A NOTE ON TAUBERIAN THEOREMS FOR REGULARLY GENERATED SEQUENCES

İBRAHİM C̣ANAK AND ÜMİT TOTUR

Abstract

We prove some Tauberian theorems which generalize results in [5, Theorems 1 and 2] and [4, Theorem 3.2.2].

1. Introduction

Let (A) denote the Abel method of summability of a sequence $\left(s_{n}\right)$ of real numbers and \mathscr{S} the class of slowly oscillating sequences in the sense of Stanojević [7]. Canak [1] proved the following theorem known as the generalized Littlewood tauberian theorem [6].

Theorem 1.1. If $s_{n} \rightarrow L(A)$ and $\left(s_{n}\right) \in \mathscr{S}$, then $s_{n} \rightarrow L$.
Dik, Dik and C̣anak [5] have generalized Theorem 1.1 by means of the concept of regularly generated sequence. Recently, C̣anak and Totur [2, 3] have proved some tauberian theorems for which tauberian conditions are given in terms of control modulo of oscillatory behavior of a sequence.

The object of this work is to show that the proof of the main results of Section 3 below and their generalizations are essentially based on the following theorems.

Theorem 1.2. ([3]) If $s_{n} \rightarrow L(A)$ and $\left(\omega_{n}^{(m)}(s)\right)$ is $(C, 1)$ slowly oscillating for any integer $m \geq 1$, then $s_{n} \rightarrow L$.

Theorem 1.3. ([2]) If $s_{n} \rightarrow L(A)$ and $\omega_{n}^{(m)}(s) \geq-C$ for some $C \geq 0$ and for any integer $m \geq 1$, then $s_{n} \rightarrow L$
(for relevant definitions, see Section 2.)

2. Definitions and basic properties

Suppose throughout that $s=\left(s_{n}\right)$ is a sequence of real numbers and any term with

[^0]a negative index is zero. For a sequence $\left(s_{n}\right)$, denote
\[

\sigma_{n}^{(m)}(s)= $$
\begin{cases}\frac{1}{n+1} \sum_{k=0}^{n} \sigma_{k}^{(m-1)}(s)=s_{0}+\sum_{k=1}^{n} \frac{V_{k}^{(m-1)}(\Delta s)}{k}, & m \geq 1 \\ s_{n}, & m=0\end{cases}
$$
\]

where

$$
V_{n}^{(m)}(\Delta s)= \begin{cases}\frac{1}{n+1} \sum_{k=0}^{n} V_{k}^{(m-1)}(\Delta s), & m \geq 1 \\ \frac{1}{n+1} \sum_{k=0}^{n} k \Delta s_{k}, & m=0\end{cases}
$$

and $\Delta s_{n}=\left\{\begin{array}{ll}s_{n}-s_{n-1}, & n \geq 1 \\ s_{0}, & n=0\end{array}\right.$. Note that for any integer $m \geq 0, V_{n}^{(m)}\left(\Delta \sigma^{(1)}(s)\right)=V_{n}^{(m+1)}(\Delta s)$. For the sequence $\left(s_{n}\right)$,

$$
\begin{equation*}
s_{n}-\sigma_{n}^{(1)}(s)=V_{n}^{(0)}(\Delta s) . \tag{2.1}
\end{equation*}
$$

Since $\sigma_{n}^{(1)}(s)=s_{0}+\sum_{k=1}^{n} \frac{V_{k}^{(0)}(\Delta s)}{k}$, we may write (2.1) as

$$
\begin{equation*}
s_{n}=V_{n}^{(0)}(\Delta s)+\sum_{k=1}^{n} \frac{V_{k}^{(0)}(\Delta s)}{k}+s_{0} \tag{2.2}
\end{equation*}
$$

A sequence (s_{n}) is said to be Abel summable to L, and we write $s_{n} \rightarrow L(A)$ if $\sum_{n=0}^{\infty}\left(s_{n}-s_{n-1}\right) x^{n}$ converges for $0<x<1$ and tends to L as $x \rightarrow 1^{-}$. A sequence $\left(s_{n}\right)$ is said to be slowly oscillating if $\lim _{\lambda \rightarrow 1^{+}} \varlimsup_{n} \max _{n+1 \leq k \leq[\lambda n]}\left|s_{k}-s_{n}\right|=0$. A sequence $\left(s_{n}\right)$ is said to be $(C, 1)$ slowly oscillating if $\underline{\left(\sigma_{n}^{(1)}(s)\right)}$ is slowly oscillating. A sequence $\left(s_{n}\right)$ is said to be moderately oscillating if, for $\lambda>1$, $\varlimsup_{n} \max _{n+1 \leq k \leq[\lambda n]}\left|s_{k}-s_{n}\right|<\infty$. Denote by \mathscr{M} the class of moderately oscillating sequences.

It is shown in [4] that if $\left(s_{n}\right)$ is slowly oscillating, then $\left(V_{n}^{(0)}(\Delta s)\right)$ is bounded. It is clear, by (2.2), that a sequence $\left(s_{n}\right)$ is slowly oscillating if and only if $\left(V_{n}^{(0)}(\Delta s)\right)$ is bounded and slowly oscillating.

Denote by $\omega_{n}^{(0)}(s)=n \Delta s_{n}$ the classical control modulo of the oscillatory behavior of (s_{n}). For each integer $m \geq 1$, define recursively $\omega_{n}^{(m)}(s)=\omega_{n}^{(m-1)}(s)-\sigma_{n}^{(1)}\left(\omega^{(m-1)}(s)\right)$, the general control modulo of the oscillatory behavior of the sequence $\left(s_{n}\right)$ of order m.

For each integer $m \geq 1$, all nonnegative integers n and for a sequence $s=\left(s_{n}\right)$ we define inductively

$$
(n \Delta)_{0} s_{n}=s_{n}, \quad(n \Delta)_{m} s_{n}=n \Delta\left((n \Delta)_{m-1} s_{n}\right)
$$

Lemma 2.1. ([2]) For each integer $m \geq 1, \omega_{n}^{(m)}(s)=(n \Delta)_{m} V_{n}^{(m-1)}(\Delta s)$.
Let \mathscr{L} be any linear space of sequences and \mathscr{B} be a subclass of \mathscr{L}. For each integer $m \geq 1$, define the class $\mathscr{B}^{(m)}=\left\{\left(b_{n}^{(m)}\right) \left\lvert\, b_{n}^{(m)}=\sum_{k=1}^{n} \frac{b_{k}^{(m-1)}}{k}\right.\right\}$, where $\left(b_{n}^{(0)}\right):=\left(b_{n}\right) \in \mathscr{B}$. Let $s=\left(s_{n}\right) \in \mathscr{L}$. If

$$
s_{n}=b_{n}^{(m)}+\sum_{k=1}^{n} \frac{b_{k}^{(m)}}{k}
$$

for some $b^{(m)}=\left(b_{n}^{(m)}\right) \in \mathscr{B}^{(m)}$, we say that the sequence $\left(s_{n}\right)$ is regularly generated by the sequence ($b_{n}^{(m)}$) and $b^{(m)}$ is called a generator of $\left(s_{n}\right)$. The class of all sequences regularly generated by sequences in $\mathscr{B}^{(m)}$ is denoted by $U\left(\mathscr{B}^{(m)}\right)$.

Let $\mathscr{B}_{>}$denote the class of all sequences $b=\left(b_{n}\right)$ such that for every $\left(b_{n}\right) \in \mathscr{B}>$ there exists $C_{b} \geq 0$ such that $b_{n} \geq-C_{b} . U\left(\mathscr{B}_{>}^{(m)}\right)$ can be defined in the same manner as in definition above.

Let $\mathscr{B}=\mathscr{S}$. It follows from the definition that if $\left(s_{n}\right) \in U(\mathscr{S})$, then $\left(V_{n}^{(0)}(\Delta s)\right) \in U(\mathscr{S})$ and $\left(\sigma_{n}^{(1)}(s)\right) \in U\left(\mathscr{S}^{(1)}\right)$. If \mathscr{B} is the class of all bounded and slowly sequences, then $U(\mathscr{B})$ is the class of all slowly oscillating sequences.

3. Main result

For the results in this section, we require the following lemma.
Lemma 3.1. Let $s=\left(s_{n}\right) \in \mathscr{L}$ and $k, m \geq 0$ be any integers. If $\left(V_{n}^{(k)}(\Delta s)\right) \in U\left(\mathscr{B}^{(m)}\right)$, then $(n \Delta)_{k+1} V_{n}^{(k+1)}(\Delta s)=b_{n}$.
($\left(b_{n}\right)$ is as in Definition in Section 2.)
Proof. If $\left(V_{n}^{(k)}(\Delta s)\right) \in U\left(\mathscr{B}^{(m)}\right)$, it then follows that

$$
\begin{equation*}
V_{n}^{(k)}(\Delta s)=\sigma_{n}^{(k-1)}(s)-\sigma_{n}^{(k)}(s)=b_{n}^{(m)}+\sum_{j=1}^{n} \frac{b_{j}^{(m)}}{j} \tag{3.1}
\end{equation*}
$$

for some $\left(b_{n}^{(m)}\right) \in \mathscr{B}^{(m)}$. From (3.1), we obtain

$$
\begin{equation*}
V_{n}^{(k-1)}(\Delta s)-V_{n}^{(k)}(\Delta s)=n \Delta b_{n}^{(m)}+b_{n}^{(m)} \tag{3.2}
\end{equation*}
$$

Subtracting (3.2) from the arithmetic mean of (3.2), we have

$$
\begin{equation*}
\left(V_{n}^{(k-1)}(\Delta s)-V_{n}^{(k)}(\Delta s)\right)-\left(V_{n}^{(k)}(\Delta s)-V_{n}^{(k+1)}(\Delta s)\right)=b_{n}^{(m-1)} \tag{3.3}
\end{equation*}
$$

(3.3) can be expressed as

$$
n \Delta V_{n}^{(k)}(\Delta s)-n \Delta V_{n}^{(k+1)}(\Delta s)=b_{n}^{(m-1)}
$$

which implies $(n \Delta)_{2} V_{n}^{(k+1)}(\Delta s)=b_{n}^{(m-1)}$. By repeating the same reasoning, we have

$$
\sigma_{n}^{(1)}\left(\omega^{(k+1)}(s)\right)=(n \Delta)_{k+1} V_{n}^{(k+1)}(\Delta s)=b_{n}^{(0)}=b_{n}
$$

Theorem 3.2. If $s_{n} \rightarrow L(A)$ and $\left(V_{n}^{(m)}(\Delta s)\right) \in U\left(\mathscr{S}^{(m)}\right)$ for any integer $m \geq 1$, then $s_{n} \rightarrow L$.
Proof. In Lemma 3.1, take $\mathscr{B}=\mathscr{S}$ and $k=m$. Then $\sigma_{n}^{(1)}\left(\omega^{(m+1)}(s)\right)=b_{n}$. If $\left(b_{n}\right) \in \mathscr{S}$, $\left(\omega^{(m+1)}(s)\right)$ is $(C, 1)$ slowly oscillating. By Theorem 1.2 , we have $s_{n} \rightarrow L$.

Theorem 3.3. If $s_{n} \rightarrow L(A)$ and $\left(V_{n}^{(m-1)}(\Delta s)\right) \in U\left(\mathscr{S}^{(m)}\right)$ for any integer $m \geq 1$, then $s_{n} \rightarrow L$.

Proof. In Lemma 3.1, take $\mathscr{B}=\mathscr{S}$ and $k=m-1$. Then $\omega^{(m+1)}(s)=b_{n}$. If $\left(b_{n}\right) \in S$, $\left(\omega^{(m+1)}(s)\right)$ is $(C, 1)$ slowly oscillating. By Theorem 1.2, we have $s_{n} \rightarrow L$.

Similar results can be given for one-sidedly regularly generated sequences.
Theorem 3.4. If $s_{n} \rightarrow L(A)$ and $\left(V_{n}^{(m)}(\Delta s)\right) \in U\left(\mathscr{S}_{>}^{(m)}\right)$ for any integer $m \geq 1$, then $s_{n} \rightarrow L$.
Proof. In Lemma 3.1, take $\mathscr{B}=\mathscr{S}$ and $k=m-1$. Then $\omega^{(m+1)}(s)=b_{n}$. Since $\sigma_{n}^{(1)}\left(\omega^{(m+1)}(s)\right)=$ $\omega_{n}^{(m+1)}\left(\sigma^{(1)}(s)\right)$ and $s_{n} \rightarrow L(A)$ implies $\sigma_{n}^{(1)}(s) \rightarrow L(A), \sigma_{n}^{(1)}(s) \rightarrow L$ by Theorem 1.3.

Theorem 3.5. If $s_{n} \rightarrow L(A)$ and $\left(V_{n}^{(m-1)}(\Delta s)\right) \in U\left(\mathscr{S}_{>}^{(m)}\right)$ for any integer $m \geq 1$, then $s_{n} \rightarrow L$.
Proof. In Lemma 3.1, take $\mathscr{B}=\mathscr{S}$ and $k=m-1$. Then $\omega^{(m+1)}(s)=b_{n}$. We have $s_{n} \rightarrow L$ by Theorem 1.2.

Corollary 3.6. If $\sigma_{n}^{(1)}(s) \rightarrow L(A)$ and $\left(V_{n}^{(0)}(\Delta s)\right) \in U(\mathscr{S})$, then $s_{n} \rightarrow L$.
Proof. If $\left(V_{n}^{(0)}(\Delta s)\right) \in U(\mathscr{S})$, we have $\left(V_{n}^{(1)}(\Delta s)\right) \in U\left(\mathscr{S}^{(1)}\right)$. Recalling $V_{n}^{(1)}(\Delta s)=V_{n}^{(0)}\left(\Delta \sigma^{(1)}(s)\right)$, by Theorem 3.2 we have $\sigma_{n}^{(1)}(s) \rightarrow L$, which implies $s_{n} \rightarrow L(A)$. Again by Theorem $3.2, s_{n} \rightarrow L$.

Corollary 3.6. is Theorem 1 in [5].
For the next corollary which is Theorem 2 in [5], we need the following generalization of Theorem 1.2.

Theorem 3.7. If $\sigma_{n}^{(1)}(s) \rightarrow L(A)$ and $\left(\omega_{n}^{(m)}(s)\right)$ is $(C, 1)$ slowly oscillating for any integer $m \geq$ 1 , then $s_{n} \rightarrow L$.

Proof. It is clear that $\sigma_{n}^{(1)}\left(\omega^{(m)}(s)\right)=\omega_{n}^{(m)}\left(\sigma^{(1)}(s)\right)$. By Theorem $1.2 \sigma_{n}^{(1)}(s) \rightarrow L$, which implies $s_{n} \rightarrow L(A)$. Again by Theorem 1.2, $s_{n} \rightarrow L$.

Corollary 3.8. If $\sigma_{n}^{(1)}(s) \rightarrow L(A)$ and $\left(V_{n}^{(0)}(\Delta s)\right) \in U\left(\mathscr{M}^{(1)}\right)$, then $s_{n} \rightarrow L$.
Proof. If $\left(V_{n}^{(0)}(\Delta s)\right) \in U\left(\mathscr{M}^{(1)}\right)$, we have $\left(\sigma_{n}^{(1)}\left(\omega^{(2)}(s)\right)\right) \in \mathscr{S}$. By Theorem 3.7, we have $s_{n} \rightarrow$ L.

Corollary 3.9. If $\sigma_{n}^{(1)}(s) \rightarrow L(A)$ and $\left(s_{n}\right) \in U\left(\mathscr{B}_{>}^{(1)}\right)$, then $s_{n} \rightarrow L$.
Proof. If $\left(s_{n}\right) \in U\left(\mathscr{B}_{>}^{(1)}\right)$, we have $s_{n}=b_{n}^{(1)}+\sum_{k=1}^{n} \frac{b_{k}^{(1)}}{k}$ for some $\left(b_{n}^{(1)}\right) \in \mathscr{B}^{(1)}$. Hence, we obtain

$$
\begin{equation*}
n \Delta s_{n}=b_{n}+\sum_{k=1}^{n} \frac{b_{k}}{k} . \tag{3.4}
\end{equation*}
$$

It follows from (3.4) and (2.1) that

$$
\omega_{n}^{(1)}(s)=b_{n}=n \Delta V_{n}^{(0)}(\Delta s) \geq-C
$$

for some $C \geq 0$, which implies $\sigma_{n}^{(1)}\left(\omega^{(1)}(s)\right)=\omega_{n}^{(1)}\left(\sigma^{(1)}(s)\right)=n \Delta V_{n}^{(1)}(\Delta s) \geq-C$. Since $s_{n} \rightarrow L(A)$ implies $\sigma_{n}^{(1)}(s) \rightarrow L(A)$, by Theorem 1.3, we have $\sigma_{n}^{(1)}(s) \rightarrow L$, which implies $s_{n} \rightarrow L(A)$. Since $\omega_{n}^{(1)}(s) \geq-C$ for some $C \geq 0$, again by Theorem 1.3, we have $s_{n} \rightarrow L$.

Acknowledgement

The authors are grateful to the anonymous referee for his/her suggestions. This research was supported by Adnan Menderes University under the project number FEF-06011.

References

[1] İ. Canak, A proof of the generalized Littlewood Tauberian theorem, to appear in Int. J. Pure Appl. Math. Sci.
[2] İ. C̣anak and Ü. Totur, A Tauberian theorem with a generalized one-sided condition, Abstr. Appl. Anal., Volume 2007, 2007, Article ID 60360, 12 pages.
[3] İ. C̣anak and Ü. Totur, Tauberian theorems for Abel limitability method, Cent. Eur. J. Math. 6(2008), 301-306.
[4] M. Dik, Tauberian theorems for sequences with moderately oscillatory control moduli. Doctoral Dissertation, University of Missouri-Rolla, Missouri, 2002.
[5] M. Dik, F. Dik and İ. C̣anak, Classical and neoclassical Tauberian theorems for regularly generated sequences, Far East J. Math. Sci. 13(2004), 233-240.
[6] R. Schmidt, Über divergente folgen und lineare mittelbildungen, Math. Z. 22(1925), 89-152.
[7] Č. V. Stanojević, Analysis of Divergence: Control and Management of Divergent Process, Graduate Research Seminar Lecture Notes, edited by I. C̣anak. University of Missouri-Rolla, Fall 1998.

Adnan Menderes University, Department of Mathematics, 09010, Aydin, Turkey.
E-mail:ibrahimcanak@yahoo.com
Adnan Menderes University, Department of Mathematics, 09010, Ayind, Turkey.
E-mail: utotur@adu.edu.tr

[^0]: Received March 31, 2006.
 2000 Mathematics Subject Classification. 40E05, 40G10, 40A30.
 Key words and phrases. Abel summability method, regularly generated sequences, slow oscillation, general control modulo.

