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NEW BOUNDS FOR SIMPSON'S INEQUALITY

NENAD UJEVI�C

Abstract. Some new bounds for Simpson's inequality are derived. These bounds are better

than some recently obtained bounds.

1. Introduction

In recent years many authors have written about Simpson's inequality, for example see

[1]-[9] and [13]. Simpson's inequality gives an error bound for the well-known Simpson's

quadrature rule:

E(f) =

bZ
a

f(t)dt�
b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
: (1.1)

There are few known ways to express the term E(f). Di�erent variants of E(f) give

di�erent estimations of the error. In this paper we give a new approach to the subject.

This new approach is based on a generalization of pre-Gr�uss inequality which is obtained

in [14]. It gives better results.

In [5] we can �nd the next result.

If we assume that f (n�1) is an absolutely continuous function on [a; b] such that

f (n) 2 L2(a; b) (n = 1; 2; 3) then we have the Simpson's inequality (for n 2 f1; 2; 3g),

jE(f)j � Cn(b� a)�(f (n); a; b); (1.2)

where E(f) is given by (1.1),

C1 =
1

6
; C2 =

1

12
p
30

; C3 =
1

48
p
105

; (1.3)

�(f (n); a; b) =

�
1

b� a

f (n)2
2
�
�h
f (n�1); a; b)

i�2�1=2
; (1.4)

and h
f (n); a; b)

i
=

f (n)(b)� f (n)(a)

b� a
; (1.5)
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f (n)2
2
=

bZ
a

f (n)(t)2dt: (1.6)

The above result is an improvement of a result obtained in [13].

In this paper we give a new expression for the term E(f) and use the generalization

of pre-Gr�uss inequality to derive some better estimations of the error for Simpson's

quadrature rule. In fact, we further improve (1.2).

2. Main Results

We de�ne the Chebyshev functional:

T (f; g) =
1

b� a

Z b

a

f(t)g(t)dt�
1

(b� a)2

Z b

a

f(t)dt

Z b

a

g(t)dt (2.1)

and the functional

S	(f; g) =

Z b

a

f(t)g(t)dt�
1

b� a

Z b

a

f(t)dt

Z b

a

g(t)dt

�
Z b

a

f(t)	0(t)dt

Z b

a

g(t)	0(t)dt; (2.2)

where f; g;	 2 L2(a; b), 	0(t) = 	(t)= k	k2. We suppose that

Z b

a

	(t)dt = 0: (2.3)

Further, in [11] we can �nd the pre-Gr�uss inequality

T (f; g)2 � T (f; f)T (g; g) (2.4)

and the Gr�uss inequality

jT (f; g)j �
(�� �)(�� )

4
; (2.5)

where � � f(t) � � and  � g(t) � �, t 2 [a; b]. Specially, we have

jT (f; f)j �
(�� �)2

4
: (2.6)

Theorem 1. If g; h;	 2 L2(a; b) and (2:3) holds then we have

jS	(g; h)j � S	(g; g)
1=2S	(h; h)

1=2: (2.7)
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Proof. We can write

S	(g; h) =

Z b

a

g(t)

"
h(t)�

1

b� a

Z b

a

h(s)ds�
Z b

a

h(s)	0(s)ds 	0(t)

#
dt: (2.8)

We also have Z b

a

"
h(t)�

1

b� a

Z b

a

h(s)ds�
Z b

a

h(s)	0(s)ds 	0(t)

#
dt = 0 (2.9)

and Z b

a

	0(t)

"
h(t)�

1

b� a

Z b

a

h(s)ds�
Z b

a

h(s)	0(s)ds 	0(t)

#
dt = 0; (2.10)

since (2.3) holds.

It follows from (2.8)-(2.10) that

S	(g; h) =

Z b

a

"
g(t)�

1

b� a

Z b

a

g(s)ds�
Z b

a

g(s)	0(s)ds 	0(t)

#

�

"
h(t)�

1

b� a

Z b

a

h(s)ds�
Z b

a

h(s)	0(s)ds 	0(t)

#
dt: (2.11)

Then, using (2.11),

S	(g; g) =

Z b

a

"
g(t)�

1

b� a

Z b

a

g(s)ds�
Z b

a

g(s)	0(s)ds 	0(t)

#2
dt � 0: (2.12)

In a similar way we get S	(h; h) � 0: Now, using the Cauchy inequality and (2.11) we

get

jS	(g; h)j �

8<
:
Z b

a

"
g(t)�

1

b� a

Z b

a

g(s)ds�
Z b

a

g(s)	0(s)ds 	0(t)

#2
dt

9=
;

1=2

�

8<
:
Z b

a

"
h(t)�

1

b� a

Z b

a

h(s)ds�
Z b

a

h(s)	0(s)ds 	0(t)

#2
dt

9=
;

1=2

= S	(g; g)
1=2S	(h; h)

1=2:

This completes the proof.

Remark 1. A more general result can be found in [14]. The mentioned result can

be applied in this paper as it is described in [14]. In fact, we here consider only the case

n = 1 of the mentioned result.
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We also have

S	(f; g) = (b� a)T (f; g)�
Z b

a

f(t)	0(t)dt

Z b

a

g(t)	0(t)dt: (2.13)

Hence, S	(f; g) is a generalization of T (f; g): From (2.13) we easily �nd that

S	(f; f) � (b� a)T (f; f): (2.14)

Theorem 2. Let I � R be a closed interval and a; b 2 Int I, a < b.If f : I ! R is

an absolutely continuous function with f 0 2 L2(a; b) then we have�����b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
�
Z b

a

f(t)dt

����� � (b� a)3=2

6
K1; (2.15)

where

K1 =

2
4�2(f 0; a; b)(b� a)�

 Z b

a

f 0(t)	0(t)dt

!2
3
5
1=2

(2.16)

and 	(t) = t� a+b
2

while � is de�ned by (1:4).

Proof. We de�ne

p1(t) =

(
t� a; t 2

�
a; a+b

2

�
t� b; t 2

�
a+b
2
; b
�
:

(2.17)

It is not di�cult to verify that Z b

a

p1(t)dt = 0 (2.18)

and Z b

a

	(t)dt = 0: (2.19)

We also have

kp1k
2
2 =

Z b

a

p1(t)
2dt =

(b� a)3

12
; (2.20)

k	k22 =
Z b

a

	(t)2dt =
(b� a)3

12
(2.21)

such that

	0(t) =
	(t)

k	k2
=

p
12

(b� a)3=2
(t�

a+ b

2
) (2.22)

and Z b

a

p1(x; t)	(t)dt = �
(b� a)3

24
: (2.23)
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Integrating by parts, we have

Z b

a

p1(t)f
0(t)dt =

Z a+b

2

a

(t� a)f 0(t)dt+

Z b

a+b

2

(t� b)f 0(t)dt

= f(
a+ b

2
)(b� a)�

Z b

a

f(t)dt (2.24)

and Z b

a

	(t)f 0(t)dt =

Z b

a

(t�
a+ b

2
)f 0(t)dt

=
f(a) + f(b)

2
(b� a)�

Z b

a

f(t)dt: (2.25)

From (2.18) and (2.21)-(2.25) we haveZ b

a

p1(t)f
0(t)dt�

1

b� a

Z b

a

p1(t)dt

Z b

a

f 0(t)dt��
Z b

a

p1(t)	0(t)dt

Z b

a

f 0(t)	0(t)dt

= f(
a+ b

2
)(b� a)�

Z b

a

f(t)dt+
1

2

"
f(a) + f(b)

2
(b� a)�

Z b

a

f(t)dt

#

=

�
f(

a+ b

2
) +

f(a) + f(b)

4

�
(b� a)�

3

2

Z b

a

f(t)dt: (2.26)

On the other hand, we haveZ b

a

p1(t)f
0(t)dt�

1

b�a

Z b

a

p1(t)dt

Z b

a

f 0(t)dt�
Z b

a

p1(t)	0(t)dt

Z b

a

f 0(t)	0(t)dt=S	(p1; f
0):

(2.27)

From (2.7), (2.26) and (2.27) it follows that�����b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
�
Z b

a

f(t)dt

����� � 2

3
S	(f

0; f 0)1=2S	(p1; p1)
1=2: (2.28)

Using (2.18), (2.20) and (2.23) we get

S	(p1; p1) = kp1k
2
2 �

1

b� a

 Z b

a

p1(t)dt

!2

�

 Z b

a

p1(t)	0(t)dt

!2

=
(b� a)3

16
: (2.29)

We also have

S	(f
0; f 0) = kf 0k22 �

1

b� a

 Z b

a

f 0(t)dt

!2

�

 Z b

a

f 0(t)	0(t)dt

!2

= �2(f 0; a; b)(b� a)�

 Z b

a

f 0(t)	0(t)dt

!2

= K2
1 : (2.30)
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From (2.28)-(2.30) we easily get (2.15).

Remark 2. It is obvious that (2.15) is better than the corresponding inequality in

(1.2).

Theorem 3. Let I � R be a closed interval and a; b 2 Int I, a < b. If f : I ! R is

such that f 0 is an absolutely continuous function with f 00 2 L2(a; b) then we have�����b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
�
Z b

a

f(t)dt

����� � (b� a)5=2

12
p
30

K2; (2.31)

where

K2 =

2
4�2(f 00

; a; b)(b� a)�

 Z b

a

f 00(t)	0(t)dt

!2
3
5
1=2

; (2.32)

	(t) =

(
1; t 2

�
a; a+b

2

�
�1; t 2

�
a+b
2
; b
� (2.33)

and 	0(t) = 	(t)= k	k2.

Proof. We de�ne

p2(t) =

(
1
2
(t� a)(t� 2a+b

3
); t 2

�
a; a+b

2

�
1
2
(t� b)(t� a+2b

3
); t 2

�
a+b
2
; b
�
:

(2.34)

It is not di�cult to verify that Z b

a

p2(t)dt = 0; (2.35)

Z b

a

	(t)dt = 0; (2.36)

Z b

a

p2(t)	(t)dt = 0: (2.37)

Integrating by parts, we have

Z b

a

p2(t)f
00(t)dt =

1

2

Z a+b

2

a

(t� a)(t�
2a+ b

3
)f 00(t)dt+

1

2

Z b

a+b

2

(t� b)(t�
a+ 2b

3
)f

00

(t)dt

=
(b� a)2

24
f 0(

a+ b

2
)�

(b� a)2

24
f 0(

a+ b

2
)�

Z a+b

2

a

(t�
5a+ b

6
)f 0(t)dt

�
Z b

a+b

2

(t�
a+ 5b

6
)f 0(t)dt

= �
b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
+

Z b

a

f(t)dt: (2.38)
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From (2.35), (2.37) and (2.38) it follows that

Z b

a

p2(t)f
00(t)dt�

1

b�a

Z b

a

p2(t)dt

Z b

a

f 00(t)dt�
Z b

a

p2(t)	0(t)dt

Z b

a

f 00(t)	0(t)dt

= �
b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
+

Z b

a

f(t)dt: (2.39)

On the other hand, we have

Z b

a

p2(t)f
00(t)dt�

1

b�a

Z b

a

p2(t)dt

Z b

a

f 00(t)dt�
Z b

a

p2(t)	0(t)dt

Z b

a

f 00(t)	0(t)dt

= S	(p2; f
00) (2.40)

Using (2.7), (2.39) and (2.40) we have�����b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
�
Z b

a

f(t)dt

����� � S	(p2; p2)
1=2S	(f

00; f 00)1=2: (2.41)

We also have

S	(p2; p2) = kp2k
2
2 �

1

b� a

 Z b

a

p2(t)dt

!2

�

 Z b

a

p2(t)	0(t)dt

!2

=
(b� a)5

4320
(2.42)

and

S	(f
00; f 00) = �2(f

00

; a; b)(b� a)�

 Z b

a

f 00(t)	0(t)dt

!2

= K2
2 : (2.43)

From (2.41)-(2.43) we easily get (2.31).

Remark 3. It is obvious that (2.31) is better than the corresponding estimation in

(1.2).

Corollary 1. Let the assumptions of Theorem 3 be satis�ed. If there exist constants

;� 2 R such that  � f 00(t) � �, t 2 [a; b] then we have�����b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
�
Z b

a

f(t)dt

����� � (b� a)3

12
p
30

K; (2.44)

where

K =

2
4 (�� )2

4
�

 
f 0(a)� 2f 0(a+b

2
) + f 0(b)

b� a

!2
3
5
1=2

: (2.45)
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Proof. The proof immediately follows from (2.31)-(2.33) and (2.1), (2.6).

Theorem 4. Let I � R be a closed interval and a; b 2 Int I, a < b. If f : I ! R is

such that f 00 is an absolutely continuous function with f 000 2 L2(a; b) then we have�����b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
�
Z b

a

f(t)dt

����� � (b� a)7=2

48
p
105

K3; (2.46)

where

K3 =

2
4�2(f 000

; a; b)(b� a)�

 Z b

a

f
000

(t)	0(t)dt

!2
3
5
1=2

(2.47)

and

	(t) =

(
t� 7a+3b

10
; t 2

�
a; a+b

2

�
t� 3a+7b

10
; t 2

�
a+b
2
; b
�
:

(2.48)

Proof. We de�ne

p3(t) =

�
1
6
(t� a)2(t� a+b

2
); t 2

�
a; a+b

2

�
1
6
(t� b)2(t� a+b

2
); t 2

�
a+b
2
; b
�
:

(2.49)

It is not di�cult to verify that Z b

a

p3(t)dt = 0; (2.50)

Z b

a

	(t)dt = 0; (2.51)

Z b

a

p3(t)	(t)dt = 0: (2.52)

Integrating by parts, we have

Z b

a

p3(t)f
000

(t)dt =
1

6

Z a+b

2

a

(t�a)2(t�
a+ b

2
)f

000

(t)dt+
1

6

Z b

a+b

2

(t�b)2(t�
a+ b

2
)f

000

(t)dt

= �
Z b

a

p2(t)f
00(t)dt

=
b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
�
Z b

a

f(t)dt: (2.53)

From (2.50), (2.52) and (2.53) it follows thatZ b

a

p3(t)f
000

(t)dt�
1

b� a

Z b

a

p3(t)dt

Z b

a

f
000

(t)dt�
Z b

a

p3(t)	0(t)dt

Z b

a

f
000

(t)	0(t)dt

=
b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
�
Z b

a

f(t)dt: (2.54)
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On the other hand, we have

Z b

a

p3(t)f
000

(t)dt�
1

b� a

Z b

a

p3(t)dt

Z b

a

f
000

(t)dt�
Z b

a

p3(t)	0(t)dt

Z b

a

f 000(t)	0(t)dt

= S	(p3; f
000

): (2.55)

Using (2.54), (2.55) and (2.7) we get�����b� a

6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
�
Z b

a

f(t)dt

����� � S	(p3; p3)
1=2S	(f

000

; f
000

)1=2: (2.56)

We also have

S	(p3; p3) = kp3k
2
2 �

1

b� a

 Z b

a

p3(t)dt

!2

�

 Z b

a

p3(t)	0(t)dt

!2

=
(b� a)7

48 � 48 � 105
(2.57)

and

S	(f
000

; f
000

) = �2(f 000; a; b)(b� a)�

 Z b

a

f
000

(t)	0(t)dt

!2

= K2
3 : (2.58)

From (2.56)-(2.58) we easily get (2.46).

Remark 4. It is clear that (2.46) is better than the corresponding estimation in

(1.2).

Remark 5. Further improvements of the obtained results are possible. If we really

need better error bounds then we can apply the procedure described in this section and

a procedure described in [14]. However, some complications may occur - see [14].

References

[1] P. Cerone, Three points rules in numerical integration, J. Non-linear Analysis, (accepted).

[2] V. �Culjak, C. E. M. Pearce and J. Pe�cari�c, The uni�ed treatment of some inequalities of

Ostrowski and Simpson type, (submitted).

[3] S. S. Dragomir, On Simpson's quadrature formula for Lipschitzian mappings and applica-

tions, Soochow J. Math. 25 (1999), 175-180.

[4] S. S. Dragomir, On Simpson's quadrature formula for di�erentiable mappings whose deriva-

tives belong to Lp spaces and applications, J. KSIAM, 2 (1999), 49-56.

[5] S. S. Dragomir, Better bounds in some Ostrowski-Gr�uss type inequalities, RGMIA Research

Report Collection 3 Article 3, 2000.

[6] S. S. Dragomir, R. P. Agarwal and P. Cerone, On Simpson's inequality and applications, J.

Inequal. Appl. 5(2000), 533-579.



138 NENAD UJEVI�C

[7] S. S. Dragomir, P. Cerone and J. Roumeliotis, A new generalization of Ostrowski's inte-

gral inequality for mappings whose derivatives are bounded and applications in numerical

integration and for special means, Appl. Math. Lett. 13 (2000), 19-25.

[8] S. S. Dragomir, J. Pe�cari�c and S Wang, The uni�ed treatment of trapezoid, Simpson and

Ostrowski type inequalities for monotonic mappings and applications, Math. Comput. Mod-

elling 31 (2000), 61-70.

[9] I. Fedotov and S. S. Dragomir, An inequality of Ostrowski type and its applications for

Simpson's rule and special means, Math. Inequal. Appl. 2 (1999), 491-499.

[10] A. Ghizzetti and A. Ossicini, Quadrature formulae, Birkha�uses Verlag, Basel/Stuttgart,

1970.

[11] D. S. Mitrinovi�c, J. E. Pe�cari�c and A. M. Fink, Classical and New Inequalities in Analysis,

Kluwer Acad. Publ., Dordrecht/Boston/Lancaster/Tokyo, 1993.

[12] D. S. Mitrinovi�c, J. Pe�cari�c and A. M. Fink, Inequalities involving functions and their

integrals and derivatives, Kluwer Acad. Publ., Dordrecht, 1991.

[13] C. E. M. Pearce, J. Pe�cari�c, N. Ujevi�c and S. Varo�sanec, Generalizations of some inequalities

of Ostrowski-Gr�uss type, Math. Inequal. Appl. 3 (2000), 25-34.

[14] N. Ujevi�c, A generalization of the pre-Gr�uss inequality and applications, (submitted).

Department of Mathematics, University of Split, Teslina 12/III, 21000 Split, Croatia.

E-mail: ujevic@pmfst.hr


