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EXISTENCE OF SOLUTIONS FOR A CLASS OF p(x)-CURL SYSTEMS
ARISING IN ELECTROMAGNETISM WITHOUT
(A-R) TYPE CONDITIONS

GHASEM A. AFROUZI, NGUYEN THANH CHUNG AND Z. NAGHIZADEH

Abstract. In this paper, we study the existence and multiplicity of solutions for a class of
p(x)-curl systems arising in electromagnetism. Under suitable conditions on the non-
linearities which do not satisfy Ambrosetti-Rabinowitz (A-R) type conditions, we obtain
some existence and multiplicity results for the problem by using the mountain pass theo-
rem and fountain theorem. Our main results in this paper complement and extend some
earlier ones concerning the p(x)-curl operator in [4, 15].

1. Introduction

Motivated by the contributions on p(x)-curl operator in recent papers of Xiang et al. [15]
and Bahrouni et al. [4], in this paper we study the existence and multiplicity of solutions
for a class of stationary p(x)-curl systems arising in electromagnetism. Let Q be a bounded
simply connected domain of R® with a C'! boundary denoted by dQ. In what follows, vector
functions and spaces of vector functions will be denoted by boldface symbols. We will use
n to denote the outward unitary normal vector to 6Q2 and d, to denote the partial derivative
of function with respect to the variable x. Let w = (uy, Uy, u3) be a vector function on Q. In
order to introduce our problem precisely, we first give some notations. The divergence of w is
denoted by

V- =0y Uy +0y, Uy +0yx, Uz

and the curl of v is defined by
V x w = (0y, 3 — Ox, Uz, Ox, Us — O, Up, Ox, Up — Ox, Uy ) .
Then V x u and V - u satisfy the following identity

—-Au=Vx(Vxu)—V(V-u),
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where Au = (Auy,Auy,Aus) and Au; =V-(Vu;), i =1,2,3.

In this paper, we are interested in the existence of solutions for the following stationary
p(x)-curl systems

-V x (IVxulPM2Vu) = f(x,u), Vu=0inQ

(1.1)
IVxulPO2yxuxn=0, w-n=0ondQ,
where p € C, (Q) such that
6
—<p :=minp(x) < p* :=maxp(x) <3 1.2)
5 xeQ xeQ

and satisfies the logarithmic continuity, that is, there exists a function w : Rj — R such that
_ 1

Vx,yeQ, lx—-yl<l, |px)-pWi<wix-yl, lirgl w(r)log— = C < +00. (1.3)
7—0% T

In [15], Xiang et al. considered problem (1.1) in the case when the nonlinear term f
satisfies the conditions of Ambrosetti-Rabinowitz (A-R) type, that is, there exists > p™ such
that

0<uF(x,t)< f(x,t)-t (1.4)

for all x € Q and t € R3\{0}. Using the mountain pass theorem [1] and the minimum princi-
ple, they obtained existence results for both the sublinear and superlinear cases. Condition
(1.4) is a tool to study superlinear problems, it is a natural and useful condition to ensure the
mountain pass geometry and the Palais-Smale (P-S) condition. Our goal is to consider the
stationary p(x)-curl system (1.1) without Ambrosetti-Rabinowitz (A-R) type conditions. The
main tools are essentially based on the mountain pass theorem [1] and fountain theorem [14].
Our situation here is different from those presented by Bahrouni et al. [4] in which the authors
studied problem (1.1) by using the three critical points theorem due to Ricceri [13]. The study
of the existence of solutions for p(x)-curl systems is a new and interesting topic. To the best
of our knowledge, the only results involving the p(x)-curl operators can be found in [3, 4, 15].
For more information on the meaning of system (1.1) from physical point of view, we refer the
readers to some results on p-curl systems and their applications [2, 9].

2. Preliminaries

In order to state and prove the result of the paper in the next section, we recall in what
follows some definitions and basic properties of the generalized Lebesgue-Sobolev spaces
LPY) Q) and WLPX (Q) where Q is an open subset of RN. In that context, we refer to the
books [7, 10, 12] and the papers [4, 8, 11, 15]. Set

C.(Q):={h; he C(Q), h(x)>1forall x € Q}.
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Forany he C, (Q) we define

h™ =sup h(x) and h~ = inf h(x).

xeQ xeQ

For any p(x) € C, (Q), we define the variable exponent Lebesgue space
LPY(Q) = { u : a measurable real-valued function such that f lu(x)|PW dx < oo} .
Q

We recall the so-called Luxemburg norm on this space defined by the formula
px)
dx=<1;.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respects:

u(x)

Iule(x)(Q) = Iulp(x) = lnf{)l > 0; L

they are Banach spaces, the Holder inequality holds, they are reflexive if and onlyif 1 < p~ <
p* < +oo and continuous functions are dense if p* < +oo. The inclusion between Lebesgue
spaces also generalizes naturally: if 0 < |Q| < +0co0 and py, p» are variable exponents so that
p1(x) < p2(x) a.e. in Q then there exists the continuous embedding L2 Q) — L9 (Q). We
denote by LP' ™ (Q) the conjugate space of LPY)(Q), where ﬁ + ﬁ =1.Forany u e LPY(Q)
and v € L” ¥ (Q) the Holder inequalities

fuvdx
Q

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by
the modular of the LP™ (Q) space, which is the mapping p ) : LP™¥ (Q) — R defined by

1 1
= (F + (pT) |u|p(x)|vlp’(x) = 2|u|p(x)|v|p’(x)

hold true.

0 pi (1) =fQ|u|’”(’” dx.

If ue LPX(Q) and p* < +oo then the following relations hold

ul? o < Ppoo () < ulh @1
provided |u|p(y) > 1 while
provided |ulpx) <1 and
Iun—ulp(x) =0 % ppw(up—u)—0. (2.3)

IfpeCy (Q) the variable exponent Sobolev space wbhr) (), consisting of functions u €
LPW (Q) whose distributional gradient Vu exists almost everywhere and belongs to [LP™ (Q)]V,

dxsl}

endowed with the norm

lul := inf{)t > 0; f
Q

p(x) p(x)

Vu(x)
A

u(x)

A
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or

lull = |u|p(x) + |vu|p(x)»

is a separable and reflexive Banach space. The space of smooth functions are in general not
dense in WHP®X (Q), but if the exponent p € Cy Q) is logarithmic Holder continuous, that is,

1
Vx,yeQ, |x—-yl=s-,

Ip(x)—pyl= 5

M
log(lx—yl)’
then the smooth functions are dense in W»P™ (Q). The space (Wl'pm ), | II) is a separable
and Banach space.

Proposition 2.1 (see [8, Theorem 2.3]). Ifp,q € C(Q),1< p <p*<3andl<q(x)<p*(x)=

33_”;3) for all x € Q then the embedding

whPW(Q) — L%
is continuous and compact.
Let LPY (Q) = [LPW ()13, WP (Q) = [WLPX) (Q)]3 and define
WPY = fye LPY(Q): Vxue LPY(Q), V-u =0, u-nlsg =0},
where n denotes the outward unitary normal vector to 0Q. Equip W7 ) () with the norm
lwllywreo ) = lull pro ) + IV x wll pre -

Ifp~>1, WPX(Q) is a closed subspace of W,’f @) (©Q), where

WY@ = fue WHPW(Q): u-nlog = 0}.

Proposition 2.2 (see [3, Theorem 2.1]). Ifp € C, Q) satisfies 1 < p~ < p* < 400 and (1.3),
then the embedding WP (Q) is a closed subspace of W,y?™ (Q). Moreover, if p~ > S then
IV x|l prw ) isanormin W,ll'p(x) (Q) and there exists C= C(N,p~, p™) > 0 such that

||U||W1.p(x) Q) =< CIIV X ’U/”Ls(x) Q-

Remark 2.3. By Proposition 2.1 and Proposition 2.2, the embedding W1P¥ (Q) — L99(Q) is

3p(x)
3-px)

compact, with1<p~ <p*<3,qe C(Q)and1< qx)<p*(x)= for all x € Q. Moreover,

(WLPL/(Q), |I.lly1pw ) s a reflexive and Banach space.

3. Main results

In order to state the main results of the paper, let us introduce the following hypotheses
on the structure of the problem
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(H)) F:QxR3— Ris differentiable with respecttote R3 such that f=0.F(x,t):Qx R3S - R3
is a continuous function;

3p(x)

() for all x € Q

(H) There exists a constant C >0, g € C(Q) and px)<qx)<p*x)=
such that

If ()< CA+[ET97Y), V(x,t) e QxRS

(H3) %in(l) I{I(lﬁﬂ = 0 uniformly in x € Q;

(Hy) |t|lim Iit(l’;f) = 400 uniformly in x € Q;
—+00

(Hs) There exists 6 = 1 such that 0.Z (x,t) = Z (x,7t) for all (x,t) € Q x R3 and all 7 € [0, 1],
where & (x,t) = f(x,t)-t— p*F(x,t).

Definition 3.4. We say that u € WP (Q) is a weak solution for problem (1.1) if
f IV x u|PP 72V x -V x 'vdx—f fx,u)-vdx=0
Q Q
for all v e WP (Q).
Let us consider the functional J: W”™(Q) — R defined by
1
J(u) :f —— |V x u|PW dx—f F(x,u)dx. (3.1
a px) Q

Using condition (H») and Remark 2.3, with the same arguments as those used in [15] we can
show that J € C'(WP™ (Q),R) and its derivative is given by

J(u)(v)zf |V><u|p(X)_2qu-Vx'vdx—f flx,w-vdx
Q Q

for all u,v € WP™(Q). Hence, we can find weak solutions of problem (1.1) as the critical
points of the functional J in the space WP (Q).

The main results of this paper is given by the following theorems.

Theorem 3.5. Assume that the conditions (1.2), (1.3) and the hypotheses (H,)—(Hs) hold, then
problem (1.1) has at least one non-trivial weak solution.

Theorem 3.6. Assume that the conditions (1.2), (1.3) and the hypotheses (H,)—(Hs) hold. More-
over, we assume that

(Hg) f(x,—t)=—-F(x,t) forallxe Q andallt e R3.

Then problem (1.1) has a sequence of weak solutions {+uy} such that J(xuy) — +oo as k — co.
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Througout this section, we alway assume that the conditions (1.2), (1.3), (H;)-(Hs) hold.

We also denote by c; a general positive real number whose value may change from line to line.

Lemma 3.7. There exist some constants p,a > 0 such that J(u) = a for all u € WP™ (Q) with

||U||Wp(x)(Q) =p.

Proof. From (H>) and (Hj3), for any € > 0, there exists a positive constant c(¢) depending on €
such that
IF(x,B) <eltl” +c@t|7™, V(x,t)eQxR°. (3.2)

Since the embeddings WPY Q) — LP'(Q) and WP® (Q) — LI®(Q) are continuous and

compact, there exist constants cy, ¢z > 0 such that
lull o ) < llullyon@), Ul paq < lulwoq, Yue WPH@).  33)

Let0O<e< #, where c; is given by (3.3). From (3.2) and (3.3), for all u € WP™ (Q) with

pro
lwllyyreo ) < 1, using Remark 2.3 we have

](’u)=f L|qu|l7mdx_f F(x,u)dx
Q Q

p(x)
1 + .
> —ul? . —e/ lulP dx—c(e)f |99 dx
P+ WP (Q) Q Q
1 + + + - -
i P _ P P _ q q
= o IIuIIW,,m(Q) €c IIuIIW,,m(Q) cle)c, IIuIIW,,(x)(Q)
qa-p*

1 a- P
> ——C((:')Cz "u”WP(X)(Q) ”u”Wp(")(Q)'

2p*

From the above information, we can choose a > 0 and p > 0 so that J(u) = a > 0 for all
u e Wp(x) Q) with ||U||Wp(x) Q) = P- Od

Lemma 3.8. There exists a function e € WPX(Q) with lellwrw ) > p such that J(e) < 0,

where p is given by Lemma 3.7.

Proof. From (H,), it follows that for any M > 0 there exists a constant cy; = ¢(M) > 0 depend-

ing on M, such that
Flx,t) = M[t|P —cy, forae xeQ, VteR®. (3.4)

Take ¢ € [C°(Q)]® with ¢ > 0, from (3.4) and the definition of J, we get
1
Ja o) =f —— |V x (t)|P™ dx—/ F(x,7¢)dx
o pXx) Q

P p* .
== ||¢||WM(Q)—MfQ|T¢|p dx+cylQ
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+ 1 + +
STp F”q')”evp(x)(g)_MLl(ﬁlp dx)+CM|Q|r

where 7 > 1 is large enough and |Q| denotes the Lebesgue measure of Q. From this, if M is

large enough such that
1 + +
I p _ p
el LN MfQ B dx <0,

then we have lim;_. ;o /(T ) = —co. Therefore, there exists e € WP™ (Q) with [lellyypo0(q) > p
such that J(e) < 0, where p is given by Lemma 3.7. O

Lemma 3.9. The functional ] satisfies the Cerami condition.
Proof. For all c € R, let {u,} € WPX (Q) be such that

J(u,) — ¢, (1 + ||un||Wp(x)(Q))]’(un) — 0as n— oo. 3.5)

Then we have
J(uy) =c+o,(1), ],(un)(un) =o0,(1). (3.6)

where 0, (1) — 0 as n — oo.

We will show that {u,} is bounded in WPW(Q) by contradiction. Indeed, if {u,} is un-

bounded, then up to a subsequence, we may assume that ||u, |y pwq) — +00 as n — co.

Unp

Put w, = for all n € N. Clearly, [w,llyroq) =1 for all n € N, then there exists

lle,, wpr) (o)
w € WPX(Q) such that, up to a subsequence, still denoted by {w,}, we have w,, converges

weakly to some function w in WP (Q) and

wy(x) — w(x) a.e. inQ, n— oo, 3.7
w, — w strongly in LYY (Q), n — oo, (3.8)
wy, — w strongly in L7 (Q), n— oo. 3.9

LetQy :={x€Q: w(x) # 0}. If x € Q4 then it follows from (3.7) that |u, (x)| = |w, () wsllywrw q) —
+00 as n — oco. Moreover, from (Hy), we have

F(x,u,(x))

i w,(0)P =400, x€Qy. (3.10)
e T 0! g
Using again the condition (Hy), there exists 6 > 0 such that

F(x,t)
1P

(3.11)

for all x € Q and |t| > § > 0. Since F(x,t) is continuous on Q x [|t| < 8], there exists a positive
constant c3 such that
|F(x,t)| < c3 (3.12)
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for all (x,t) € Q x [|t| < 8]. From (3.11) and (3.12) there exists ¢, € R such that
F(x,t)=cy

for all (x,t) € Q x R3. From (3.13), for all x € Q and n, we have

F(x,u,(x))—ca -

p* =0
lnly o
> F(x, wy (1))
X, U, (x N c
7np+|’wn(x)|p - pf >0, VxeQ, Vn.
[un (2] [P LA

By (3.6), we have

c=J(uy)+o,(1)

1 _
> Fllunllev,,(x](m—fQF(x,un)dx+on(1),

which implies that

1 _
fQF(x,un)dxz F"un”evp(x)(g) —c+0,(1) = +o0 as n — oo.

We also have

c=J(uy)+o,(1)

1 +
< Fllunlla,pm(m—fQF(x,un)dx+on(1)

and by (3.15),

||un||€;p(x)m) > p‘fQF(x,un) dx+ p~c—o(1) >0 for n large enough.

(3.13)

(3.14)

(3.15)

(3.16)

Next, we will claim that [Q| = 0. In fact, if Q4] # 0, then by relations (3.10), (3.14), (3.16) and

the Fatou lemma, we have

+00 = (+00)[Q|

F(x,u,(x . C
= liminf(—"(+))|'Lv,,(x)|’7+ dx— | limsup :
Q, "m0 |up(x)|P Qz n—oo ||un||€vmx)(9)
.| Flx,ug,(x) + c
= hmlnf(ﬁlfwn(xnp —p—f dx
Q, n—oo u,(x
# n ”un”WF’(X)(Q)
. F(x,u,(x)) + c
<liminf —nwlfwn(x)lp —p—f dx
oo Ja, |'U,n(x)| ||Un”Wp(x)(Q)
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. F(x,up(x) + c

<liminf P w, (0P - f dx
n=co Jo | |un(x)|P [T [
. F(x,un(x)) . c

= liminf p—f' dx—limsup pf dx
oo Ja ”u"”WP(’”(Q) n—oo JQ ”un"Wp(’”(Q)

F(x,u,(x
= liminf de

- p*
"0 gy

liming Jo Fx,upn(x) dx
~ n—oo p—fQF(x,un)dx+p_C—0(1).

Combining this with (3.15), we obtain
+00 < —
p
which is a contradiction. This shows that [Q| = 0 and thus w(x) =0 a.e. in Q.

Since the function 7 — J(tu,,) is continuous in 7 € [0, 1], for each n there exists 7, € [0, 1]
such that

JT,uy) = max J(tuy,), n=1,2,.. (3.17)
7€[0,1]

Clearly, 7, >0 and J(t,u,) = ¢ > 0= J(0) = J(0.uy). If 7,, <1 then %](Tun)lrzrn = 0 which
gives J' (T ) (Touy,) =0. If T, = 1, then J'(u,) (u,) = o(1). So we always have

]/(Tnun)(Tnun) =o(1). (3.18)

Now, let us fix k = 1 so that [|ugllyyrw ) > 1 and define the sequence {w,} by the following
formula .

wy = (2p+||uk||€[;p(x)(ﬂ)) " wy, n=12,.. (3.19)

Fix k, since w, — 0 strongly in the spaces L7™(Q) and LP (Q) as n — oo, using (3.2), we
deduce that

U F(x,w,)dx
Q

SEfQIEnI’f dx+c(€)fg|ﬁn|‘7(x) dx — 0as n— oo. (3.20)

Since [|u, |lyrw ) — +oo as n — oo, we can find a constant n; > k depending on k such that

1
+ p- -
(20" 1wl )

1wl pe (o))

<1 forall n> ny. (3.21)

Hence,

- L
(20" 1y )

J@puy) =] u,
1wl peo Q)
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=J(wp)

= waw P9 dx — F(x,m )dx
Japx) "

>—f Ikl - 2P )7 IV xw, 79 dx - fF(x,En)dx
= 2wl 0y~ [ FOo ) dx

> [kl 0

for any n > nj > k large enough.

On the other hand, by (Hs), relation (3.18) and the fact that 6 = 1, for all n > ny > k large
enough, we have

1
J@puy) =JTuy) — F]/(Tnun)('[nun) +0,(1)
:f L|V>< (Tpupy) PP dx—f F(x,T,u,)dx
Q px) Q
- %f |V x (Tnun)|p(X) dx+ %f .f(xr TpUy) - (Tpuy)dx+o,(1)
Q p Q

_f (L_L)wx(r w,) P dx+i+fff(x,rnun)dx

px) p*
s@f (L—i)lvxu P9 dx+ — fff(x u,)dx+o0,(1)
px) p*
=0 filvxunlp fF(x,un)dx
a px) Q

—F(LIV><unlp(x)dx—fﬂf(x,un)-undx)+0n(1)

o
=0](u,)— _+] (wp)(uy) +0,(1)
p
— @casn— oo,
which is a contradiction since J(r,u,) — +oo as n — oo. This ensures that the sequence {u,}

is bounded in WP® (Q).

Now, since the Banach space WPW (Q) is reflexive, there exists u € WP”™ (Q) such that
passing to a subsequence, still denoted by {u,}, it converges weakly to u in W”™ (Q) and
converges strongly to u in the spaces LI%(Q). Using the condition (H>) and the Holder in-
equality, we deduce that

U fx,uy) - (u,—uw)dx
Q

Sf lf Ccup)llu, —uldx
Q

< cf (1 +|wp 79 Y, —uldx
Q
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-1
< 6 (1o + |1l 7

Lfl’(")(Q)) [t = Ul o)

— 0asn— oo,

which yields
lim f flx,uy) - (u,—uw)dx=0. 3.22)
Q

n—oo
From (3.22) and the fact that

lim J' () (up =) = 0
we get

lim/ IV x u, PP 2V xu, - (Vxu, -V xu)dx=0. (3.23)
Q

n—oo
Now, using similar arguments as in the proof of [15, Lemma 3.3] we can show that the se-
quence {u,} converges strongly to w in WP (Q) and the functional J satisfies the (C.) con-
dition for any ¢ > 0. The proof of Lemma 3.9 is complete. O

Proof of Theorem 3.5. By Lemmas 3.7-3.9, the functional J satisfies all the assumptions of the
mountain pass theorem [1]. Then we deduce a function u € W™ (Q) as a non-trivial critical

point of J with J(u) = ¢ > 0 and thus a non-trivial weak solution of problem (1.1). O

Because WPW (Q) is a reflexive and separable Banach space, there exist {e;} ¢ WPE(Q)
and {e}?} c (WPX(Q))* such that

WP Q) =spanfej: j=1,2,...}, (WPP Q)" =spanie]: j=12,..},

and

> 1, ifi=j,

<e,~,e;f =
0, ifi#j.

For convenience, we write X; = spanfej}, Yy = GB]]?:IX jand Z; = 69‘]?‘; kX j. We first have the
following lemma which will be used in the proof of our multiplicity result.

Lemma 3.10. Ifa € C,(Q), a(x) < p*(x) for all x € Q denote
Bi = sup{lulpew )t lullwrwq) =1, ue Zf,
thenlimg_ o, Br = 0.

Proposition 3.11 (see [14, Fountain theoreml]). Assume that (X, ||.|) is a separable Banach
space, ] € CY(X,R) is an even functional satisfying the (PS) condition. Moreover, for each k =
1,2,..., there exist py > ry > 0 such that

(A1) infyez: juj=ry J (W) — 400 as k — oo;
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(A2) maxey;: jul=pp J (W) =0
Then J has a sequence of critical values which tends to +oo.

Proof of Theorem 3.6. According to (Hg) and Lemma 3.9, J is an even functional and satisfies
the (Ce) condition. We will prove Theorem 3.6 by using the fountain theorem, see Proposition
2.1. Indeed, we will show that if k is large enough, then there exist py > rr > 0 such that (A;)
and (A,) hold. Thus, the assertion of conclusion can be obtained.

(A1): Using (3.1), for any u € Z,

J(u) =f LI dx-f Flx,u) dx
o px) Q

1 _
> Fllullfvpm(g) —C7L(|u|+|u|q(x))dx

1 q©)

> — IIuIIWp(X](Q) cSIulq(x) — cgllullyyrw ), where ¢ € Q

pt
1 .
> { p_”u”Wp(x)(Q) Cg— 08||U||Wn(xJ(Q) if [ul oo <1,

1 q’ .
p—IIUIIWM( — sy IIuIIW,g(X)(Q cgllullyyrw q) if [ulpawq) <1

1
> —|lul?

p+ WP (Q) CSﬂ ” u”Wp(x) ) —Cg ”u”Wp(x) «Q — Cg,

where
ﬁk =Ssup {|U|La(x) Q) - ”u”Wp(x)(Q) =1, ue Zk} (3.24)
1
Now, for any u € Z, lullyypw ) = e = (qu+ Ji ) 77 we have
Ju)z — ||u||W,,m @~ BE Uy, — callullwr o) = cs

- at

! (6867 ,Bq) — csf] (0867 By ),, -

P
N\
—cg (0867+,3q ),, " —cg
(2 s
pt qr
which tends to +oo as k — +oo, because p* < g~ < g(x) < p*(x) and B — 0 as k — oo, see
Lemma 3.10.

(A2): By (3.1), for any v € Y with [[9[lyypw ) = 1 and £ > 1, we have
1
J(T) =/ —IVx (th)|PW dx—/ F(x,T)dx
Q

<—||T¢||pr)(Q Mfﬂhqpvf dx+cp1Q|
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+ 1 + +
=7 | =915 —Mf| I dx)+cM|Q|.
p_ "p Wp( )(Q) o 1/)
Let us choose M > 0 large enough such that

1 + N
- p - p
el LA M/Qh,bl dx <0,

we then deduce that lim;_. . J(79) = —co. Hence, there exists 7 > r; > 1 large enough such
that J(r1)) < 0 and thus, if we set p;. = T we conclude that

bk = max ](u) =0.
{ueYk: el yy peo) ) =Pk

Conclusion of Theorem 3.6 is reached by the fountain theorem. O
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