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A NEW OSTROWSKI TYPE INEQUALITY

INVOLVING INTEGRAL MEANS OVER END INTERVALS

P. CERONE

Abstract. The Ostrowski inequality expresses bounds on the deviation of a function from

its integral mean. The current article obtains bounds for the deviation of a function from a

combination of integral means over the end intervals covering the entire interval. Perturbed

expressions are also determined via the Chebychev functional. A variety of earlier results are

recaptured as particular instances of the current development.

1. Introduction

Let the functional S(f ; a; b) be de�ned by

S(f ; a; b) = f(x)�M(f ; a; b); (1.1)

where

M(f ; a; b) =
1

b� a

Z b

a

f(x)dx: (1.2)

The functional S(f ; a; b) represents the deviation of f(x) from its integral mean over

[a; b].

In 1938, A. Ostrowski proved the following integral inequality [11].

Theorem 1. Let f : [a; b] ! R be continuous on [a; b] and di�erentiable on (a; b)

and assume jf 0(x)j �M for all x 2 (a; b). Then the inequality

jS(f ; a; b)j �
h�b� a

2

�2
+
�
x�

a+ b

2

�2i M

b� a
(1.3)

holds for all x 2 [a; b]. The constant 1
4
is best possible.

In a series of papers, Dragomir and Wang [4] - [7] proved (1.3) and other variants for

f 0 2 Lp[a; b] for p � 1, the Lebesgue norms making use of a Peano kernel approach and
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Montgomery's identity [10, p. 585]. Montgomery's identity states that for absolutely

continuous mappings f : [a; b]! R

f(x) =
1

b� a

Z b

a

f(t)dt+
1

b� a

Z b

a

p(x; t)f 0(t)dt; (1.4)

where the kernel p : [a; b]2 ! R is given by

p(x; t) =

(
t� a; a � t � x � b;

t� b; a � x � t � b:

If we assume that f 0 2 L1[a; b] and kf 0k1 := ess supt2[a;b] jf
0(t)j then M in (1.3) may

be replaced by kf 0k1.

Dragomir and Wang [4] - [7] utilising an integration by parts argument, ostensibly

Montgomery's identity (1.4), obtained

jS(f ; a; b)j

�

8>>>>><
>>>>>:

h�
b�a
2

�2
+
�
x� a+b

2

�2i
kf 0k1
b�a

; f 0 2 L1[a; b];

h
(x�a)q+1+(b�x)q+1

q+1

i 1
q kf 0kp

b�a
; f 0 2 Lp[a; b]; p > 1; 1

p
+ 1

q
= 1;h

b�a
2

+ jx� a+b
2
j

i
kf 0k1
b�a

;

(1.5)

where f : [a; b]! R is absolutely continuous on [a; b] and the constants 1
4
; 1

(q+1)
1
q

and 1
2

respectively are sharp.

The current paper obtains bounds on the deviation of a function from integral means

from the end of the interval that cover the whole interval. The Ostrowski type results are

recaptured as special cases. Following an identity obtained in Section 2 and the resulting

bounds, perturbed results arising from the Chebychev functional are investigated in

Section 3. The �nal Section 4 applies the results to the cumulative distribution function.

2. Some Results

We commence with the following identity which although of interest in itself, it will

be used to obtain bounds.

Lemma 1. Let f : [a; b] ! R be an absolutely continuous mapping. Denote by

P (x; �) : [a; b]! R the kernel given by

P (x; t) =

8><
>:

�
�+�

�
t�a
x�a

�
; t 2 [a; x]

��
�+�

�
b�t
b�x

�
; t 2 (x; b]

(2.1)
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where �; � 2 R nonnegative and not both zero, then the identity

Z b

a

P (x; t)f 0(t)dt = f(x)�
1

�+ �

h �

x� a

Z x

a

f(t)dt+
�

b� x

Z b

x

f(t)dt
i

(2.2)

holds.

Proof. From (2.1), we have

Z b

a

P (x; t)f 0(t)dt =
�

�+ �

Z x

a

� t� a

x� a

�
f 0(t)dt�

�

�+ �

Z b

x

� b� t

b� x

�
f 0(x)dt

=
�

�+ �

�� t� a

x� a

�
f(t)

ix
t=a

�

1

x� a

Z x

a

f(t)dt

�

�

�

�+ �

(� b� t

b� x

�
f(t)

ib
t=x

�

1

b� x

Z b

x

f(t)dt

)
;

where the integration by parts formula has been utilised on the separate intervals [a; x]

and (x; b]. Simpli�cation of the expressions readily produces the identity as stated.

Theorem 2. Let f : [a; b]! R be an absolutely continuous mapping and de�ne

T (x;�; �) := f(x)�
1

�+ �
[�M(f ; a; x) + �M(f ;x; b)]; (2.3)

where M(f ; a; b) is the integral mean as de�ned by (1; 2), then

jT (x;�; �)j

�

8>>><
>>>:
[�(x � a) + �(b� x)]

kf 0k1
2(�+�)

; f 0 2 L1[a; b];

[�q(x� a) + �q(b� x)]
1
q

kf 0kp

(q+1)
1
q (�+�)

; f 0 2 Lp[a; b]; p > 1; 1
p
+ 1

q
= 1;h

1 +
j�+�j

�+�

i
kf 0k1
2

;

(2.4)

where khk. are the usual Lebesgue norms for h 2 L:[a; b] with

khk1 := ess sup
t2[a;b]

jh(t)j <1

and

khkp :=
�Z b

a

jh(t)jpdt
� 1

p

; 1 � p � 1:

Proof. Taking the modulus of (2.2) we have from (2.3) and (1.2)

jT (x;�; �)j =

�����
Z b

a

P (x; t)f 0(t)dt

����� �
Z b

a

jP (x; t)jjf 0(t)jdt; (2.5)
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where we have used the well known properties of the integral and modulus.

Thus, for f 0 2 L1[a; b] from (2.5) gives

jT (x;�; �)j � kf 0k1

Z b

a

jP (x; t)jdt

from which a simple calculation using (2.1) givesZ b

a

jP (x; t)jdt =
�

�+ �

Z x

a

t� a

x� a
dt+

�

�+ �

Z b

x

b� t

b� x
dt

=
h �

�+ �
(x� a) +

�

�+ �
(b� x)

i Z 1

0

udu

and hence the �rst inequality results.

Further, using H�older's integral inequality, we have for f 0 2 Lp[a; b] from (2.5)

jT (x;�; �)j � kf 0kp

�Z b

a

jP (x; t)jqdt
� 1

q

;

where 1
p
+ 1

q
= 1 with p > 1. Now

(�+ �)
�Z b

a

jP (x; t)jqdt
� 1

q

=
h
�q
Z x

a

� t� a

x� a

�q
dt+ �q

Z b

x

� b� t

b� x

�q
dt
i 1
q

= [�q(x� a) + �q(b� x)]
1
q

�Z 1

0

uqdu
� 1

q

and so the second inequality is obtained.

Finally, for f 0 2 L1[a; b] we have from (2.5) and using (2.1)

jT (x;�; �)j � sup
t2[a;b]

jP (x; t)jkf 0k1;

where

(�+ �) sup
t2[a;b]

jP (x; t)j = maxf�; �g =
�+ �

2
+

������ �

2

����
and so the theorem is now completely proven.

Remark 1. It should be noted that from (2.3) and (1.1),

(�+ �)T (x;�; �) = �S(f ; a; x) + �S(f ;x; b) (2.6)

and so from (1.5) using the triangle inequality produces

j(�+ �)T (x;�; �)j

�

8>><
>>:

�
2
(x� a)kf 0k1;[a;x] +

�

2
(b� x)kf 0k1;[x;b];

�
�
x�a
q+1

� 1
q

kf 0kp;[a;x] + �
�
b�x
q+1

� 1
q

kf 0kp;[x;b];

�kf 0k1;[a;x] + �kf 0k1;[x;b];

(2.7)
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where for [c; d] � [a; b]

khkp;[c;d] :=
�Z d

c

jh(t)jpdt
� 1

p

; p � 1

and khk1;[c;d] := ess supt2[c;d] jh(t)j.

That is,

j(�+ �)T (x;�; �)j

�

8>>><
>>>:
[�(x � a) + �(b� x)]

kf 0k1
2

; f 0 2 L1[a; b];

h
�
�
x�a
q+1

� 1
q

+ �
�
b�x
q+1

� 1
q

i
kf 0kp; f 0 2 Lp[a; b]; p > 1; 1

p
+ 1

q
= 1;

(� + �)kf 0k1;

(2.8)

where the expression (2.8) involving the k � kp norm is coarser.

The results of (2.7) in which the norms are evaluated over the two subintervals,

although �ner, they do require more work.

Remark 2. It is possible to reduce the amount of work alluded to in Remark 1 since

we may write

�M(f ; a; x) + �M(f ;x; b)

= �M(f ; a; x) +
�

b� x

h Z b

a

f(u)du�

Z x

a

f(u)du
i

=
h
�� �

�x� a

b� x

�i
M(f ; a; x) + �

� b� a

b� x

�
M(f ; a; b)

= [�+ � � ��(x)]M(f ; a; x) + ��(x)M(f ; a; b);

where

�(x) =
b� a

b� x
: (2.9)

Thus, from (2.3), T (x;�; �) may be written in the following equivalent form

T (x;�; �) = f(x)�
h�
1�

�

�+ �
�(x)

�
M(f ; a; x) +

�

�+ �
�(x)M(f ; a; b)

i
(2.10)

so that for �xed [a; b];M(f ; a; b) is also �xed.

The following uniform bounds are valid.

Corollary 1. Let the conditions of Theorem 2 hold. Then����f(x)� 1

2
[M(f ; a; x) +M(f ;x; b)]

����

�

8>>>><
>>>>:

(b�a)

4
kf 0k1; f 0 2 L1[a; b];

�
b�a
q+1

� 1
q

�
kf 0kp
2

; f 0 2 Lp[a; b]; p > 1; 1
p
+ 1

q
= 1;

kf 0k1
2

:

(2.11)
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Proof. The result is readily obtained on allowing � = � in (2.4) so that the left hand

side is T (x;�; �) from (2.3).

Corollary 2. Let the conditions of Theorem 2 hold. Then�����f
�a+ b

2

�
�

2

(b� a)(� + �)

h
�

Z a+b

2

a

f(u)du+ �

Z b

a+b

2

f(u)du
i�����

�

8>>>><
>>>>:

(b�a)

4
kf 0k1; f 0 2 L1[a; b];

[�q + �q ]
1
q

�
b�a

2(q+1)

� 1
q

�
kf 0kp
�+�

; f 0 2 Lp[a; b]; p > 1; 1
p
+ 1

q
= 1;h

1 +
j���j

�+�

i
kf 0k1
2

:

(2.12)

Proof. Placing x = a+b
2

in (2.3) and (2.4) produces the results as stated in (2.12).

Corollary 3. If (2:11) is evaluated at the midpoint then�����f
�a+ b

2

�
�

1

b� a

Z b

a

f(t)dt

�����

�

8>>>><
>>>>:

(b�a)

4
kf 0k1; f 0 2 L1[a; b];

�
b�a
q+1

� 1
q

�
kf 0kp
2

; f 0 2 Lp[a; b]; p > 1; 1
p
+ 1

q
= 1;

kf 0k1
2

:

which is in agreement with (1:5) when x = a+b
2

. The above result could also be obtained

by taking � = � in (2:12) or equivalently � = � and x = a+b
2

in (2:4).

3. Perturbed Results

Perturbed versions of the results of the previous section may be obtained by using

Gr�uss type results involving the Chebychev functional

T (f; g) =M(fg)�M(f)M(g) (3.1)

with M(f) being the integral mean of f over [a; b], namely

M(f) =
1

b� a

Z b

a

f(t)dt: (3.2)

For f; g : [a; b]! R and integrable on [a; b], as is their product, then

jT (f; g)j � T
1
2 (f; f)T

1
2 (g; g); Dragomir [3] for f; g 2 L2[a; b];

�
��


2
T

1
2 (f; f); Mati�c et al. [8] for 
 � g(t) � �; t 2 [a; b];

�
(��
)(���)

4
; Gr�uss(see [9, pp. 295-310]); � � f � �; t 2 [a; b]:

(3.3)
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Dragomir [3] obtains numerous results if either f; g or both are known, although the �rst

inequality in (3.3) has a long history (see for example [9, pp. 295-310]. The inequalities

in (3.3) when proceeding from top to bottom are on order of decreasing coarseness.

The following theorem is valid.

Theorem 3. Let f : [a; b]! R be an absolutely continuous mapping and � � 0; � �

0; �+ � 6= 0 then����T (x; �; �) � (x� 
)
S

2

���� � (b� a)�(x)
h 1

b� a
kf 0k22 � S2

i 1
2

; f 0 2 L2[a; b];

� (b� a)�(x)
� � 


2
; 
 < f 0(t) < �; t 2 [a; b];

� (b� a)
�� 


4
; (3.4)

where, �(x; �; �) is as given by (2.3) or equivalently (2.10),


 =
�a+ �b

�+ �
; S =

f(b)� f(a)

b� a
; (3.5)

�2(x) =
1

3

h� �

�+ �

�2
(x� a) +

� �

�+ �

�2
(b� x)

i
�

� x� 


2(b� a)

�2
: (3.6)

Proof. Associating f(t) with P (x; t) and g(t) with f 0(t) then from (2.1) and (3.1)

we obtain

T (P (x; �); f 0(�)) =M(P (x; �); f 0(�))�M(P (x; �))M(f 0(�))

and so, on using identity (2.2),

(b� a)T (P (x; �); f 0(�)) = �(x; �; �) � (b� a)M(P (x; �))S (3.7)

where S is the secant slope of f over [a; b] as given in (3.5). Now, from (2.2),

(b� a)M(P (x; �)) =

Z b

a

P (x; t)dt

=
�

�+ �

Z x

a

t� a

x� a
dt�

�

�+ �

Z b

x

b� t

b� x
dt

= (x� 
)

Z 1

0

udu (3.8)

and combining with (3.6) gives the left hand side of (3.4).

Now, for the bounds on (3.7) from (3.3) we have to determine T
1
2 (P (x; �); P (x; �))

and � � P (x; �) � �. Firstly, we note however that

0 � T
1
2 (f 0(�); f 0(�)) = [M((f 0(�))2)�M2(f 0(�))]

1
2
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=
h 1

b� a

Z b

a

[f 0(t)]2dt�
�R b

a
f 0(t)dt

b� a

�2i 1
2

= [
1

b� a
kf 0k22 � S2]

1
2

�

��� 


2

�
; where 
 � f 0(t) � �; t 2 [a; b]: (3.9)

Now from (2.1), the de�nition of P (x; t), we have

T (P (x; �); P (x; �)) =M(P 2(x; �))�M2(P (x; �)) (3.10)

where from (3.8),

M(P (x; �)) =
x� 


2(b� a)
;

and

M(P 2(x; �)) =
� �

�+ �

�2 Z x

a

� t� a

x� a

�2
dt+

� �

�+ �

�2 Z b

x

� b� t

b� x

�2
dt

=
h� �

�+ �

�2
(x � a) +

� �

�+ �

�2
(b� x)

i Z 1

0

u2du:

Thus, substituting the above results into (3.10) gives

0 � �(x) = T
1
2 (P (x; �); P (x; �)) (3.11)

which is given explicitly by (3.6). Combining (3.7), (3.11) and (3.9) give, from the �rst

inequality in (3.3), the �rst inequality in (3.4). Also, utilising the inequality in (3.9)

produces the second result in (3.4).

Further, it may be noticed from the de�nition of P (x; t) in (2.1) that for �; � � 0

and � and � not zero at the same time give

� = sup
t2[a;b]

P (x; t) and � = inf
t2[a;b]

P (x; t);

giving � = �
�+�

and � = ��
�+�

.

Hence, from (3.7) and the last inequality in (3.3) gives the �nal result in (3.4) and

the theorem is now completely proved.

4. An Application to the Cumulative Distribution Function

Let X be a random variable taking values in the �nite interval [a; b] with cumulative

distribution function F (x) = Pr(X � x) =
R x
a
f(u)du, where f is a probability density

function. The following theorem holds.
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Theorem 4. Let X and F be as above. Then

j(�(b � x)� �(x� a))F (x) � (x� a)[(� + �)(b� x)f(x) � �]j

�

8>>><
>>>:
(b�x)(x�a)[�(x� a) + �(b� x)] �

kf 0k1
2

; f 0 2 L1[a; b];

(b�x)(x�a)[�q(x�a)+�q(b�x)]
1
q �

kf 0kp

(q+1)
1
q

; f 02Lp[a; b]; p>1; 1
p
+ 1

q
=1;

(b�x)(x�a)[�+ � + j�� �j] �
kf 0k1
2

; f 0 2 L1[a; b]:

(4.1)

Proof. The proof follows in a straightforward manner from (2.4) of Theorem 2.

Using (2.10) for T (x;�; �) and (2.11) we obtain on using the fact that
R b
a
f(u)du = 1

(�+ �)(x � a)(b� x)T (x;�; �)

= (�+ �)(x � a)(b� x)f(x) � [�(b� x)� �(x � a)]F (x) � �(x� a):

Thus,

�(�+ �)(x� a)(b� x)

�(b� x)� �(x � a)
T (x;�; �) = F (x) � (x� a)

h (�+ �)(b� x)f(x) � �

�(b� x)� �(x � a)

i

and so taking the modulus and using (2.4) gives the stated result.

Corollary 4. Let X be a random variable, F (x) to cumulative distribution function

and f(x) the probability density function. Then�����a+ b

2
� x

�
F (x) � (x� a)

h
(b� x)f(x) �

1

2

i����

�

8>>><
>>>:
(b� x)(x � a)(b� a) �

kf 0k1
2

; f 0 2 L1[a; b];

(b� x)(x � a)(b� a)
1
q �

kf 0kp

2(q+1)
1
q

; f 0 2 Lp[a; b]; p > 1; 1
p
+ 1

q
= 1;

(b� x)(x � a) �
kf 0k1
2

; f 0 2 L1[a; b]:

(4.2)

Remark 3. The above results allow the approximation of F (x) in terms of f(x).

The approximation of R(x) = 1� F (x) could also be obtained by a simple substitution.

R(x) is of importance in reliability theory where f(x) is the p.d.f. of failure.

Remark 4. We may take directly from (2:3) and (2:4) � = 0, assuming that � 6= 0,

to give

jF (x) � (x� a)f(x)j �

8>>><
>>>:

(x�a)2

2
kf 0k1; f 0 2 L1[a; b];

(x� a)1+
1
q �

kf 0kp

(q+1)
1
q

; f 0 2 Lp[a; b]; p > 1; 1
p
+ 1

q
= 1;

(x� a)kf 0k1; f 0 2 L1[a; b]

(4.3)

which agrees with (1:5) for j S(f ; a; x) j.
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Remark 5. The perturbed results of Section 3 could also be applied here, however,

this will not be pursued further.

Remark 6. We may replace f and F (see [1] for related results) in any of the

equations (4:1)� (4:3) so that the bounds are in terms of kf 0kp; p � 1. Further, we note

that Z b

a

F (u)du = uF (u)
ib
a
�

Z b

a

xf(x)dx = b�E[X ]:
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