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ON ABSOLUTE GENERALIZED NORLUND SUMMABILITY
OF ORTHOGONAL SERIES

YASUO OKUYAMA

Abstract. In this paper, we shall prove a general theorem which contains two theorems on the
absolute Norlund summability and the absolute Riesz summability of orthogonal series.

1. Let > 77 a, be a given infinite series with sequence of partial sums {s,}. Let p
denote the sequence {p,}. Given two sequences p and g, the convolution (px*q) is defined
by

n n
(P*Dn =Y Pnklk = Y _ Piln—k-
k=0 k=0

When (p * q),, # 0 for all n, the generalized Norlund transform of the sequence {s,} is
the sequence {tP?} obtained by putting

1 n
ty! = — Prn—kQqkSk- 1
P (pxn kz:% M

If lim,,_,» tE'? exists and is equal to s, then the series Y7 a, or the sequence {s,} is
said to be summable (N, p,, ¢) to the value s and we write

o)
Zan = S(N,pn,qn) or sp — S(N,pn,qn)
n=0

(see Borwein [1]).

If the series Y oo [t2:¢ — P9 | converges, then the series > 2 a, is said to be
summable |N,pp, q,| and we write > a, € |N,pn,qn| (see Tanaka [5]).

The method |N, py, gn| reduces to the absolute Norlund method |N, p,| if ¢, = 1 for
all n and to the absolute Riesz method |N,gy,| if p, = 1 for all n. We know that |N, p,|
mean or |N,g,| includes as special case the absolute Cesaro mean and the absolute
harmonic mean or the logarithmic mean, respectively. Finally A denotes a positive
absolute constant not the same.
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2. Let {¢,(z)} be an orthonormal system defined in the internal (a,b). We suppose that
f(x) belongs to L?(a,b) and

f(l‘) ~ Z an‘Pn('r)'

We also write

n
Ry=(p*q)n, By = pookqe and BRI =0.
k=i

Then we have
R = R,.

Further we put
n n
Pn:(p*l)n:Zpk and Qn:(l*q)n:qu.
k=0 k=0

Now we shall prove a general theorem on the absolute generalized Norlund summability
of the orthogonal series.

Theorem 1. If the series

1/2
o0 n

Ri RI_ \2
S G- R

n=1 | j=1

converges, then the orthogonal series

Z anPn (J,')

is summable |N, p,, qn| almost everywhere.

Proof. Let t£/(z) be the n-the (N, p,,g,) mean of the series >~ an@n(z). Then
we have

1 n
! (z) = R, > pnkaksk(x)
k=0

1 n k

=R an—ka Z ajp;i(x)
" k=0 j=0
1 n n

=7 > aji(®) Y paran
" j=0 k=j

I &
=" > Riajp;(w),
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where s,(z) = Y1 arpr(2).
Thus we obtain

1 n
(@) — 54 ( =R ZR ajpj(z o105 (@
n
1 n
R R} najpi(@ n—10jpj (2
n i=1
n
= ZR ajp;(@ 1P (T
=1

Ry R,
(R_: - Rnfl)aj(pj(x)'
Using the Schwarz’s inequality and the orthogonality, we obtain

[ 1 < o] [ 1amspa)”
n 1 R /‘
:(b—a)1/2{2(% B ) a2 }1 "

Jj=

I
M= 2=

<
Il
—

and then

> (< /Rl R’ /
> [aneeas < 603 {3 (5 - ) s}

n=1"0 n=1  j=1

which is convergent by the assumption and from the Beppo-Leni Lemma we complete
the proof.
We can obtain two the following corollaries from our theorem.

Corollary 1.([2,4]) If the series

> i (o (B Loy, )

Pn Pn—j

converges, then the orthogonal series

Z AnPn (Z’ )
n=0

is summable |N, p,| almost everywhere.
Proof. The proof follows from our theorem and the fact that

R_gz _ R'zlfl — Pn—j _ Pn—l—j
Rn Rnfl Pn P’nfl
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= Pn;n—l (Pp—1Pp—j — PyaPp_1_j)

=P, {(Py = pn)Pu_j — Po(Pr_j — pu_j)}

- ﬁ(ljnpn—j —PnPp_j — PaPa_j+ pa_jPn)
= Pnzlﬁ;q (% - f;:_j)pn—j for all ¢, = 1.

Corollary 2.([3]) If the series

> In n 1/2
P3Yoxi e OILRLH

convergeces, then the orthogonal series

Z AnPn (Z’)

is summable |N,q,| almost everywhere.

Proof. The proof follows from theorem 1 and the fact that

R Rl Qo1 Qui-Q

Rn Rn—l Qn Qn—l
1 1
B Qj_l (@ a anl)
anj—l
= for all p, = 1.
Qnanl P

For the application of these corollaries, see Okuyama [2,3,4].
Furthermore, if we put

. 1 L/RI RL_\?
w(]):;;nz(}%_n_ﬁ_i) ) (2)

then we have the following theorem from theorem 1.

Theorem 2. Let {Q(n)} be a positive sequence such that {Q(n)/n} is a non-
increasing sequence and the series Y - m converges. Let {p,} and {q,} be non-
negative. If the series Y | |an[>?Q(n)w(n) converges, then the orthogonal series Y -
ann(x) is summable [N, py, qn| almost everywhere, where w(n) is defined by (2).
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Proof. We have by Schwarz inequality

RJ

i/b |[AtPA(z)|de < Ai { zn: (% _ Rn,1)2|aj|2}1/2
—17a Z =R, —

-3 e 3 (- =) )

n—1

j=1

< A{ i nﬂl(n) }1/2{ Z:lnﬂ(n) z”: (Z—JZ - %)2@?}1/2
n=1 n= j=1

<A ilaJIZZ”Q (7 & ﬁ:j) )

=1

{.7
c- = (R R \\V/?

ALl T e (5 - 52)')

A{Z|a]|ﬂ i) Y s

by virtue of the hypotheses of Theorem 2. Thus this completes the proof of Theorem 2
from the same reason of the proof of Theorem 1.
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