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EXISTENCE OF SOLUTIONS FOR A CLASS OF p(x)-CURL SYSTEMS

ARISING IN ELECTROMAGNETISM WITHOUT

(A-R) TYPE CONDITIONS

GHASEM A. AFROUZI, NGUYEN THANH CHUNG AND Z. NAGHIZADEH

Abstract. In this paper, we study the existence and multiplicity of solutions for a class of

p(x)-curl systems arising in electromagnetism. Under suitable conditions on the non-

linearities which do not satisfy Ambrosetti-Rabinowitz (A-R) type conditions, we obtain

some existence and multiplicity results for the problem by using the mountain pass theo-

rem and fountain theorem. Our main results in this paper complement and extend some

earlier ones concerning the p(x)-curl operator in [4, 15].

1. Introduction

Motivated by the contributions on p(x)-curl operator in recent papers of Xiang et al. [15]

and Bahrouni et al. [4], in this paper we study the existence and multiplicity of solutions

for a class of stationary p(x)-curl systems arising in electromagnetism. Let Ω be a bounded

simply connected domain of R3 with a C 1,1 boundary denoted by ∂Ω. In what follows, vector

functions and spaces of vector functions will be denoted by boldface symbols. We will use

n to denote the outward unitary normal vector to ∂Ω and ∂x to denote the partial derivative

of function with respect to the variable x. Let u = (u1,u2,u3) be a vector function on Ω. In

order to introduce our problem precisely, we first give some notations. The divergence ofu is

denoted by

∇·u= ∂x1
u1 +∂x2

u2 +∂x3
u3

and the curl of u is defined by

∇×u=
(

∂x2
u3 −∂x3

u2,∂x2
u3 −∂x3

u2,∂x1
u2 −∂x2

u1

)

.

Then ∇×u and ∇·u satisfy the following identity

−∆u=∇× (∇×u)−∇(∇·u),
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where ∆u= (∆u1,∆u2,∆u3) and ∆ui =∇· (∇ui ), i = 1,2,3.

In this paper, we are interested in the existence of solutions for the following stationary

p(x)-curl systems







−∇×
(

|∇×u|p(x)−2∇u
)

=f (x,u), ∇u= 0 in Ω

|∇×u|p(x)−2∇×u×n= 0, u ·n= 0 on ∂Ω,
(1.1)

where p ∈C+(Ω) such that

6

5
< p− := min

x∈Ω
p(x)≤ p+ := max

x∈Ω

p(x) < 3 (1.2)

and satisfies the logarithmic continuity, that is, there exists a function w : R+
0 →R

+
0 such that

∀x, y ∈Ω, |x − y | < 1, |p(x)−p(y)| ≤ w (|x − y |), lim
τ→0+

w (τ) log
1

τ
=C <+∞. (1.3)

In [15], Xiang et al. considered problem (1.1) in the case when the nonlinear term f

satisfies the conditions of Ambrosetti-Rabinowitz (A-R) type, that is, there exists µ> p+ such

that

0 <µF (x,t)≤ f (x,t) ·t (1.4)

for all x ∈ Ω and t ∈ R
3\{0}. Using the mountain pass theorem [1] and the minimum princi-

ple, they obtained existence results for both the sublinear and superlinear cases. Condition

(1.4) is a tool to study superlinear problems, it is a natural and useful condition to ensure the

mountain pass geometry and the Palais-Smale (P-S) condition. Our goal is to consider the

stationary p(x)-curl system (1.1) without Ambrosetti-Rabinowitz (A-R) type conditions. The

main tools are essentially based on the mountain pass theorem [1] and fountain theorem [14].

Our situation here is different from those presented by Bahrouni et al. [4] in which the authors

studied problem (1.1) by using the three critical points theorem due to Ricceri [13]. The study

of the existence of solutions for p(x)-curl systems is a new and interesting topic. To the best

of our knowledge, the only results involving the p(x)-curl operators can be found in [3, 4, 15].

For more information on the meaning of system (1.1) from physical point of view, we refer the

readers to some results on p-curl systems and their applications [2, 9].

2. Preliminaries

In order to state and prove the result of the paper in the next section, we recall in what

follows some definitions and basic properties of the generalized Lebesgue-Sobolev spaces

Lp(x) (Ω) and W 1,p(x) (Ω) where Ω is an open subset of RN . In that context, we refer to the

books [7, 10, 12] and the papers [4, 8, 11, 15]. Set

C+(Ω) := {h; h ∈C (Ω),h(x) > 1 for all x ∈Ω}.
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For any h ∈C+(Ω) we define

h+
= sup

x∈Ω

h(x) and h−
= inf

x∈Ω
h(x).

For any p(x)∈C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{

u : a measurable real-valued function such that

∫

Ω

|u(x)|p(x) d x <∞

}

.

We recall the so-called Luxemburg norm on this space defined by the formula

|u|Lp(x)(Ω) = |u|p(x) := inf

{

λ> 0;

∫

Ω

∣

∣

∣

∣

u(x)

λ

∣

∣

∣

∣

p(x)

d x ≤ 1

}

.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respects:

they are Banach spaces, the Hölder inequality holds, they are reflexive if and only if 1 < p− ≤

p+ < +∞ and continuous functions are dense if p+ < +∞. The inclusion between Lebesgue

spaces also generalizes naturally: if 0 < |Ω| < +∞ and p1, p2 are variable exponents so that

p1(x) ≤ p2(x) a.e. in Ω then there exists the continuous embedding Lp2(x)(Ω) ,→ Lp1(x)(Ω). We

denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1
p(x)

+
1

p′(x)
= 1. For any u ∈ Lp(x)(Ω)

and v ∈ Lp′(x)(Ω) the Hölder inequalities
∣

∣

∣

∣

∫

Ω

uv d x

∣

∣

∣

∣

≤

(

1

p−
+

1

(p ′)−

)

|u|p(x)|v |p′(x) ≤ 2|u|p(x)|v |p′(x)

hold true.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by

the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) →R defined by

ρp(x)(u)=

∫

Ω

|u|
p(x) d x.

If u ∈ Lp(x)(Ω) and p+ <+∞ then the following relations hold

|u|
p−

p(x)
≤ ρp(x)(u)≤ |u|

p+

p(x)
(2.1)

provided |u|p(x) > 1 while

|u|
p+

p(x)
≤ ρp(x)(u)≤ |u|

p−

p(x)
(2.2)

provided |u|p(x) < 1 and

|un −u|p(x) → 0 ⇔ ρp(x)(un −u)→ 0. (2.3)

If p ∈C+(Ω) the variable exponent Sobolev space W 1,p(x)(Ω), consisting of functions u ∈

Lp(x)(Ω) whose distributional gradient∇u exists almost everywhere and belongs to [Lp(x) (Ω)]N ,

endowed with the norm

‖u‖ := inf

{

λ> 0;

∫

Ω

[

∣

∣

∣

∣

∇u(x)

λ

∣

∣

∣

∣

p(x)

+

∣

∣

∣

∣

u(x)

λ

∣

∣

∣

∣

p(x)
]

d x ≤ 1

}
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or

‖u‖= |u|p(x) +|∇u|p(x) ,

is a separable and reflexive Banach space. The space of smooth functions are in general not

dense in W 1,p(x)(Ω), but if the exponent p ∈C+(Ω) is logarithmic Hölder continuous, that is,

|p(x)−p(y)| ≤ −
M

log(|x − y |)
, ∀x, y ∈Ω, |x − y | ≤

1

2
,

then the smooth functions are dense in W 1,p(x)(Ω). The space
(

W 1,p(x)(Ω),‖.‖
)

is a separable

and Banach space.

Proposition 2.1 (see [8, Theorem 2.3]). If p, q ∈C (Ω), 1 < p− ≤ p+ < 3 and 1 ≤ q(x) < p∗(x) =
3p(x)

3−p(x) for all x ∈Ω then the embedding

W 1,p(x)(Ω) ,→ Lq(x)(Ω)

is continuous and compact.

LetLp(x)(Ω) = [Lp(x)(Ω)]3,W 1,p(x)(Ω) = [W 1,p(x)(Ω)]3 and define

W p(x)
=

{

u ∈Lp(x)(Ω) : ∇×u ∈Lp(x)(Ω), ∇·u= 0, u ·n|∂Ω = 0
}

,

wheren denotes the outward unitary normal vector to ∂Ω. EquipW p(x)(Ω) with the norm

‖u‖W p(x)(Ω) =‖u‖Lp(x)(Ω) +‖∇×u‖Lp(x)(Ω).

If p− > 1,W p(x)(Ω) is a closed subspace ofW
p(x)
n (Ω), where

W
p(x)
n (Ω) =

{

u ∈W 1,p(x)(Ω) : u ·n|∂Ω = 0
}

.

Proposition 2.2 (see [3, Theorem 2.1]). If p ∈ C+(Ω) satisfies 1 < p− ≤ p+ < +∞ and (1.3),

then the embedding W 1,p(x)(Ω) is a closed subspace of W
1,p(x)
n (Ω). Moreover, if p− > 6

5
then

‖∇× .‖Lp(x)(Ω) is a norm inW
1,p(x)
n (Ω) and there exists C =C (N , p−, p+) > 0 such that

‖u‖W 1,p(x)(Ω) ≤C‖∇×u‖Ls(x)(Ω).

Remark 2.3. By Proposition 2.1 and Proposition 2.2, the embeddingW 1,p(x)(Ω) ,→Lq(x)(Ω) is

compact, with 1 < p− ≤ p+ < 3, q ∈C (Ω) and 1 ≤ q(x) < p∗(x) =
3p(x)

3−p(x) for all x ∈Ω. Moreover,
(

W 1,p(x)(Ω),‖.‖W 1,p(x)(Ω)

)

is a reflexive and Banach space.

3. Main results

In order to state the main results of the paper, let us introduce the following hypotheses

on the structure of the problem
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(H1) F : Ω×R
3 →R is differentiable with respect to t ∈R

3 such that f = ∂tF (x,t) : Ω×R
3 →R

3

is a continuous function;

(H2) There exists a constant C > 0, q ∈ C (Ω) and p(x) < q(x) < p∗(x) =
3p(x)

3−p(x) for all x ∈ Ω

such that

|f (x,t)| ≤C (1+|t|q(x)−1), ∀(x,t) ∈Ω×R
3;

(H3) lim
t→0

f (x,t)

|t|p
+−1

= 0 uniformly in x ∈Ω;

(H4) lim
|t|→+∞

F (x,t)

|t|p
+ =+∞ uniformly in x ∈Ω;

(H5) There exists θ ≥ 1 such that θF (x,t) ≥ F (x,τt) for all (x,t) ∈ Ω×R
3 and all τ ∈ [0,1],

where F (x,t) = f (x,t) ·t−p+F (x,t).

Definition 3.4. We say thatu ∈W p(x)(Ω) is a weak solution for problem (1.1) if

∫

Ω

|∇×u|p(x)−2
∇×u ·∇×vd x −

∫

Ω

f (x,u) ·vd x = 0

for all v ∈W p(x)(Ω).

Let us consider the functional J :W p(x)(Ω) →R defined by

J(u) =

∫

Ω

1

p(x)
|∇×u|p(x) d x −

∫

Ω

F (x,u)d x. (3.1)

Using condition (H2) and Remark 2.3, with the same arguments as those used in [15] we can

show that J ∈C 1(W p(x)(Ω),R) and its derivative is given by

J(u)(v) =

∫

Ω

|∇×u|p(x)−2
∇×u ·∇×vd x −

∫

Ω

f (x,u) ·vd x

for all u,v ∈W p(x)(Ω). Hence, we can find weak solutions of problem (1.1) as the critical

points of the functional J in the spaceW p(x)(Ω).

The main results of this paper is given by the following theorems.

Theorem 3.5. Assume that the conditions (1.2), (1.3) and the hypotheses (H1)−(H5) hold, then

problem (1.1) has at least one non-trivial weak solution.

Theorem 3.6. Assume that the conditions (1.2), (1.3) and the hypotheses (H1)−(H5) hold. More-

over, we assume that

(H6) f (x,−t) =−f (x,t) for all x ∈Ω and all t ∈R
3.

Then problem (1.1) has a sequence of weak solutions {±uk } such that J(±uk )→+∞ as k →∞.
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Througout this section, we alway assume that the conditions (1.2), (1.3), (H1)-(H5) hold.

We also denote by ci a general positive real number whose value may change from line to line.

Lemma 3.7. There exist some constants ρ,α> 0 such that J(u) ≥ α for all u ∈W p(x)(Ω) with

‖u‖W p(x)(Ω) = ρ.

Proof. From (H2) and (H3), for any ǫ> 0, there exists a positive constant c(ǫ) depending on ǫ

such that

|F (x,t)| ≤ ǫ|t|p
+

+c(ǫ)|t|q(x) , ∀(x,t) ∈Ω×R
3. (3.2)

Since the embeddings W p(x)(Ω) ,→ Lp+

(Ω) and W p(x)(Ω) ,→ Lq(x)(Ω) are continuous and

compact, there exist constants c1,c2 > 0 such that

‖u‖Lp+ (Ω) ≤ c1‖u‖W p(x)(Ω), ‖u‖Lq(x)(Ω) ≤ c2‖u‖W p(x)(Ω), ∀u ∈W p(x)(Ω). (3.3)

Let 0 < ǫ < 1

2p+c
p+

1

, where c1 is given by (3.3). From (3.2) and (3.3), for all u ∈W p(x)(Ω) with

‖u‖W p(x)(Ω) < 1, using Remark 2.3 we have

J(u) =

∫

Ω

1

p(x)
|∇×u|p(x) d x −

∫

Ω

F (x,u)d x

≥
1

p+
‖u‖

p+

W p(x)(Ω)
−ǫ

∫

Ω

|u|p
+

d x −c(ǫ)

∫

Ω

|u|q(x) d x

≥
1

p+
‖u‖

p+

W p(x)(Ω)
−ǫc

p+

1 ‖u‖
p+

W p(x)(Ω)
−c(ǫ)c

q−

2 ‖u‖
q−

W p(x)(Ω)

≥

(

1

2p+
−c(ǫ)c

q−

2 ‖u‖
q−−p+

W p(x)(Ω)

)

‖u‖
p+

W p(x)(Ω)
.

From the above information, we can choose α > 0 and ρ > 0 so that J(u) ≥ α > 0 for all

u ∈W p(x)(Ω) with ‖u‖W p(x)(Ω) = ρ. ���

Lemma 3.8. There exists a function e ∈W p(x)(Ω) with ‖e‖W p(x)(Ω) > ρ such that J(e) < 0,

where ρ is given by Lemma 3.7.

Proof. From (H4), it follows that for any M > 0 there exists a constant cM = c(M )> 0 depend-

ing on M , such that

F (x,t) ≥ M |t|p
+

−cM , for a.e. x ∈Ω, ∀t ∈R
3. (3.4)

Takeφ ∈ [C∞
0 (Ω)]3 withφ> 0, from (3.4) and the definition of J , we get

J(τφ) =

∫

Ω

1

p(x)
|∇× (τφ)|p(x) d x −

∫

Ω

F (x,τφ)d x

≤
τp+

p−
‖φ‖

p+

W p(x)(Ω)
−M

∫

Ω

|τφ|p
+

d x +cM |Ω|
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≤ τp+

(

1

p−
‖φ‖

p+

W p(x)(Ω)
−M

∫

Ω

|φ|p
+

d x

)

+cM |Ω|,

where τ > 1 is large enough and |Ω| denotes the Lebesgue measure of Ω. From this, if M is

large enough such that
1

p−
‖φ‖

p+

W p(x)(Ω)
−M

∫

Ω

|φ|p
+

d x < 0,

then we have limτ→+∞ J(τφ) =−∞. Therefore, there exists e ∈W p(x)(Ω) with ‖e‖W p(x)(Ω) > ρ

such that J(e) < 0, where ρ is given by Lemma 3.7. ���

Lemma 3.9. The functional J satisfies the Cerami condition.

Proof. For all c ∈R, let {un} ⊂W p(x)(Ω) be such that

J(un) → c ,
(

1+‖un‖W p(x)(Ω)

)

J ′(un) → 0 as n →∞. (3.5)

Then we have

J(un ) = c +on(1), J ′(un)(un) = on(1). (3.6)

where on(1) → 0 as n →∞.

We will show that {un} is bounded in W p(x)(Ω) by contradiction. Indeed, if {un } is un-

bounded, then up to a subsequence, we may assume that ‖un‖W p(x)(Ω) → +∞ as n → ∞.

Put wn =
un

‖un‖W p(x) (Ω)

for all n ∈ N. Clearly, ‖wn‖W p(x)(Ω) = 1 for all n ∈ N, then there exists

w ∈W p(x)(Ω) such that, up to a subsequence, still denoted by {wn}, we have wn converges

weakly to some functionw inW p(x)(Ω) and

wn(x) →w(x) a.e. in Ω, n →∞, (3.7)

wn →w strongly inLq(x)(Ω), n →∞, (3.8)

wn →w strongly inLp+

(Ω), n →∞. (3.9)

LetΩ6= := {x ∈Ω : w(x) 6= 0}. If x ∈Ω6= then it follows from (3.7) that |un(x)| = |wn(x)|‖un‖W p(x)(Ω) →

+∞ as n →∞. Moreover, from (H4), we have

lim
m→∞

F (x,un(x))

|un(x)|p
+ |wn(x)|p

+

=+∞, x ∈Ω6=. (3.10)

Using again the condition (H4), there exists δ> 0 such that

F (x,t)

|t|p
+

> 1 (3.11)

for all x ∈Ω and |t| > δ> 0. Since F (x,t) is continuous on Ω× [|t| ≤ δ], there exists a positive

constant c3 such that

|F (x,t)| ≤ c3 (3.12)
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for all (x,t) ∈Ω× [|t| ≤ δ]. From (3.11) and (3.12) there exists c4 ∈R such that

F (x,t)≥ c4 (3.13)

for all (x,t) ∈Ω×R
3. From (3.13), for all x ∈Ω and n, we have

F (x,un(x))−c4

‖un‖
p+

W p(x)(Ω)

≥ 0

or
F (x,un(x))

|un(x)|p
+ |wn(x)|p

+

−
c4

‖un‖
p+

W p(x)(Ω)

≥ 0, ∀x ∈Ω, ∀n. (3.14)

By (3.6), we have

c = J(un )+on(1)

≥
1

p+
‖un‖

p−

W p(x)(Ω)
−

∫

Ω

F (x,un)d x +on(1),

which implies that

∫

Ω

F (x,un)d x ≥
1

p+
‖un‖

p−

W p(x)(Ω)
−c +on(1) →+∞ as n →∞. (3.15)

We also have

c = J(un )+on(1)

≤
1

p−
‖un‖

p+

W p(x)(Ω)
−

∫

Ω

F (x,un)d x +on(1)

and by (3.15),

‖un‖
p+

W p(x)(Ω)
≥ p−

∫

Ω

F (x,un)d x +p−c −o(1) > 0 for n large enough. (3.16)

Next, we will claim that |Ω6=| = 0. In fact, if |Ω6=| 6= 0, then by relations (3.10), (3.14), (3.16) and

the Fatou lemma, we have

+∞= (+∞)|Ω6=|

=

∫

Ω6=

liminf
n→∞

F (x,un(x))

|un(x)|p
+ |wn(x)|p

+

d x −

∫

Ω6=

limsup
n→∞

c4

‖un‖
p+

W p(x)(Ω)

d x

=

∫

Ω6=

liminf
n→∞





F (x,un(x))

|un(x)|p
+ |wn(x)|p

+

−
c4

‖un‖
p+

W p(x)(Ω)



 d x

≤ liminf
n→∞

∫

Ω6=





F (x,un(x))

|un(x)|p
+ |wn(x)|p

+

−
c4

‖un‖
p+

W p(x)(Ω)



 d x



p(x)-CURL SYSTEMS ARISING IN ELECTROMAGNETISM 195

≤ liminf
n→∞

∫

Ω





F (x,un(x))

|un(x)|p
+

|wn(x)|p
+

−
c4

‖un‖
p+

W p(x)(Ω)



 d x

= liminf
n→∞

∫

Ω

F (x,un(x))

‖un‖
p+

W p(x)(Ω)

d x − limsup
n→∞

∫

Ω

c4

‖un‖
p+

W p(x)(Ω)

d x

= liminf
n→∞

∫

Ω

F (x,un(x))

‖un‖
p+

W p(x)(Ω)

d x

≤ liminf
n→∞

∫

Ω
F (x,un(x))d x

p−
∫

Ω
F (x,un)d x +p−c −o(1)

.

Combining this with (3.15), we obtain

+∞≤
1

p−
,

which is a contradiction. This shows that |Ω6=| = 0 and thusw(x)= 0 a.e. in Ω.

Since the function τ 7→ J(τum) is continuous in τ ∈ [0,1], for each n there exists τn ∈ [0,1]

such that

J(τnun) := max
τ∈[0,1]

J(τun ), n = 1,2, ... (3.17)

Clearly, τn > 0 and J(τnun) ≥ c > 0 = J(0) = J(0.un ). If τn < 1 then d
dt J(τun )|τ=τn

= 0 which

gives J ′(τnun)(τnun) = 0. If τn = 1, then J ′(un)(un) = o(1). So we always have

J ′(τnun)(τnun)= o(1). (3.18)

Now, let us fix k ≥ 1 so that ‖uk‖W p(x)(Ω) > 1 and define the sequence {wn} by the following

formula

wn =

(

2p+
‖uk‖

p−

W p(x)(Ω)

) 1
p−

wn , n = 1,2, ... (3.19)

Fix k , since wn → 0 strongly in the spaces Lq(x)(Ω) and Lp+

(Ω) as n → ∞, using (3.2), we

deduce that
∣

∣

∣

∣

∫

Ω

F (x,wn)d x

∣

∣

∣

∣

≤ ǫ

∫

Ω

|wn |
p+

d x +c(ǫ)

∫

Ω

|wn |
q(x) d x → 0 as n →∞. (3.20)

Since ‖un‖W p(x)(Ω) →+∞ as n →∞, we can find a constant nk > k depending on k such that

0 <

(

2p+‖uk‖
p−

W p(x)(Ω)

) 1
p−

‖un‖W p(x)(Ω)

< 1 for all n > nk . (3.21)

Hence,

J(τnun) ≥ J









(

2p+‖uk‖
p−

W p(x)(Ω)

) 1
p−

‖un‖W p(x)(Ω)

un
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= J(wn)

=

∫

Ω

1

p(x)
|∇×wn |

p(x) d x −

∫

Ω

F (x,wn)d x

≥
1

p+

∫

Ω

(

‖uk‖
p(x)

W p(x)(Ω)
.(2p+)

p(x)

p− .|∇×wn |
p(x)

)

d x −

∫

Ω

F (x,wn)d x

≥ 2‖uk‖
p−

W p(x)(Ω)
−

∫

Ω

F (x,wn)d x

≥ ‖uk‖
p−

W p(x)(Ω)

for any n > nk > k large enough.

On the other hand, by (H5), relation (3.18) and the fact that θ ≥ 1, for all n > nk > k large

enough, we have

J(τnun) = J(τnun)−
1

p+
J ′(τnun)(τnun)+on(1)

=

∫

Ω

1

p(x)
|∇× (τnun)|p(x) d x −

∫

Ω

F (x,τnun)d x

−
1

p+

∫

Ω

|∇× (τnun)|p(x) d x +
1

p+

∫

Ω

f (x,τnun) · (τnun)d x +on(1)

=

∫

Ω

(

1

p(x)
−

1

p+

)

|∇× (τnun)|p(x) d x +
1

p+

∫

Ω

F (x,τnun)d x

≤ θ

∫

Ω

(

1

p(x)
−

1

p+

)

|∇×un |
p(x) d x +

θ

p+

∫

Ω

F (x,un )d x +on(1)

= θ

[
∫

Ω

1

p(x)
|∇×un |

p(x) d x −

∫

Ω

F (x,un)d x

]

−
θ

p+

(∫

Ω

|∇×un |
p(x) d x −

∫

Ω

f (x,un) ·un d x

)

+on(1)

= θJ(un )−
θ

p+
J ′(un)(un )+on(1)

→ θc as n →∞,

which is a contradiction since J(τnun) →+∞ as n →∞. This ensures that the sequence {un}

is bounded inW p(x)(Ω).

Now, since the Banach space W p(x)(Ω) is reflexive, there exists u ∈W p(x)(Ω) such that

passing to a subsequence, still denoted by {un}, it converges weakly to u in W p(x)(Ω) and

converges strongly to u in the spaces Lq(x)(Ω). Using the condition (H2) and the Hölder in-

equality, we deduce that

∣

∣

∣

∣

∫

Ω

f (x,un) · (un −u)d x

∣

∣

∣

∣

≤

∫

Ω

|f (x,un)||un −u|d x

≤C

∫

Ω

(1+|un |
q(x)−1)|un −u|d x
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≤ c6

(

|1|Lq′ (x) +

∣

∣

∣|un |
q(x)−1

∣

∣

∣

Lq′(x)(Ω)

)

|un −u|Lq(x)(Ω)

→ 0 as n →∞,

which yields

lim
n→∞

∫

Ω

f (x,un) · (un −u)d x = 0. (3.22)

From (3.22) and the fact that

lim
n→∞

J ′(un)(un −u) = 0

we get

lim
n→∞

∫

Ω

|∇×un |
p(x)−2

∇×un · (∇×un −∇×u)d x = 0. (3.23)

Now, using similar arguments as in the proof of [15, Lemma 3.3] we can show that the se-

quence {un} converges strongly to u inW p(x)(Ω) and the functional J satisfies the (Cc ) con-

dition for any c > 0. The proof of Lemma 3.9 is complete. ���

Proof of Theorem 3.5. By Lemmas 3.7-3.9, the functional J satisfies all the assumptions of the

mountain pass theorem [1]. Then we deduce a function u ∈W p(x)(Ω) as a non-trivial critical

point of J with J(u) = c > 0 and thus a non-trivial weak solution of problem (1.1). ���

BecauseW p(x)(Ω) is a reflexive and separable Banach space, there exist {e j } ⊂W p(x)(Ω)

and {e∗
j

} ⊂ (W p(x)(Ω))∗ such that

W p(x)(Ω) = span{ej : j = 1,2, ..., }, (W p(x)(Ω))∗ = span{e∗
j

: j = 1,2, ..., },

and
〈

ei ,e∗j

〉

=







1, if i = j ,

0, if i 6= j .

For convenience, we write X j = span{ej}, Yk = ⊕k
j=1

X j and Zk = ⊕∞
j=k

X j . We first have the

following lemma which will be used in the proof of our multiplicity result.

Lemma 3.10. If α ∈C+(Ω), α(x) < p∗(x) for all x ∈Ω denote

βk = sup
{

|u|Lα(x)(Ω) : ‖u‖W p(x)(Ω) = 1, u ∈ Zk

}

,

then limk→∞βk = 0.

Proposition 3.11 (see [14, Fountain theorem]). Assume that (X ,‖.‖) is a separable Banach

space, J ∈ C 1(X ,R) is an even functional satisfying the (PS) condition. Moreover, for each k =

1,2, ..., there exist ρk > rk > 0 such that

(A1) inf{u∈Zk : ‖u‖=rk } J(u) →+∞ as k →∞;
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(A2) max{u∈Yk : ‖u‖=ρk } J(u) ≤ 0.

Then J has a sequence of critical values which tends to +∞.

Proof of Theorem 3.6. According to (H6) and Lemma 3.9, J is an even functional and satisfies

the (Ce) condition. We will prove Theorem 3.6 by using the fountain theorem, see Proposition

2.1. Indeed, we will show that if k is large enough, then there exist ρk > rk > 0 such that (A1)

and (A2) hold. Thus, the assertion of conclusion can be obtained.

(A1): Using (3.1), for any u ∈ Zk ,

J(u) =

∫

Ω

1

p(x)
|∇×u|p(x) d x −

∫

Ω

F (x,u)d x

≥
1

p+
‖u‖

p−

W p(x)(Ω)
−c7

∫

Ω

(|u|+ |u|q(x))d x

≥
1

p+
‖u‖

p−

W p(x)(Ω)
−c8|u|

q(ξ)

q(x)
−c8‖u‖W p(x)(Ω), where ξ ∈Ω

≥







1
p+ ‖u‖

p−

W p(x)(Ω)
−c8 −c8‖u‖W p(x)(Ω) if |u|Lq(x)(Ω) ≤ 1,

1
p+ ‖u‖

p−

W p(x)(Ω)
−c8β

q+

k
‖u‖

q+

W p(x)(Ω)
−c8‖u‖W p(x)(Ω) if |u|Lq(x)(Ω) ≤ 1

≥
1

p+
‖u‖

p−

W p(x)(Ω)
−c8β

q+

k
‖u‖

q+

W p(x)(Ω)
−c8‖u‖W p(x)(Ω) −c8,

where

βk = sup
{

|u|Lα(x)(Ω) : ‖u‖W p(x)(Ω) = 1, u ∈ Zk

}

. (3.24)

Now, for any u ∈ Zk , ‖u‖W p(x)(Ω) = rk =

(

c8q+β
q+

k

) 1
p−−q+

, we have

J(u) ≥
1

p+
‖u‖

p−

W p(x)(Ω)
−c8β

α+

k ‖u‖
q+

W p(x)(Ω)
−c8‖u‖W p(x)(Ω) −c8

=
1

p+

(

c8q+β
q+

k

)

p−

p−−q+

−c8β
q+

k

(

c8q+β
q+

k

)

q+

p−−q+

−c8

(

c8q+β
q+

k

) 1
p−−q+

−c8

=

(

1

p+
−

1

q+

)

(

c8q+β
q+

k

)

p−

p−−q+

−c8

(

c8q+β
q+

k

) 1
p−−q+

,

which tends to +∞ as k → +∞, because p+ < q− ≤ q(x) < p∗(x) and βk → 0 as k → ∞, see

Lemma 3.10.

(A2): By (3.1), for anyψ ∈ Yk with ‖ψ‖W p(x)(Ω) = 1 and t > 1, we have

J(τψ) =

∫

Ω

1

p(x)
|∇× (τψ)|p(x) d x −

∫

Ω

F (x,τψ)d x

≤
1

p−
‖τψ‖

p+

W p(x)(Ω)
−M

∫

Ω

|τψ|
p+

d x +cM |Ω|
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= τp+

(

1

p−
‖ψ‖

p+

W p(x)(Ω)
−M

∫

Ω

|ψ|
p+

d x

)

+cM |Ω|.

Let us choose M > 0 large enough such that

1

p−
‖ψ‖

p+

W p(x)(Ω)
−M

∫

Ω

|ψ|
p+

d x < 0,

we then deduce that limτ→+∞ J(τψ) = −∞. Hence, there exists τ > rk > 1 large enough such

that J(τψ) ≤ 0 and thus, if we set ρk = τ we conclude that

bk := max
{

u∈Yk : ‖u‖
W p(x) (Ω)

=ρk

}

J(u) ≤ 0.

Conclusion of Theorem 3.6 is reached by the fountain theorem. ���
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