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AN ECOLOGICAL MODEL INVOLVING NONLOCAL OPERATOR

AND REACTION DIFFUSION

SALEH SHAKERI AND ARMIN HADJIAN

Abstract. Using the method of sub-super solutions, we study the existence of positive

solutions for a class of infinite semipositone problems involving nonlocal operator.

1. Introduction

In this paper, we study the following nonlinear reaction diffusion problem:





−A

(∫
Ω
|∇u|p d x

)
∆p u = aup−1 − f (u)− c

uα , x ∈Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where ∆p denotes the p-Laplacian operator defined by ∆p z = div(|∇z|p−2∇z), p > 1, Ω is a

bounded domain of RN with smooth boundary, α ∈ (0,1), a and c are positive constants and

f : [0,∞) →R is a continuous function. This model arises in the studies of population biology

of one species with u representing the concentration of the species. We discuss the existence

of positive solution when f satisfies certain additional conditions. We make the following

assumptions:

(H1) There exist L > 0 and β> 0 such that f (u) ≤ Luβ, for all u ≥ 0.

(H2) There exists a constant S > 0 such that aup−1 < f (u)+S for all u ≥ 0.

(H3) A : [0,∞) → R is a continuous and increasing function such that 0 < A0 ≤ A(t ) ≤ A∞ for

all t .

More recently, reaction diffusion models have been used to describe spatiotemporal phe-

nomena in disciplines other than ecology, such as physics, chemistry, and biology (see [4],

[18], [22]). In addition, most ecological systems have some form of predation or harvesting
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of the population. For example, hunting or fishing is often used as an effective means of

wildlife management. This model describes the dynamics of the fish population with preda-

tion. In such cases u denotes the population density and the term c
uα corresponds to pre-

dation. So, the study of positive solutions of (1.1) has more practical meanings. In recent

years, problems involving Kirchhoff type operators have been studied in many papers; we re-

fer to [1, 2, 3, 5, 6, 8, 10, 17, 23, 24] in which the authors have used variational method and

topological method to get the existence of solutions for (1.1). In this paper, motivated by the

ideas introduced in [21] and the properties of Kirchhoff type operators in [7, 9, 13], we study

problem (1.1) in semipositone case (i.e., limu→0 F (u) := −∞; F (u) := aup−1 − f (u)− c
uα ); see

[11, 14, 15, 16, 20]. Our approach is based on the method of sub- and super-solutions (see

[11]). Our result in this note improves the previous one [21] in which M (t ) ≡ 1. To our best

knowledge, this is a new research topic for nonlocal problems; see [1, 13].

2. Preliminaries and main result

Let W 1,s
0 =W 1,s

0 (Ω), s > 1, denote the usual Sobolev space. To precisely state our existence

result we consider the eigenvalue problem




−∆pφ=λ|φ|p−2φ, x ∈Ω,

φ= 0, x ∈ ∂Ω.
(2.2)

Let φ1,p be the eigenfunction corresponding to the first eigenvalue λ1,p of (2.2) such that

φ1,p (x) > 0 in Ω, and ‖φ1,p‖∞ = 1, where ‖φ1,p‖∞ denotes the essential supremum of φ1,p .

It can be shown that
∂φ1,p

∂n < 0 on ∂Ω. Here n is the outward normal. We will also consider the

unique solution, ζ(x) ∈C 1(Ω), of the boundary value problem




−∆pζ= 1 x ∈Ω,

ζ= 0, x ∈ ∂Ω,

to discuss our existence result. It is known that ζ(x) > 0 in Ω and
∂ζ(x)
∂n < 0 on ∂Ω.

Now, we give the definitions of sub- and super-solutions of (1.1).

A function ψ is said to be a subsolution of problem (1.1) if it is in W 1,p (Ω) such that ψ≤ 0

on ∂Ω and satisfies

A

(∫

Ω

|∇ψ|
p d x

)∫

Ω

|∇ψ|
p−2

∇ψ ·∇w d x ≤

∫

Ω

(
aψp−1

− f (ψ)−
c

ψα

)
w d x, ∀w ∈W, (2.3)

where W :=
{

w ∈C∞
0 (Ω) : w ≥ 0 in Ω

}
. A non-negative function z is called a super-solution of

(1.1) if it satisfies z ≥ 0 on ∂Ω and satisfies

A

(∫

Ω

|∇z|p d x

)∫

Ω

|∇z|p−2
∇z ·∇w d x ≥

∫

Ω

(
azp−1

− f (z)−
c

zα

)
w d x, ∀w ∈W. (2.4)

Then the following result holds.
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Lemma 2.1 ([11]). Suppose there exist sub- and super-solutions ψ and z respectively of (1.1)

such that ψ≤ z. Then (1.1) has a solution u such that ψ≤ u ≤ z.

We are now ready to give our existence result.

Theorem 2.2. Let (H1), (H2) and (H3) hold. If a
A∞

> (
p

p−1+α )λ1,p , then there exists c0 > 0 such

that if 0 < c < c0, then the problem (1.1) admits a positive solution.

Proof. We start with the construction of a positive sub-solution for (1.1). To get a positive

sub-solution, we can apply an anti-maximum principle (see [12]), from which we know that

there exist a δ1 > 0 and a solution zλ of





−∆p z −λzp−1 =−1 x ∈Ω,

ζ= 0, x ∈ ∂Ω,
(2.5)

for λ ∈ (λ1,p ,λ1,p +δ1). Fix λ̂ ∈ (λ1,p ,min{(
p−1+α

p
)a,λ1,p +δ1}). Let γ = ‖zλ‖∞ and zλ be the

solution of (2.5) when λ = λ̂. It is well known that zλ̂ > 0 in Ω and
∂zλ̂
∂n < 0 on ∂Ω, where n is

the outer unit normal to Ω. Hence there exist positive constants ǫ,δ,σ such that

|∇zλ̂|
p
≥ ǫ, x ∈Ωδ, (2.6)

zλ̂ ≥ σ, x ∈Ω0 =Ω\Ωδ, (2.7)

where Ωδ = {x ∈Ω |d (x,∂Ω) ≤ δ}.

We construct a sub-solution ψ of (1.1) using zλ̂. Define ψ= M (
p−1+α

p
)z

p

p−1+α

λ̂
, where

M =min

{( A∞

( p

(p−1+α)

)β

Lγ
pβ−(1−α)(p−1)

p−1+α

) 1
β−p+1

,

(( p−1

Lp

)[( p−1+α
p

)p−1
a − A∞λ̂

]

( p−1+α
p

)β
γ

pβ−p(p−1)

p−1+α

) 1
β−p+1

}
.

Let w ∈W . Then a calculation shows that

∇ψ= M z
1−α

p−1+α

λ̂
∇zλ̂

A

(∫

Ωδ

|∇ψ|
p d x

)∫

Ωδ

|∇ψ|
p−2

∇ψ∇w d x

= A

(∫

Ωδ

|∇ψ|
p d x

)
M p−1

∫

Ωδ

z
(1−α)(p−1)

p−1+α

λ̂
|∇zλ̂|

p−2
∇zλ̂∇w d x

= A

(∫

Ωδ

|∇ψ|
p d x

)
M p−1

∫

Ωδ

|∇zλ̂|
p−2

∇zλ̂

[
∇

(
z

(1−α)(p−1)

p−1+α

λ̂
w

)
−|∇zλ̂|

(1−α)(p−1)

p−1+α w
]

d x

= A

(∫

Ωδ

|∇ψ|
p d x

)
M p−1

∫

Ωδ

[
z

(1−α)(p−1)

p−1+α

λ̂

(
λ̂z

p−1

λ̂
−1

)
−

(1−α)(p −1)

p −1+α

|∇zλ̂|
p

z
αp

p−1+α

λ̂

]
w d x
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≤ A∞M p−1

∫

Ωδ

[
λ̂z

p(p−1)

p−1+α

λ̂
− z

(1−α)(p−1)

p−1+α

λ̂
−

(1−α)(p −1)

p −1+α

|∇zλ̂|
p

z
αp

p−1+α

λ̂

]
w d x, (2.8)

and∫

Ωδ

[
aψp−1

− f (ψ)−
c

ψα

]
w d x

=

[
aM p−1

( p −1+α

p

)p−1

z
p(p−1)

p−1+α

λ̂
− f

(
M

(p −1+α

p

)
z

p

p−1+α

λ̂

)
−

c

Mα(
p−1+α

p )αz
αp

p−1+α

λ̂

]
wd x. (2.9)

Let c0 = M p−1+α min{
A∞(1−α)(p−1)

p−1+α (
p−1+α

p )αǫ, 1
p (

p−1+α
p )ασp [(

p−1+α
p )a − A∞λ̂]}. Hence by (2.3),

ψ is a sub-solution of (1.1) if

A∞M p−1λ̂z
p(p−1)

p−1+α

λ̂
≤ aM p−1

(p −1+α

p

)p−1

z
p(p−1)

p−1+α

λ̂
,

−A∞M p−1z
(1−α)(p−1)

p−1+α

λ̂
≤ − f

(
M

(p −1+α

p

)
z

p

p−1+α

λ̂

)
,

and

−A∞M p−1 (1−α)(p −1)

p −1+α

|∇zλ̂|
p

z
αp

p−1+α

λ̂

≤ −
c

Mα(
p−1+α

p )αz
αp

p−1+α

λ̂

,

for all x ∈Ω and c < c0. First we consider the case when x ∈Ωδ. Since (
p

p−1+α
)p−1λ̂≤

a
A∞

, we

have

A∞M p−1λ̂z
p(p−1)

p−1+α

λ̂
≤ aM p−1

( p −1+α

p

)p−1

z
p(p−1)

p−1+α

λ̂
, (2.10)

and from the choice of M , we know that

L

A∞

Mβ−p+1γ
pβ−(1−α)(p−1)

p−1+α ≤

( p

p −1+α

)β
. (2.11)

By (2.11) and (H1) we have

−A∞M p−1z
(1−α)(p−1)

p−1+α

λ̂
≤ −LMβ

(p −1+α

p

)β
z

pβ

p−1+α

λ̂

≤ − f
(
M

(p −1+α

p

)
z

p

p−1+α

λ̂

)
. (2.12)

Next, from (2.6) and definition of c0, we have

A∞M p−1 (1−α)(p −1)

p −1+α
|∇zλ̂|

p
≥

c

Mα(
p−1+α

p )α
,

and

−A∞M p−1 (1−α)(p −1)

p −1+α

|∇zλ̂|
p

z
αp

p−1+α

λ̂

≤ −
c

Mα(
p−1+α

p
)αz

αp

p−1+α

λ̂

. (2.13)



AN ECOLOGICAL MODEL 413

Hence by using (2.11), (2.12) and (2.13) for c ≤ c0, we have

A

(∫

Ωδ

|∇ψ|
p d x

)∫

Ωδ

|∇ψ|
p−2

|∇ψ| ·∇w d x ≤

∫

Ωδ

[
aψp−1

− f (ψ)−
c

ψα

]
w d x. (2.14)

On the other hand, on Ω0 = Ω \Ωδ, we have zλ̂ ≥ σ, for some 0 < σ < 1, and from the

definition of c0, for c ≤ c0 we have

c

Mα
(

p −1+α

p
)α ≤

1

p
M p−1σp

[(p −1+α

p

)
a − A∞λ̂

]

≤
1

p
M p−1z

p

λ̂

[( p −1+α

p

)
a − A∞λ̂

]
. (2.15)

Also from the choice of M , we have

LMβ−p+1
( p −1+α

p

)β
z

pβ−p(p−1)

p−1+α

λ̂
≤

p −1

p

[( p −1+α

p

)p−1

a − A∞λ̂
]

. (2.16)

Hence from (2.15) and (2.16) we have

A

(∫

Ω0

|∇ψ|
p d x

)∫

Ω0

|∇ψ|
p−2

∇ψ∇w d x

= A

(∫

Ω0

|∇ψ|
p d x

)∫

Ω0

[
M p−1λ̂z

p(p−1)

p−1+α

λ̂
−M p−1z

(1−α)(p−1)

p−1+α

λ̂
−M p−1 (1−α)(p −1)

p −1+α

|∇z
p

λ̂
|

z
αp

p−1+α

λ̂

]
w d x

≤

∫

Ω0

A∞M p−1λ̂z
p(p−1)

p−1+α

λ̂
w d x =

∫

Ω0

A∞

z
αp

p−1+α

λ̂

[ 1

p
λ̂M p−1z

p

λ̂
+

p −1

p
λ̂M p−1z

p

λ̂

]
w d x

≤

∫

Ω0

1

z
αp

p−1+α

λ̂

[(
1

p
M p−1

( p −1+α

p

)p−1

az
p

λ̂
−

c

Mα(
p−1+α

p )α

)
+M p−1z

p

λ̂

( p −1+α

p

)p−1

×

(
(p −1)a

p
−LMβ−p+1

( p −1+α

p

)β−p+1

z
pβ−p(p−1)

p−1+α

λ̂

)]
w d x

=

∫

Ω0

[
aM p−1

( p −1+α

p

)p−1

z
p(p−1)

p−1+α

λ̂
−LMβ

(p −1+α

p

)β
z

pβ

p−1+α

λ̂
−

cz
−αp

p−1+α

λ̂

Mα(
p−1+α

p )α

]
w d x

≤

∫

Ω0

[
aM p−1

( p −1+α

p

)p−1

z
p(p−1)

p−1+α

λ̂
− f

(
M

(p −1+α

p

)
z

p

p−1+α

λ̂

)
−

c

Mα(
p−1+α

p )αz
αp

p−1+α

λ̂

]
w d x

=

∫

Ω0

[
aψp−1

− f (ψ)−
c

ψα

]
w d x. (2.17)

By using (2.14) and (2.17) we see that ψ is a sub-solution of (1.1). Next, we construct a super-

solution z of (1.1) such that z ≥ ψ. By (H2), we can choose a large constant S∗ such that
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aup−1 − f (u)− c
uα ≤ S∗A0 for all u > 0. Let z = (S∗)

1
p−1 ζ(x). We shall verify that z is a super-

solution of (1.1). To this end, let w (x)∈W
1,p

0 (Ω) with w ≥ 0. Then we have

A

(∫

Ω

|∇z|p d x

)∫

Ω

|∇z|p−2
∇z∇w d x = A

(∫

Ω

|∇z|p d x

)
S∗

∫

Ω

w d x ≥ S∗A0

∫

Ω

w d x

≥

∫

Ω

[
azp−1

− f (z)−
c

zα

]
w d x. (2.18)

Thus z is a super-solution of (1.1). Finally, we can choose S∗ ≫ 1 (where ≫ 1 means large

enough) such that ψ≤ z in Ω. Hence, for c ≤ c0 by Lemma 2.1 there exists a positive solution

u of (1.1) such that ψ≤ u ≤ z. This completes the proof. ���
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