TAMKANG JOURNAL OF MATHEMATICS Volume 39, Number 2, 187-191, Summer 2008

A NOTE ON TAUBERIAN THEOREMS FOR REGULARLY GENERATED SEQUENCES

İBRAHİM ÇANAK AND ÜMİT TOTUR

Abstract. We prove some Tauberian theorems which generalize results in [5, Theorems 1 and 2] and [4, Theorem 3.2.2].

1. Introduction

Let (*A*) denote the Abel method of summability of a sequence (s_n) of real numbers and \mathscr{S} the class of slowly oscillating sequences in the sense of Stanojević [7]. Canak [1] proved the following theorem known as the generalized Littlewood tauberian theorem [6].

Theorem 1.1. If $s_n \to L(A)$ and $(s_n) \in \mathcal{S}$, then $s_n \to L$.

Dik, Dik and Çanak [5] have generalized Theorem 1.1 by means of the concept of regularly generated sequence. Recently, Çanak and Totur [2, 3] have proved some tauberian theorems for which tauberian conditions are given in terms of control modulo of oscillatory behavior of a sequence.

The object of this work is to show that the proof of the main results of Section 3 below and their generalizations are essentially based on the following theorems.

Theorem 1.2. ([3]) If $s_n \to L(A)$ and $(\omega_n^{(m)}(s))$ is (C, 1) slowly oscillating for any integer $m \ge 1$, then $s_n \to L$.

Theorem 1.3. ([2]) If $s_n \to L(A)$ and $\omega_n^{(m)}(s) \ge -C$ for some $C \ge 0$ and for any integer $m \ge 1$, then $s_n \to L$

(for relevant definitions, see Section 2.)

2. Definitions and basic properties

Suppose throughout that $s = (s_n)$ is a sequence of real numbers and any term with

Received March 31, 2006.

Key words and phrases. Abel summability method, regularly generated sequences, slow oscillation, general control modulo.

²⁰⁰⁰ Mathematics Subject Classification. 40E05, 40G10, 40A30.

a negative index is zero. For a sequence (s_n) , denote

$$\sigma_n^{(m)}(s) = \begin{cases} \frac{1}{n+1} \sum_{k=0}^n \sigma_k^{(m-1)}(s) = s_0 + \sum_{k=1}^n \frac{V_k^{(m-1)}(\Delta s)}{k}, & m \ge 1\\ s_n, & m = 0 \end{cases}$$

where

$$V_n^{(m)}(\Delta s) = \begin{cases} \frac{1}{n+1} \sum_{k=0}^n V_k^{(m-1)}(\Delta s), & m \ge 1\\ \frac{1}{n+1} \sum_{k=0}^n k \Delta s_k, & m = 0 \end{cases}$$

and $\Delta s_n = \begin{cases} s_n - s_{n-1}, & n \ge 1 \\ s_0, & n = 0 \end{cases}$. Note that for any integer $m \ge 0$, $V_n^{(m)}(\Delta \sigma^{(1)}(s)) = V_n^{(m+1)}(\Delta s)$. For the sequence (s_n) ,

$$s_n - \sigma_n^{(1)}(s) = V_n^{(0)}(\Delta s).$$
(2.1)

Since $\sigma_n^{(1)}(s) = s_0 + \sum_{k=1}^n \frac{V_k^{(0)}(\Delta s)}{k}$, we may write (2.1) as

$$s_n = V_n^{(0)}(\Delta s) + \sum_{k=1}^n \frac{V_k^{(0)}(\Delta s)}{k} + s_0.$$
(2.2)

A sequence (s_n) is said to be Abel summable to L, and we write $s_n \to L(A)$ if $\sum_{n=0}^{\infty} (s_n - s_{n-1}) x^n$ converges for 0 < x < 1 and tends to L as $x \to 1^-$. A sequence (s_n) is said to be slowly oscillating if $\lim_{\lambda \to 1^+} \lim_{n \to 1 \le k \le |\lambda n|} |s_k - s_n| = 0$. A sequence (s_n) is said to be (C, 1) slowly oscillating if $(\underline{\sigma}_n^{(1)}(s))$ is slowly oscillating. A sequence (s_n) is said to be moderately oscillating if, for $\lambda > 1$, $\lim_{n \to 1 \le k \le |\lambda n|} |s_k - s_n| < \infty$. Denote by \mathcal{M} the class of moderately oscillating sequences.

It is shown in [4] that if (s_n) is slowly oscillating, then $(V_n^{(0)}(\Delta s))$ is bounded. It is clear, by (2.2), that a sequence (s_n) is slowly oscillating if and only if $(V_n^{(0)}(\Delta s))$ is bounded and slowly oscillating.

Denote by $\omega_n^{(0)}(s) = n\Delta s_n$ the classical control modulo of the oscillatory behavior of (s_n) . For each integer $m \ge 1$, define recursively $\omega_n^{(m)}(s) = \omega_n^{(m-1)}(s) - \sigma_n^{(1)}(\omega^{(m-1)}(s))$, the general control modulo of the oscillatory behavior of the sequence (s_n) of order m.

For each integer $m \ge 1$, all nonnegative integers n and for a sequence $s = (s_n)$ we define inductively

$$(n\Delta)_0 s_n = s_n, \quad (n\Delta)_m s_n = n\Delta((n\Delta)_{m-1}s_n).$$

Lemma 2.1. ([2]) For each integer $m \ge 1$, $\omega_n^{(m)}(s) = (n\Delta)_m V_n^{(m-1)}(\Delta s)$.

Let \mathcal{L} be any linear space of sequences and \mathcal{B} be a subclass of \mathcal{L} . For each integer $m \ge 1$, define the class $\mathcal{B}^{(m)} = \{(b_n^{(m)}) | b_n^{(m)} = \sum_{k=1}^n \frac{b_k^{(m-1)}}{k}\}$, where $(b_n^{(0)}) := (b_n) \in \mathcal{B}$. Let $s = (s_n) \in \mathcal{L}$. If

$$s_n = b_n^{(m)} + \sum_{k=1}^n \frac{b_k^{(m)}}{k}$$

188

for some $b^{(m)} = (b_n^{(m)}) \in \mathscr{B}^{(m)}$, we say that the sequence (s_n) is regularly generated by the sequence $(b_n^{(m)})$ and $b^{(m)}$ is called a generator of (s_n) . The class of all sequences regularly generated by sequences in $\mathscr{B}^{(m)}$ is denoted by $U(\mathscr{B}^{(m)})$.

Let $\mathscr{B}_{>}$ denote the class of all sequences $b = (b_n)$ such that for every $(b_n) \in \mathscr{B}_{>}$ there exists $C_b \ge 0$ such that $b_n \ge -C_b$. $U(\mathscr{B}_{>}^{(m)})$ can be defined in the same manner as in definition above.

Let $\mathscr{B} = \mathscr{S}$. It follows from the definition that if $(s_n) \in U(\mathscr{S})$, then $(V_n^{(0)}(\Delta s)) \in U(\mathscr{S})$ and $(\sigma_n^{(1)}(s)) \in U(\mathscr{S}^{(1)})$. If \mathscr{B} is the class of all bounded and slowly sequences, then $U(\mathscr{B})$ is the class of all slowly oscillating sequences.

3. Main result

For the results in this section, we require the following lemma.

Lemma 3.1. Let $s = (s_n) \in \mathcal{L}$ and $k, m \ge 0$ be any integers. If $(V_n^{(k)}(\Delta s)) \in U(\mathcal{B}^{(m)})$, then $(n\Delta)_{k+1}V_n^{(k+1)}(\Delta s) = b_n$.

 $((b_n)$ is as in Definition in Section 2.)

Proof. If $(V_n^{(k)}(\Delta s)) \in U(\mathscr{B}^{(m)})$, it then follows that

$$V_n^{(k)}(\Delta s) = \sigma_n^{(k-1)}(s) - \sigma_n^{(k)}(s) = b_n^{(m)} + \sum_{j=1}^n \frac{b_j^{(m)}}{j}$$
(3.1)

for some $(b_n^{(m)}) \in \mathscr{B}^{(m)}$. From (3.1), we obtain

$$V_n^{(k-1)}(\Delta s) - V_n^{(k)}(\Delta s) = n\Delta b_n^{(m)} + b_n^{(m)}.$$
(3.2)

Subtracting (3.2) from the arithmetic mean of (3.2), we have

$$(V_n^{(k-1)}(\Delta s) - V_n^{(k)}(\Delta s)) - (V_n^{(k)}(\Delta s) - V_n^{(k+1)}(\Delta s)) = b_n^{(m-1)}.$$
(3.3)

(3.3) can be expressed as

$$n\Delta V_n^{(k)}(\Delta s) - n\Delta V_n^{(k+1)}(\Delta s) = b_n^{(m-1)},$$

which implies $(n\Delta)_2 V_n^{(k+1)}(\Delta s) = b_n^{(m-1)}$. By repeating the same reasoning, we have

$$\sigma_n^{(1)}(\omega^{(k+1)}(s)) = (n\Delta)_{k+1}V_n^{(k+1)}(\Delta s) = b_n^{(0)} = b_n.$$

Theorem 3.2. If $s_n \to L(A)$ and $(V_n^{(m)}(\Delta s)) \in U(\mathscr{S}^{(m)})$ for any integer $m \ge 1$, then $s_n \to L$.

Proof. In Lemma 3.1, take $\mathscr{B} = \mathscr{S}$ and k = m. Then $\sigma_n^{(1)}(\omega^{(m+1)}(s)) = b_n$. If $(b_n) \in \mathscr{S}$, $(\omega^{(m+1)}(s))$ is (C, 1) slowly oscillating. By Theorem 1.2, we have $s_n \to L$.

Theorem 3.3. If $s_n \to L(A)$ and $(V_n^{(m-1)}(\Delta s)) \in U(\mathscr{S}^{(m)})$ for any integer $m \ge 1$, then $s_n \to L$.

Proof. In Lemma 3.1, take $\mathscr{B} = \mathscr{S}$ and k = m - 1. Then $\omega^{(m+1)}(s) = b_n$. If $(b_n) \in S$, $(\omega^{(m+1)}(s))$ is (C, 1) slowly oscillating. By Theorem 1.2, we have $s_n \to L$.

Similar results can be given for one-sidedly regularly generated sequences.

Theorem 3.4. If $s_n \to L(A)$ and $(V_n^{(m)}(\Delta s)) \in U(\mathscr{S}_{>}^{(m)})$ for any integer $m \ge 1$, then $s_n \to L$.

Proof. In Lemma 3.1, take $\mathscr{B} = \mathscr{S}$ and k = m-1. Then $\omega^{(m+1)}(s) = b_n$. Since $\sigma_n^{(1)}(\omega^{(m+1)}(s)) = \omega_n^{(m+1)}(\sigma^{(1)}(s))$ and $s_n \to L(A)$ implies $\sigma_n^{(1)}(s) \to L(A)$, $\sigma_n^{(1)}(s) \to L$ by Theorem 1.3.

Theorem 3.5. If $s_n \to L(A)$ and $(V_n^{(m-1)}(\Delta s)) \in U(\mathscr{S}_{>}^{(m)})$ for any integer $m \ge 1$, then $s_n \to L$.

Proof. In Lemma 3.1, take $\mathscr{B} = \mathscr{S}$ and k = m - 1. Then $\omega^{(m+1)}(s) = b_n$. We have $s_n \to L$ by Theorem 1.2.

Corollary 3.6. If $\sigma_n^{(1)}(s) \to L(A)$ and $(V_n^{(0)}(\Delta s)) \in U(\mathscr{S})$, then $s_n \to L$.

Proof. If $(V_n^{(0)}(\Delta s)) \in U(\mathscr{S})$, we have $(V_n^{(1)}(\Delta s)) \in U(\mathscr{S}^{(1)})$. Recalling $V_n^{(1)}(\Delta s) = V_n^{(0)}(\Delta \sigma^{(1)}(s))$, by Theorem 3.2 we have $\sigma_n^{(1)}(s) \to L$, which implies $s_n \to L(A)$. Again by Theorem 3.2, $s_n \to L$.

Corollary 3.6. is Theorem 1 in [5].

For the next corollary which is Theorem 2 in [5], we need the following generalization of Theorem 1.2.

Theorem 3.7. If $\sigma_n^{(1)}(s) \to L(A)$ and $(\omega_n^{(m)}(s))$ is (C, 1) slowly oscillating for any integer $m \ge 1$, then $s_n \to L$.

Proof. It is clear that $\sigma_n^{(1)}(\omega^{(m)}(s)) = \omega_n^{(m)}(\sigma^{(1)}(s))$. By Theorem 1.2 $\sigma_n^{(1)}(s) \to L$, which implies $s_n \to L(A)$. Again by Theorem 1.2, $s_n \to L$.

Corollary 3.8. If $\sigma_n^{(1)}(s) \to L(A)$ and $(V_n^{(0)}(\Delta s)) \in U(\mathcal{M}^{(1)})$, then $s_n \to L$.

Proof. If $(V_n^{(0)}(\Delta s)) \in U(\mathcal{M}^{(1)})$, we have $(\sigma_n^{(1)}(\omega^{(2)}(s))) \in \mathcal{S}$. By Theorem 3.7, we have $s_n \to L$.

Corollary 3.9. If $\sigma_n^{(1)}(s) \to L(A)$ and $(s_n) \in U(\mathscr{B}^{(1)}_{>})$, then $s_n \to L$.

Proof. If $(s_n) \in U(\mathscr{B}^{(1)}_{>})$, we have $s_n = b_n^{(1)} + \sum_{k=1}^n \frac{b_k^{(1)}}{k}$ for some $(b_n^{(1)}) \in \mathscr{B}^{(1)}$. Hence, we obtain

$$n\Delta s_n = b_n + \sum_{k=1}^n \frac{b_k}{k}.$$
(3.4)

It follows from (3.4) and (2.1) that

$$\omega_n^{(1)}(s) = b_n = n\Delta V_n^{(0)}(\Delta s) \ge -C$$

for some $C \ge 0$, which implies $\sigma_n^{(1)}(\omega^{(1)}(s)) = \omega_n^{(1)}(\sigma^{(1)}(s)) = n\Delta V_n^{(1)}(\Delta s) \ge -C$. Since $s_n \to L(A)$ implies $\sigma_n^{(1)}(s) \to L(A)$, by Theorem 1.3, we have $\sigma_n^{(1)}(s) \to L$, which implies $s_n \to L(A)$. Since $\omega_n^{(1)}(s) \ge -C$ for some $C \ge 0$, again by Theorem 1.3, we have $s_n \to L$.

190

Acknowledgement

The authors are grateful to the anonymous referee for his/her suggestions. This research was supported by Adnan Menderes University under the project number FEF-06011.

References

- [1] İ. Çanak, *A proof of the generalized Littlewood Tauberian theorem*, to appear in Int. J. Pure Appl. Math. Sci.
- [2] İ. Çanak and Ü. Totur, A Tauberian theorem with a generalized one-sided condition, Abstr. Appl. Anal., Volume 2007, 2007, Article ID 60360, 12 pages.
- [3] İ. Çanak and Ü. Totur, *Tauberian theorems for Abel limitability method*, Cent. Eur. J. Math. 6(2008), 301–306.
- [4] M. Dik, Tauberian theorems for sequences with moderately oscillatory control moduli. Doctoral Dissertation, University of Missouri-Rolla, Missouri, 2002.
- [5] M. Dik, F. Dik and İ. Çanak, *Classical and neoclassical Tauberian theorems for regularly generated sequences*, Far East J. Math. Sci. **13**(2004), 233–240.
- [6] R. Schmidt, Über divergente folgen und lineare mittelbildungen, Math. Z. 22(1925), 89–152.
- [7] Č. V. Stanojević, *Analysis of Divergence: Control and Management of Divergent Process*, Graduate Research Seminar Lecture Notes, edited by İ. Çanak. University of Missouri-Rolla, Fall 1998.

Adnan Menderes University, Department of Mathematics, 09010, Aydin, Turkey.

E-mail:ibrahimcanak@yahoo.com

Adnan Menderes University, Department of Mathematics, 09010, Ayind, Turkey. E-mail: utotur@adu.edu.tr