ(1)
n (s) → L(A) and (V (0)

n (∆s)) ∈U (S ), then sn → L.

Proof. If (V (0)
n (∆s)) ∈U (S ), we have (V (1)

n (∆s))∈U (S (1)). Recalling V (1)
n (∆s) =V (0)

n (∆σ(1)(s)),
by Theorem 3.2 we have σ

(1)
n (s) → L, which implies sn → L(A). Again by Theorem 3.2, sn → L.

Corollary 3.6. is Theorem 1 in [5].
For the next corollary which is Theorem 2 in [5], we need the following generalization of

Theorem 1.2.

Theorem 3.7. If σ(1)
n (s) → L(A) and (ω(m)

n (s)) is (C ,1) slowly oscillating for any integer m ≥

1, then sn → L.

Proof. It is clear that σ
(1)
n (ω(m)(s)) = ω

(m)
n (σ(1)(s)). By Theorem 1.2 σ

(1)
n (s) → L, which

implies sn → L(A). Again by Theorem 1.2, sn → L.

Corollary 3.8. If σ(1)
n (s) → L(A) and (V (0)

n (∆s)) ∈U (M (1)), then sn → L.

Proof. If (V (0)
n (∆s)) ∈U (M (1)), we have (σ(1)

n (ω(2)(s))) ∈S . By Theorem 3.7, we have sn →

L.

Corollary 3.9. If σ(1)
n (s) → L(A) and (sn) ∈U (B(1)

> ), then sn → L.

Proof. If (sn) ∈ U (B(1)
> ), we have sn = b(1)

n +
∑n

k=1

b(1)
k
k for some (b(1)

n ) ∈ B
(1). Hence, we

obtain

n∆sn = bn +

n
∑

k=1

bk

k
. (3.4)

It follows from (3.4) and (2.1) that

ω
(1)
n (s) = bn = n∆V (0)

n (∆s) ≥−C

for some C ≥ 0, which implies σ
(1)
n (ω(1)(s)) =ω

(1)
n (σ(1)(s)) = n∆V (1)

n (∆s) ≥−C . Since sn → L(A)
implies σ

(1)
n (s) → L(A), by Theorem 1.3, we have σ

(1)
n (s) → L, which implies sn → L(A). Since

ω
(1)
n (s) ≥−C for some C ≥ 0, again by Theorem 1.3, we have sn → L.
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[3] İ. C. anak and Ü. Totur, Tauberian theorems for Abel limitability method, Cent. Eur. J. Math. 6(2008),

301–306.

[4] M. Dik, Tauberian theorems for sequences with moderately oscillatory control moduli. Doctoral

Dissertation, University of Missouri-Rolla, Missouri, 2002.
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