
TAMKANG JOURNAL OF MATHEMATICS

Volume 33, Number 2, Summer 2002

ON SOME USEFUL INTEGRAL INEQUALITIES

AND THEIR DISCRETE ANALOGUES

S. B. PACHPATTE AND B. G. PACHPATTE

Abstract. In this paper explicit bounds on certain integral inequalities and their discrete ana-

logues are established. To illustrate the usefulness of one of our results, some applications are

also given.

1. Introduction

Integral inequalities which provide explicit bounds on unknown functions and their

discrete analogues are frequently used to study the di�erent properties of the solutions
of various di�erential, integral and di�erence equations, see [1-8] and the references cited
therein. However, the bounds provided by the inequalities available in the literature do
not apply directly in some situations and it is desirable to �nd bounds on certain integral
inequalities and their discrete analogues, which are useful in some new applications. The
main purpose of this paper is to establish explicit bounds on certain integral inequalities
and their discrete analogues, which will be equally important to achieve a diversity of
desired goals. Some immediate applications of one of the result to convey the importance
of our results to the literature are also given.

2. Statement of Results

In what follows, R denotes the set of real numbers, R+ = [0;1); N0 = f0; 1; 2; :::g
are the given subsets of R and 0 denotes the derivative. The partial derivatives of a

function z(x; y), x; y 2 R with respect to x and y are denoted by D1z(x; y) and D2z(x; y)
respectively. We assume that all the functions which appear in the inequalities are real-
valued and use the usual conventions that empty sums and products are taken to be 0
and 1 respectively.

For t; s; � 2 R+; 0 � � � s and some real-valued nonnegative continuous functions
p(s); q(s; �) we set

A[t; p(s); q(s; �)] =

Z t

0

�
p(s) +

Z s

0

q(s; �)d�

�
ds;
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and for x; y; s; t; �; � 2 R+; 0 � � � s; 0 � � � t an some real-valued nonnegative

continuous functions p(s; t); q(s; t; �; �) we set

B[x; y; p(s; t); q(s; t; �; �)] =

Z x

0

Z y

0

�
p(s; t) +

Z s

0

Z t

0

q(s; t; �; �)d�d�

�
dtds:

Further, for n; s; � 2 N0; 0 � � � s and some real-valued nonnegative functions

p(s); q(s; �) we set

E[n; p(s); q(s; �)] =

n�1X
s=0

"
p(s) +

s�1X
�=0

q(s; �)

#
;

E[s; p(s); q(s; �)] = p(s) +

s�1X
�=0

q(s; �);

and for m;n; s; t; �; � 2No; 0 � � � s; 0 � � � t and some real-valued nonnegative

functions p(s; t); q(s; t; �; �) we set

H [m;n; p(s; t); q(s; t; �; �)] =

m�1X
s=0

n�1X
t=0

"
p(s; t) +

s�1X
�=0

t�1X
�=0

q(s; t; �; �)

#
;

H [s; n; p(s; t); q(s; t; �; �)] =

n�1X
t=0

"
p(s; t) +

s�1X
�=0

t�1X
�=0

q(s; t; �; �)

#
:

Our main results on integral inequalities are established in the following theorems.

Theorem 1. Let u(t); a(t); b(t); p(t); q(t; s) be nonnegative continuous functions de-

�ned for t; s 2 R+; 0 � s � t and k � 0 be a constant.

(a1) If

u(t) � k +A[t; p(s)u(s); q(s; �)u(�)]; (2.1)

for t 2 R+, then

u(t) � k exp(A[t; p(s); q(s; �)]); (2.2)

for t 2 R+.

(a2) If

u(t) � a(t) + b(t)A[t; p(s)u(s); q(s; �)u(�)]; (2.3)

for t 2 R+, then

u(t) � a(t) + b(t)A[t; p(s)a(s); q(s; �)a(�)] exp(A[t; p(s)b(s); q(s; �)b(�)]); (2.4)

for t 2 R+:
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(a3) Let fi : R
2
+ ! R+; i = 1; 2; be continuous functions such that

0 � fi(t; u)� fi(t; v) � gi(t; v)(u� v); (2.5)

for u � v � 0; where gi(t; v) are nonnegative continuous functions for t; v 2 R+: If

u(t) � a(t) + b(t)A[t; p(s)f1(s; u(s)); q(s; �)f2(�; u(�))]; (2.6)

for t 2 R+, then

u(t) � a(t) + b(t)A[t; p(s)f1(s; a(s)); q(s; �)f2(�; a(�))]

� exp(A[t; p(s)g1(s; a(s))b(s); q(s; �)g2(�; a(�))b(�)]); (2.7)

for t 2 R+.

Theorem 2. Let u(x; y); a(x; y); b(x; y); p(x; y); q(x; y; s; t) be nonnegative continu-
ous functions de�ned for x; y; s; t 2 R+; 0 � s � x; 0 � t � y and k � 0 be a constant.

(b1) If

u(x; y) � k +B[x; y; p(s; t)u(s; t); q(s; t; �; �)u(�; �)]; (2.8)

for x; y 2 R+; then

u(x; y) � k exp(B[x; y; p(s; t); q(s; t; �; �)]); (2.9)

for x; y 2 R+.
(b2) If

u(x; y) � a(x; y) + b(x; y)B[x; y; p(s; t)u(s; t); q(s; t; �; �)u(�; �)]; (2.10)

for x; y 2 R+; then

u(x; y) � a(x; y) + b(x; y)B[x; y; p(s; t)a(s; t); q(s; t; �; �)a(�; �)]

� exp(B[x; y; p(s; t)b(s; t); q(s; t; �; �)b(�; �)]); (2.11)

for x; y 2 R+.

(b3) Let Li : R
3
+ ! R+; i = 1; 2, be continuous functions such that

0 � Li(x; y; u)� Li(x; y; v) �Mi(x; y; v)(u� v); (2.12)

for u � v � 0, where Mi(x; y; v) are nonnegative continuous functions for x; y; v 2

R+. If

u(x; y) � a(x; y) + b(x; y)B[x; y; p(s; t)L1(s; t; u(s; t)); q(s; t; �; �)L2(�; �; u(�; �))];

(2.13)

for x; y 2 R+, then

u(x; y) � a(x; y) + b(x; y)B[x; y; p(s; t)L1(s; t; a(s; t)); q(s; t; �; �)L2(�; �; a(�; �))]

� exp(B[x; y; p(s; t)M1(s; t; a(s; t))b(s; t); q(s; t; �; �)M2(�; �; a(�; �))b(�; �)];

(2.14)

for x; y 2 R+.
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The discrete analogues of Theorems 1 and 2 are given in the following theorems.

Theorem 3. Let u(n); a(n); b(n); p(n); q(n; s) be nonneqative functions for n; s 2 N0,

0 � s � n and k � 0 be a constant.

(c1) If

u(n) � k +E[n; p(s)u(s); q(s; �)u(�)]; (2.15)

for n 2 N0, then

u(n) � k

n�1Y
s=0

h
1 +E[s; p(s); q(s; �)]

i
; (2.16)

for n 2 N0.

(c2) If

u(n) � a(n) + b(n)E[n; p(s)u(s); q(s; �)u(�)] (2.17)

for n 2 N0, then

u(n) � a(n) + b(n)E[n; p(s)a(s); q(s; �)a(�)]

n�1Y
s=0

h
1 +E[s; p(s)b(s); q(s; �)b(�)]

i
;

(2.18)

for n 2 N0.

(c3) Let fi : N0 �R+ ! R+; i = 1; 2; be functions such that

0 � fi(n; u)� fi(n; v) � gi(n; v)(u� v); (2.19)

for u � v � 0, where gi(n; v) are nonnegative functions for n 2 N0, v 2 R+. If

u(n) � a(n) + b(n)E[n; p(s)f1(s; u(s)); q(s; �)f2(�; u(�))]; (2.20)

for n 2 N0, then

u(n) � a(n) + b(n)E[n; p(s)f1(s; a(s)); q(s; �)f2(s; a(�))]

�

n�1Y
s=0

h
1 +E[s; p(s)g1(s; a(s))b(s); q(s; �)g2(�; a(�))b(�)]

i
; (2.21)

for n 2 N0.

Theorem 4. Let u(m;n), a(m;n), b(m;n), p(m;n), q(m;n; s; t) be nonnegative

functions de�ned for m;n; s; t 2 N0, 0 � s � m, 0 � t � n and k � 0 be a constant.
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(d1) If

u(m;n) � k +H [m;n; p(s; t)u(s; t); q(s; t; �; �)u(�; �)]; (2.22)

for m;n 2 N0, then

u(m;n) � k

m�1Y
s=0

h
1 +H [s; n; p(s; t); q(s; t; �; �)]

i
(2.23)

for m;n 2 N0.

(d2) If

u(m;n) � a(m;n) + b(m;n)H [m;n; p(s; t)u(s; t); q(s; t; �; �)u(�; �)]; (2.24)

for m;n 2 N0, then

u(m;n) � a(m;n) + b(m;n)H [m;n; p(s; t)a(s; t); q(s; t; �; �)a(�; �)]

�

m�1Y
s=0

h
1 +H [s; n; p(s; t)b(s; t); q(s; t; �; �)b(�; �)]

i
; (2.25)

for m;n 2 N0.
(d3) Let Li : N

2
0 �R+ ! R+, i = 1; 2, be functions such that

0 � Li(m;n; u)� Li(m;n; v) �Mi(m;n; v)(u� v); (2.26)

for u � v � 0, where Mi(m;n; v) are nonnegative functions for m;n 2 N0, v 2 R+.
If

u(m;n)�a(m;n)+b(m;n)H
h
m;n; p(s; t)L1(s; t; u(s; t)); q(s; t; �; �)L2(�; �; u(�; �))

i
;

(2.27)

for m;n 2 N0, then

u(m;n)�a(m;n)+b(m;n)H
h
m;n; p(s; t)L1(s; t; a(s; t)); q(s; t; �; �)L2(�; �; a(�; �))

i

�

m�1Y
s=0

h
1+H[s; n; p(s; t)M1(s; t; a(s; t))b(s; t); q(s; t; �; �)M2(�; �; a(�; �))b(�; �)]

i
;

(2.28)

for m;n 2 N0.

3. Proofs of Theorems 1-4

Since the proofs resemble one another, we give the details for Theorems 2 and 3 only.

The proofs of Theorems 1 and 4 can be completed by following the proofs of the above
mentioned theorems and closely looking at the proofs of the similar results given in [4],
see also [5].
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(b1) Let k > 0 and de�ne a function z(x; y) by the right-hand side of (2.8). Then z(x; y) >

0 and nondecreasing for x; y 2 R+, z(x; 0) = z(0; y) = k, u(x; y) � z(x; y) and

D1z(x; y) =

Z y

0

"
p(x; t)u(x; t) +

Z x

0

Z t

0

q(x; t; �; �)u(�; �)d�d�

#
dt

�

Z y

0

"
p(x; t)z(x; t) +

Z x

0

Z t

0

q(x; t; �; �)z(�; �)d�d�

#
dt

� z(x; y)

Z y

0

"
p(x; t) +

Z x

0

Z t

0

q(x; t; �; �)d�d�

#
dt

i.e.

D1z(x; y)

z(x; y)
�

Z y

0

"
p(x; t) +

Z x

0

Z t

0

q(x; t; �; �)d�d�

#
dt: (3.1)

Keeping y �xed in (3.1), setting x = s and integrating it with respect to s from 0 to

x we get

z(x; y) � k exp(B[x; y; p(s; t); q(s; t; �; �)]): (3.2)

Using (3.2) in u(x; y) � z(x; y) we get (2.9). If k � 0, we carry out the above

procedure with k + � instead of k,where � > 0 is an arbitrary small constant, and

subsequently pass to the limit as �! 0 to obtain (2.9).

(b2) De�ne a function z(x; y) by

z(x; y) = B[x; y; p(s; t)u(s; t); q(s; t; �; �)u(�; �)]: (3.3)

Then (2.10) can be restated as

u(x; y) � a(x; y) + b(x; y)z(x; y): (3.4)

From (3.3) and (3.4) we have

z(x; y) � B[x; y; p(s; t)fa(s; t) + b(s; t)z(s; t)g; q(s; t; �; �)fa(�; �) + b(�; �)z(�; �)g]

= B[x; y; p(s; t)a(s; t); q(s; t; �; �)a(�; �)]

+ B[x; y; p(s; t)b(s; t)z(s; t); q(s; t; �; �)b(�; �)z(�; �)]

� e(x; y) +B[x; y; p(s; t)b(s; t)z(s; t); q(s; t; �; �)b(�; �)z(�; �)]; (3.5)

where e(x; y) = � + B[x; y; p(s; t)a(s; t); q(s; t; �; �)a(�; �)], in which � > 0 is an ar-

bitrary small constant. Clearly e(x; y) is positive, continuous and nondecreasing in

x; y 2 R+. From (3.5) we observe that

z(x; y)

e(x; y)
� 1 +B

"
x; y; p(s; t)b(s; t)

z(s; t)

e(s; t)
; q(s; t; �; �)b(�; �)

z(�; �)

e(�; �)

#
: (3.6)



USEFUL INTEGRAL INEQUALITIES AND THEIR DISCRETE ANALOGUES 145

Now an application of the inequality in (b1) to (3.6) yields

z(x; y) � e(x; y) exp(B[x; y; p(s; t)b(s; t); q(s; t; �; �)b(�; �)]): (3.7)

Using (3.7) in (3.4) and letting �! 0 we get the required inequality in (2.11).
(b3) De�ne a function w(x; y) by

w(x; y) = B[x; y; p(s; t)L1(s; t; u(s; t)); q(s; t; �; �)L2(�; �; u(�; �))]: (3.8)

Then (2.13) can be restated as

u(x; y) � a(x; y) + b(x; y)w(x; y): (3.9)

From (3.8), (3.9) and (2.12) we observe that

w(x; y) � B[x; y; p(s; t)fL1(s; t; a(s; t) + b(s; t)w(s; t)) � L1(s; t; a(s; t))

+L1(s; t; a(s; t))g; q(s; t; �; �)fL2(�; �; a(�; �) + b(�; �)w(�; �))

�L2(�; �; a(�; �)) + L2(�; �; a(�; �))g]

� E(x; y) +B[x; y; p(s; t)M1(s; t; a(s; t))b(s; t)w(s; t);

q(s; t; �; �)M2(�; �; a(�; �))b(�; �)w(�; �)]; (3.10)

where

E(x; y) = �+B[x; y; p(s; t)L1(s; t; a(s; t)); q(s; t; �; �)L2(�; �; a(�; �))];

in which � > 0 is an arbitrary small constant. The rest of the proof can be completed
by following the last arguments as in the proof of (b2) given above.

(c1) De�ne a function z(n) by the right-hand side of (2.15). Then z(n) is nondecreasing
for n 2 N0, z(0) = k, u(n) � z(n) and

z(n+ 1)� z(n) =

"
p(n)u(n) +

n�1X
�=0

q(n; �)u(�)

#

�

"
p(n)z(n) +

n�1X
�=0

q(n; �)z(�)

#
;

i.e.

z(n+ 1) �

"
1 + p(n) +

n�1X
�=0

q(n; �)

#
z(n): (3.11)

By setting n = s in (3.11) and then substituting s = 0; 1; 2; : : : ; n� 1 successively we
obtain

z(n) � k

n�1Y
s=0

"
1 + p(s) +

s�1X
�=0

q(s; �)

#

= k

n�1Y
s=0

h
1 +E[s; p(s); q(s; �)]

i
: (3.12)

Using (3.12) in u(n) � z(n) we get the desired inequality in (2.16).
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(c2) De�ne a function z(n) by

z(n) = E[n; p(s)u(s); q(s; �)u(�)]: (3.13)

Then z(0) = 0 and (2.17) can be written as

u(n) � a(n) + b(n)z(n): (3.14)

From (3.13) and (3.14) we obtain

z(n) � E[n; p(s)fa(s) + b(s)z(s)g; q(s; �)fa(�) + b(�)z(�)g]

� e(n) +E[n; p(s)b(s)z(s); q(s; �)b(�)z(�)]; (3.15)

where e(n) = �+ E[n; p(s)a(s); q(s; �)a(�)], in which � > 0 is an arbitrary small

constant. Clearly, e(n) is positive and nondecreasing for n 2 N0. From (3.15) we

observe that

z(n)

e(n)
� 1 +E

"
n; p(s)b(s)

z(s)

e(s)
; q(s; �)b(�)

z(s)

e(s)

#
: (3.16)

Now a suitable applications of the inequality in (c1) to (3.16) yields.

z(n) � e(n)

n�1Y
s=0

h
1 +E[s; p(s)b(s); q(s; �)b(�)]

i
: (3.17)

Using (3.17) in (3.14) and letting �! 0 we get the required inequality in (2.18).

(c3) The details of the proof follows by the similar arguments as in the proof of (c2) and

closely looking at the proof of (b3) given above. Here we omit the details.

4. Some Applications

In this section we present applications of the inequality (b1) in theorem 1 to obtain

bound on the solution and uniqueness of solutions of the initial boundary value problem

for hyperbolic partial integrodiferential equation of the form

D2D1z(x; y) = F (x; y; z(x; y)) +

Z x

0

Z y

0

G(x; y; �; �; z(�; �))d�d�; (4.1)

z(x; 0) = c1(x); z(0; y) = c2(y); c1(0) = c2(0) = 0; (4.2)

where F : R2
+ �R! R, G : R4

+ �R! R, c1; c2 : R+ ! R are continuous functions.

Our �rst result gives the bound on the solution of (4.1)-(4.2).

Theorem 5. Suppose that

j F (x; y; z(x; y)) j� p(x; y) j z(x; y) j; (4.3)

j G(x; y; �; �; z(�; �)) j� q(x; y; �; �) j z(�; �) j; (4.4)

j c1(x) + c2(y) j� k; (4.5)
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where p, q, k are as de�ned in Theroem 2. If z(x; y) is any solution of (4.1)-(4.2), then

j z(x; y) j� k exp(B[x; y; p(s; t); q(s; t; �; �)]); (4.6)

for x; y 2 R+.

Proof. The solution z(x; y) of (4.1)-(4.2) satis�es the equivalent integral equation

z(x; y)=c1(x)+c2(y)+

Z x

0

Z y

0

"
F (s; t; z(s; t))+

Z s

0

Z t

0

G(s; t; �; �; z(�; �))d�d�

#
dtds:(4.7)

Using (4.3)-(4.5) in (4.7) we have

j z(x; y) j� k +

Z x

0

Z y

0

"
p(s; t) jz(s; t) j +

Z s

0

Z t

0

q(s; t; �; �) jz(�; �) j d�d�

#
dtds: (4.8)

Now an application of (b1) in Theorem 2 to (4.8) yields (4.6). The right-hand side of (4.6)

gives the bound on the solution z(x; y) of (4.1)-(4.2) in terms of the known functions.

The next result deals with the uniqueness of the solutions of (4.1)-(4.2).

Theorem 6. Suppose that

j F (x; y; z(x; y))� F (x; y; z(x; y)) j� p(x; y) j z(x; y)� z(x; y) j; (4.9)

jG(x; y; �; �; z(�; �))�G(x; y; �; �; z(�; �)) j�q(x; y; �; �) jz(�; �)�z(�; �) j; (4.10)

where p, q are as de�ned in Theorem 2. Then the problem (4.1)-(4.2) has atmost one

solution for x; y 2 R+.

Proof. Let z(x; y) and z(x; y) be two solutions of (4.1)-(4.2) for x; y 2 R+, then we

have

z(x; y)�z(x; y) =

Z x

0

Z y

0

"
fF (s; t; z(s; t))� F (s; t; z(s; t))g

+

Z s

0

Z t

0

fG(s; t; �; �; z(�; �))�G(s; t; �; �; z(�; �))gd�d�

#
dtds: (4.11)

Using (4.9), (4.10) in (4.11) we have

j z(x; y)� z(x; y) j �

Z x

0

Z y

0

"
p(s; t) j z(s; t)� z(s; t) j

+

Z s

0

Z t

0

q(s; t; �; �) j z(�; �)) � z(�; �) j d�d�

#
dtds: (4.12)

Now an application of the inequality (b1) in Theorem 2 with k = 0 yields j z(x; y) �

z(x; y) j� 0. Therefore z(x; y) = z(x; y) for x; y 2 R+, i.e. there is atmost one solution

of the problem (4.1)-(4.2).
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In concluding, we note that the inequalities established in Theorems 2 and 4 can be

extended very easily to functions of several independent variables. The precise formu-

lations of these results are very close to that of given above and closely looking at the

related results given in [4, 5]. Here we do not discuss the details. Various applications

of other inequalities established here will be given elsewhere.

References

[1] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Pub-

lishers, Dordrecht, 1992.

[2] A. A. Martyniuk and R. Gutowski, Integral Inequalities and Stability of Motion, Naukova

Dumka, Kiov, 1979(Russian).

[3] D. S. Mitrinovi�c and J. E. Pe�cari�c, Di�erential and Integral Inequalities, Naucna Knjiga,

Belgrade, 1988.

[4] B. G. Pachpatte, Inequalities for Di�erential and Integral Equations, Academic Press, New

York, 1998.

[5] B. G. Pachpatte, Inequalities for Finite Di�erence Equations, Marcel Dekker Inc., New

York, 2002.

[6] B. G. Pachpatte, Some new �nite di�erence inequalities, Comput. Math. Appl. 28(1994),

227-241.

[7] B. G. Pachpatte, On some new inequalities related to a certain inequality arising in the

theory of di�erential equations, J. Math. Anal. Appl. 251(2000), 736-751.

[8] W. Walter, Di�erential and Integral Inequalities, Springer-Verlag, Berlin, New York, 1970.

57, Shri Niketan Colony, Aurangabad 431 001, (Maharashtra) India.


