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CONTROLLABILITY AND OBSERVABILITY OF LINEAR IMPULSIVE

ADJOINT DYNAMIC SYSTEM ON TIME SCALE

NUSRAT YASMIN, SAFIA MIRZA, AWAIS YOUNUS AND ASIF MANSOOR

Abstract. This paper deals with the controllability, observability of the solution of time-

varying system on time scales. We obtain new results about controllability and observ-

ability and generalize to a time scale some known properties about stability from the

continuous case.

1. Introduction

The study of controllability and observability plays an important role in the control the-

ory. In recent years, some research dealing with study of controllability and observability

for impulsive systems[10, 14, 19, 20, 24, 25]. From the control point of view, hybrid impul-

sive control based on the theory of impulsive dynamic systems, is an effective method in the

sense that it allows stabilization of a complex system behaviors may follows unpredictable

patterns Interest in impulsive control systems has grown in recent years due to its theoretical

and practical significance [4, 7, 15, 16, 26], but to our knowledge there are very few reports

dealing with hybrid impulsive dynamical systems and the corresponding contriol problem.

We are interested with dynamic systems on time scale because this area is new progres-

sive component of applied analysis. The theory of time scales was introduced by Stefen Hilger

in his Ph.D work [11] in order to unify continuous and discrete analysis.The main idea of the

study is to prove the results for dynamic equations where the domain of the unknown func-

tion is a so-called time scale, which is an arbitrary non-empty closed subset of the real num-

bers. By choosing the time scale to be set of real numbers, the general results yields the results

concerning ordinary differential equations, on the other hand, by choosing the time scale to

be set of integer, the same general results yields the results for difference equations.The study

of dynamic equations on time scale has recently received a lot of attention [1, 2, 3, 20, 22, 23].

It is a useful tool to explain the differences and similarities between difference and differential

equations. The theory of time scale provides a deep understanding of physical applications
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and leads to the invention of some results which are known even for the special cases of time

scale. Many research papers appeared in the theory and its applications to dynamic systems;

see for examples the interesting monographs of Bohner and Peterson [5, 6].Many publica-

tions to investigate the stability criteria for the solution of dynamic systems on time scales

can be found in [8, 12, 21].B. Kaymakakcalan [13] established a Levinson type theorem and a

Yakubovich type result on asymptotic equivalence of linear dynamic equations respectively.A.

Slavik [23] showed that dynamic equation on time scales can be treated in the framework of

generalized ordinary differential equations as introduced by J.Kurzweil. In recent years, there

has been much research activity concerning the oscillation and nonoscillation of solution of

various dynamic equations.Some authors studied impulsive dynamic systems on time scales,

but only few authors have studied linear impulsive dynamic systems on time scales [9, 17].V.

Lupplescuet. al. [18] studied some aspects of the qualitative theory of linear impulsive dy-

namic systems on time scales.They also studied the controllability and observability for a

class of linear time-varying impulsive control systems on time scales [19, 20].

The purpose of this project is to lay down the foundation of linear impulsive control sys-

tems on time scales. Here we examine controllability and observability in the both, time-

variant and time invariant cases. It should be noted that there have been other excellent at-

tempts to do so [18, 19, 24]. They all examine the following linear impulsive system























x∆(t )= A(t )x (t )+B (t )u (t ) , t ∈ [tk−1, tk )T,

x(t+
k

)= (1+ck )x(tk ), t = tk ,k = 1,2, . . . ,

y(t )=C (t )x (t )+D(t )u (t ) ,

x(t0) = x0,

(1)

in an effort to generalize controllability and observability for dynamic equations. At first, this

seems to be a very natural extension from the continuous and discrete cases. However, when

studying controllability of the linear system (1) in a way following the corresponding proofs

for the continuous and discrete systems, one must assume that the graininess function is

differentiable, an assumption that is not satisfied in general for all time scales. To stepside

this issue, we have altered the linear system so that it appears as























x∆(t )=−AT
k

(t )xσ (t )+Bk (t )u (t ) , t ∈ [tk−1, tk)T,

x(t+
k

) = (1+ck )x(tk ), t = tk , k = 1,2, . . . ,

y(t )=Ck (t )xσ (t )+Dk (t )u (t ) ,

x(t0)= x0.

(2)

The study of controllability of the linear system (2) turns out to be feasible using the clas-

sical techniques without assuming differentiability of the graininess function. However, when
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examining observability of the linear system (2) using classical methods, one must again as-

sume differentiability of the graininess function. But the observability study of the linear sys-

tem (1) does not feature this problem.

The main purpose of this paper is to derive necessary and sufficient criteria for controlla-

bility and observability of class linear impulsive adjoint system on time scale. One of the main

application of these results will be in population dynamics. Many hybrid models of different

populations can be studies and check there relationship by using these criteria.

2. Basic notion

Let Rn be the space of n dimensional column vectors x = col(x1, x2, . . . , xn) with a norm

‖·‖. Also, by the same symbol ‖·‖. We will denote the corresponding matrix norm in the space

Mn(R) of n ×n matrices. If A ∈ Mn(R), then we denote by AT its conjugate transpose. We

recall that ‖·‖ := sup{‖Ax‖ ;‖x‖ ≤ 1} and the following inequality ‖Ax‖ ≤ ‖A‖‖x‖ holds for all

A ∈ Mn(R) and x ∈R
n .

By a time scale T we mean any closed subsets of R. Since a time scale T is not connected

in generally, we need the concept of jump operators. The forward jump operator σ : T→T is

defined by σ (t ) := inf {s ∈T : s > t } , while the backward jump operatorρ : T→T is defined by

ρ (t ) = sup{s ∈T : s < t } . In these definitions we put infφ= supT and supφ= infT. If σ (t )> t ,

we say t is a right-scattered point, while if ρ (t ) < t , we say t is a left-scattered point. Points

that are right-scattered and left-scattered at the same time will be called isolated points. A

point t ∈ T such that t < supT and σ (t ) = t , is called a right-dense point. A point t ∈ T such

that t > infT and ρ (t ) = t , is called a left-dense point. Points that are right-dense and left-

dense at the same time will be called dense points. The set Tk is defined to be T
k =T\{m} if T

has a left-scattered maximum m, otherwise T
k =T. The graininess function µ : T→ [0,∞) is

defined by µ (t )=σ (t )−t . The notations [a,b], (a,b), and so on, will denote time scale interval

such as [a,b] := {t ∈T; a ≤ t ≤ b}, where a, b ∈T. Also, for any τ ∈T, let T(τ) := [τ,∞)∩T and

T+;= T(0).If t0 ∈ T and δ > 0 then we define the following neighborhoods of t0 : UT (t0,δ) :=

(t0 −δ, t0 +δ)∩T. Let us consider some examples on time scales see [5, 6].

Example 1. If h > 0, T = hZ = {hk : k ∈Z} is a time scale. Then we have σ (t ) = t +h, and

ρ (t )= t −h for all t ∈ hZ. Hence each point t ∈ hZ is a isolated point,and T
k =T.

Example 2. If T=
{

1
2n

,n ∈N
}

∪{0} , then we haveσ
(

1
2

)

=
1
2

, and ρ
(

1
2

)

=
1
4

, i.e., 1
2

is left scattered.

Also,σ
(

1
2n

)

=
1

2(n−1)
and ρ

(

1
2n

)

=. Therefore, all points 1
2n ,n ∈N,n ≥ 2, are right-scattered and

left scattered, i.e., all points 1
2n

,n ∈N,n ≥ 2, are isolated.

Example 3. Let T=P1,1 =∪k∈Z [2k ,2k +1]. Then

σ (t )=

{

t +1 if t ∈∪k∈Z {2k +1}

t if t ∈∪k∈Z [2k ,2k +1)
,ρ (t )=

{

t = 1 if t ∈∪k∈Z {2k}

t if t ∈∪k∈Z (2k ,2k +1]
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Definition 4. A function f : T → R is called regulated if its right sided limits exist (finite) at

all right-dense points in T and its left-sided limits exist (finite) at all left-dense points in T. A

function f : T→ R is called rd-continuous if it is continuous at all right-dense points in T its

left-sided limits exist (finite) at all left-dense points in T.

A time scale T is a nonempty closed subset of R.

Definition 5. Let f : T→R and t ∈T
k , We define f ∆ (t )∈R (provided it exists) with the prop-

erty that for every ǫ> 0 there exists δ> 0 such that

∣

∣ f (σ (t ))− f (s)− f ∆ (t ) |σ (t )− s|
∣

∣≤ ǫ |σ (t )− s| ,

for all s ∈UT (t ,δ) . we call f ∆ (t ) the delta derivative (∆-derivative for short) of all t0. Moreover,

we say that f is delta-differentiable (∆-derivative for short) on T
k provided f ∆ (t ) exists for all

t ∈T
k .

We denote by C 1
rd

(T,Rn) the set of all functions f : T→R
n that are differentiable on T and

its delta-derivative f ∆(t ) ∈ Crd (T,Rn). The set of rd-continuous (respectively rd-continuous

and regressive) functions.

Definition 6. A function f : T→ R is said to be regressive (respectively positively regressive)

if 1+µ(t ) f (t ) 6= 0 (respectively 1+µ(t ) f (t )> 0) for all t ∈T
k .

We denote by R (respectively R
+) the set of all regressive (respectively positively regres-

sive) functions from T to R.

The set R (respectively R
+) of all regressive (respectively positively regressive) functions

from T to R is an Abelian group with respect to the circle addition operation ⊕, given by

(w ⊕q)(t ) := w (t )+q(t )+µ(t )w (t )q(t ).

The inverse element of w ∈R is given by

(⊖w )(t )=−
w(t )

1+µ(t )w(t )
,

and so, the circle subtraction operation ⊖ is defined by

(w ⊖q)(t )= (w ⊕ (⊖q))(t )=
w(t )−q(t )
1+µ(t )q(t )

.

The space of all rd-continuous and regressive functions fromT toR is denoted by Crd R(T,R).ectively

R
+) the set of all regressive (respectively positively regressive) functions from T to R.

Cosider the following dynamical system on time scales

x∆(t ) = Ak (t ), (3)
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where Ak ∈ Crd R(T+, Mn(R)),k = 1,2, . . . , and t ∈ [tk−1, tk )T.This is a homogenous linear dy-

namic system on time scales that is nonautonomous, or time-variant. The corresponding

nonhomogenous linear dynamic system is given by

x∆ = Ak (t )x +h(t ), (4)

where h ∈ Crd (T+,Rn).

A function x ∈C 1
rd

(T+,Rn ) is said to solution of (4) on T+ provided x∆(t )= A(t )x(t )+h(t )

for all t ∈T+.

Theorem 7 (Existence and Uniqueness Theorem ([6], Theorem 5.8)). If A ∈ Crd R(T+, Mn(R))

and h ∈ Crd (T+,Rn), then for each (τ,η) ∈T+×R
n the initial value problem

x∆
= A(t )x +h(t ), x(τ) = η,

has a unique solution x : T(τ) →R
n .

A matrix X Ak
∈Crd R(T+, Mn(R)) is said to be matrix solution of (3) if each column of X Ak

satisfies (3). A fundamental matrix of (3) is a matrix solution X Ak
of (3) such that det X Ak

(t ) 6= 0

for all t ∈T+. A transition matrix of (3) at initial time τ ∈T+ is a fundamental matrix such that

X Ak
(τ) = I . The transition matrix of (3) at initial time τ ∈ T+ is the unique solution of the

following matrix initial value problem

X ∆ = Ak (t )X , X (τ) = I ,

and x(t )=ΦAk
(t ,τ)η, t ≥ τ, is the unique solution of the initial value problem

x∆ = Ak (t )x, x(τ) = η.

Lemma 8 ([6], Theorem 5.21). If A ∈ Crd R(T+, Mn(R)) then

(i) Φ(t , t )= I ;

(ii) ΦA(σ(t ), s) = (I +µ(t )A(t ))ΦA(t , s);

(iii) Φ
−1
A (t , s)=Φ

T
⊖AT (t , s);

(iv) ΦA(t , s)=Φ
−1
A (s, t )=Φ

T
⊖AT (s, t );

(v) ΦA(t , s)ΦA(s,r )=ΦA(t ,r ), t ≥ s ≥ r.

Lemma 9 ([6]). If A ∈ Crd R(T+, Mn(R)) and h ∈ Crd (T+,Rn), then for each (τ,η) ∈T+×R
n the

initial value problem

x∆ = A(t )x +h(t ), x(τ) = η,

has a unique solution x : T(τ) →R
n is given by

x(t )=ΦA(t ,τ)η+

∫t

τ
ΦA(t ,σ(s))h (s)∆s, t ≥ τ.
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As in the scaler case, along with (3), consider the following adjoint equation

x∆ =−AT
k

(t )xσ. (5)

If Ak ∈ Crd R(T+, Mn(R)) and h ∈ Crd (T+,Rn), then the initial value problem

y∆ =−Ak (t )yσ, y(τ)= η, has a unique solution x : T(τ) →R
n given by x(t )=Φ

T
⊖AT

k

(t ,τ), t ≥ τ.

Lemma 10 ([6], Theorem 5.27). If A ∈ Crd R(T+, Mn(R)) and h ∈ Crd (T+,Rn ), then for each

(τ,η) ∈T+×R
n the initial value problem

x∆ =−AT (t )xσ+h(t ), x(τ) = η,

has a unique solution x : T(τ) →R
n is given by

x(t )=Φ⊖AT (t ,τ)η+

∫t

τ
Φ⊖AT (t , s)h (s)∆s, t ∈T(τ).

Proposition 11. For the system (5) with Ak ∈ Mn(R) constant, there exist scalar functions

γ0(t ,τ), . . . ,γn−1(t ,τ) ∈C∞
rd

(T+,R) such that the unique solution has representations

e AT
k

(t ,τ)=
n−1
∑

j=0

γ j (t ,τ)
(

AT
k

) j
. (6)

3. Controllability

Consider the following linear time-varying impulsive adjoint dynamic system















x∆ (t )=−AT
k

(t ) xσ (t )+Bk (t )u (t ) , t ∈ [tk−1, tk )T

x
(

t+
k

)

= (1+ck ) x (tk) , t = tk , k = 1,2, . . .

x (t0) = x0,

(7)

with the following conditions:

(i) Time scale T is unbounded above with bounded graininess(i.e. supT=∞ and µ (t ) <

∞).

(ii) t0 < t1 < t2 < ·· · tk < ·· · , with limk→∞ tk =∞, where tk ∈T+ are right-dense.

(iii) x(t+
k

) := limh→0+ x(tk +h), v(t−
k

) := limh→0+ x(tk −h) and ck ∈R are constants.

(iv) Ak (·) ∈ Crd R(T+, Mn(R)), Bk (·) ∈ Crd R(T+, Mn×m(R)), x ∈ R
n is the state variable and

u ∈R
m is the control input.
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Lemma 12. For any t ∈ [tk−1, tk)T,k = 1,2,3, ···, the solution of intial value problem (7) is given

by

x (t )=



































































Φ
T
A1

(t0, t )x0 +

∫t

t0

Φ
T
A1

(τ, t )B1 (τ) u (τ)∆τ, k = 1,

Φ
T
Ak

(tk−1, t )

{

1
∏

i=k−1
(1+ci )

1
∏

i−k−1
Φ

T
Ai

(ti−1, ti )x0

+
k−2
∑

i=1

(

i
∏

j=k−1

(

1+c j

)
i+1
∏

j=k−1
Φ

T
A j

(t j−1, t j )

∫ti

ti−1

Φ
T
Ai

(τ, ti )Bi (τ)u (τ)∆τ

)

+ (1+ck−1)
∫tk−1

tk−2
Φ

T
Ak−1

(τ, tk−1)Bk−1 (τ)u (τ)∆τ
}

+

∫t

tk−1

Φ
T
Ak

(τ, t )Bk (τ)u (τ)∆τ, k = 2,3, . . . .

(8)

Definition 13. The impulsive system (7) is said to be completely controllable on [t0, t f ]T if

given initial state x0 ∈R
n ,there exists a picecewise rd-continuous input signal u (·) :

[

t0, t f

]

T
→

R
m such that the corresponding solution of (7) satisfies x

(

t f

)

= 0.

We consider the following matrices.

For t ∈ [t0, t1]T

G1 :=G1(t0, t f , t f ) =

∫t f

t0

Φ
T
A1

(τ, t f )B1 (τ)B T
1 (τ)ΦA1

(τ, t f )∆τ, (9)

for t ∈ [tl−1, tl )T, where 2 ≤ l ≤ k −1

Gl :=Gl (tl−1, tl , t f ) =

∫t f

tl−1

Φ
T
Al

(τ, t f )Bl (τ) B T
l (τ)ΦAl

(τ, t f )∆τ, (10)

and for t ∈ [tk−1, tk )T

Gk :=Gk (tk−1, t f , t f ) =

∫t f

tk−1

Φ
T
Ak

(τ, t f )Bk (τ) B T
k (τ)ΦAk

(τ, t f )∆τ. (11)

Theorem 14.

(i) If there exist at least l ∈ {1,2, · · ·,k} such that

r ank
(

Gl

(

tl−1, tl , t f

))

= n,

then the impulsive system (7) is controllable on
[

t0, t f

]

T

(

t f ∈ [tl−1, tl

)

T
).

(ii) Assume that ci 6= −1, i = 1,2, · · ·,k . If impulsive system (7) is controllable on
[

t0, t f

]

T

(

t f ∈ [tl−1, tl )T
)

, then

r ank (G1 · · ·Gk ) = n.
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Proof. Let l ∈ {1,2, ···,k} such that the r ankGl

(

tl−1, tl , t f

)

= n,that is Gl

(

tl−1, tl , t f

)

is ivertible.

Then for a given x0 ∈R
n , choose a control function given as:

u (t )=



















































































−B T
1 (t )ΦA1

(

t , t f

)

G−1
1 Φ

T
A1

(

t0, t f

)

x0, for t ∈ [t0, t1]T ,2 ≤ l ≤k−1,

−B T
l

(t )ΦAl

(

t , t f

)

G−1
l

Φ
T
Al

(tl−1, t f )
1
∏

i=l−1
(1+ci )

×
1
∏

i=l−1
Φ

T
Ai

(ti−1, ti )x0, for t ∈ [tl−1, tl )T,

0 if t ∈
[

t0, t f

]

\[tl−1, tl ),

−B T
k

(t )Φk

(

t , t f

)

G−1
k

Φ
T
Ak

(

tk−1, t f

)
1
∏

i=k−1
(1+ci )

×
1
∏

i=k−1
Φ

T
Ai

(ti−1, ti )x0, for t ∈ [tk−1, tk)T

0 if t ∈
[

t0, t f

]

T
\[tk−1, tk)T.

(12)

Obviously, the control input u (·) is piecewise rd-continuous on
[

t0, t f

]

T
. By Lemma (12), we

have

x
(

t f

)

=Φ
T
A1

(t0, t f )x0 −

∫t f

t0

Φ
T
A1

(τ, t f )B1 (τ)B T
1 (τ)ΦA1

(

τ, t f

)

G−1
1 Φ

T
A1

(

t0, t f

)

x0∆τ.

By using equation (9)

x
(

t f

)

=Φ
T
A1

(t0, t f )x0 −G1G−1
1 Φ

T
A1

(

t0, t f

)

x0

= 0, for t ∈ [t0, t1]T .

Thus the system (7) is controllable on [t0, t1]T .

Similarly, for 2 ≤ l ≤ k −1 and t ∈ [tl−1, tl )T

x
(

t f

)

=Φ
T
Al

(tl−1, t f )
1

∏

i=l−1

(1+ci )
1

∏

i=l−1

Φ
T
Ai

(ti−1, ti )x0

−

∫t

tl−1

Φ
T
Al

(τ, t f )Bl (τ)B T
l (t )ΦAl

(

t , t f

)

G−1
l Φ

T
Al

(tl−1, t f )
1

∏

i=l−1

(1+ci )
1

∏

i=l−1

Φ
T
Ai

(ti−1, ti )x0∆τ,

it follows from equation (10)

x
(

t f

)

= 0, t ∈ [tl−1, tl )T,

and similarly, we obtain

x
(

t f

)

= 0, t ∈ [tk−1, tk )T.

Thus the system (7) is controllable on
[

t0, t f

]

T
. So (i) holds.

(ii) Assume that (7) is controllable on
[

t0, t f

]

T
. we have to prove that

r ank(G1 · · ·Gk )= n.
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Suppose contrary that

r ank(G1 · · ·Gk ) < n,

then, there exist a nonzero xα 6= 0 ∈R
nsuch that

xT
αGi (ti−1, ti , t f )xα = 0, i = 1,2, · · ·,k .

for i = 1

xT
αG1xα =

∫t f

t0

xT
αΦ

T
A1

(τ, t f )B1 (τ) B T
1 (τ)ΦA1

(τ, t f )xα∆τ,

As xT
αΦ

T
A1

(t , t f )B1 (t ) is rd-continuous functions so

∥

∥

∥xT
αΦ

T
A1

(t , t f )B1 (t )
∥

∥

∥

2
= 0,

which follows that

B T
1 (t )ΦT

A1
(t , t f )xα = 0, t ∈ [t0, t1]T , (13)

For l = 2, · · ·,k −1,

xT
αGl xα =

∫t f

tl−1

xT
αΦ

T
Al

(τ, t f )Bl (τ)B T
l (τ)ΦAl

(τ, t f )xα∆τ= 0,

xT
αΦ

T
Al

(t , t f )Bl (t )B T
l (t )ΦAl

(t , t f )xα =
∥

∥xT
αΦl

(

t , t f

)

Bl (τ)
∥

∥

2
,

B T
l (t )ΦT

Al
(t , t f )xα = 0, t ∈ [tl−1, tl )T. (14)

Similarly,

B T
k (t )ΦT

Ak
(t , t f )xα = 0, t ∈ [tk−1, tk )T. (15)

However, the impulsive system (7) is controllable on [t0, t f ]T, and so choosing x0 = xα, there

exists a piecewise rd-continuous input u (·) such that

0 = x(t f ) =Φ
T
A1

(t0, t f )xα+

∫t f

t0

Φ
T
A1

(τ, t f )B1(τ)u(τ)∆τ;k = 1. (16)

Multiply through by xT
α in (16) and using the transpose of equation (13), we obtain

Φ
T
A1

(t0, t f )xT
α xα = 0. (17)

Similarly,

x
(

t f

)

=Φ
T
Ak

(tk−1, t f )

{ 1
∏

i=k−1

(1+ci )
1

∏

i=k−1

Φ
T
Ai

(ti−1, ti )xα

+

k−2
∑

i=1

( i
∏

j=k−1

(

1+c j

)

i+1
∏

j=k−1

Φ
T
A j

(t j−1, t j )×

∫ti

ti−1

Φ
T
Ai

(τ, ti )Bi (τ)u (τ)∆τ
)
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+ (1+ck−1)

∫tk−1

tk−2

Φ
T
Ak−1

(τ, tk−1)Bk−1 (τ)u (τ)∆τ

}

+

∫t f

tk−1

Φ
T
Ak

(τ, t f )Bk (τ)u (τ)∆τ, k = 2,3, . . . . (18)

Multiplying by Φ
T
A1

(t1, t2)ΦT
A2

(t2, t3) · · ·ΦT
Ak

(

tk−1, t f

)

and xT
α in (18), and using equations (14),

and (15), we obtain
k
∏

j=2

(1+c j )xT
α xα = 0. (19)

From equations (17) and (19), it follows that xT
α xα = 0. This contradicts xα 6= 0 and so, we

conclude that

r ank(G1 · · · Gk ) =n. ���

Our next result give us necessary and sufficient conditions for time invariant system. Let

us define new matrices:

Wi = [B T
i B T

i Ai · · · B T
i An−1

i ], i = 1,2, · · ·,k .

Theorem 15. Assume that ci 6= −1, i = 1,2, . . . ,k , and Ak (t ) = Ak , Bk (t ) = Bk are constant ma-

trices. Then, the impulsive system (7) is controllable on [t0, t f ]T(t f ∈ [tk−1, tk)T), if and only

if

r ank(W1W2 · · ·Wk )= n. (20)

Proof. Suppose that the impulsive system (7) is controllable on [t0, t f ]T. If the rank condition

(20) does not hold, then there exist xα ∈R
n with xα 6= 0, such that

Bi A
j

i
xα = 0, (21)

for i = 1, · · ·,k , j = 0,1, . . . ,n −1.

Consider

G1(t0, t f , t f )xα =

∫t f

t0

eT
A1

(τ, t f )B1B T
1 e A1

(τ, t f )xα∆τ.

Using Proposition (11), and equation (21), we obtain

G1(t0, t f , t f )xα =

∫t f

t0

eT
A1

(τ, t f )B1B T
1

n−1
∑

j=0

γ1 j (τ, t f )A
j
1xα∆τ,

=

∫t f

t0

eT
A1

(τ, t f )B1

n−1
∑

j=0

γ1 j (τ, t f )B T
1 A

j

1xα∆τ

=0.
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By again using Proposition (11), and equation (21), it follows that

Gl (tl−1, tl , t f )xα =

∫t f

tl−1

eT
Al

(τ, t f )Bl B T
l e Al

(τ, t f )xα∆τ,

=

∫t f

tl−1

eT
Al

(τ, t f )Bl B T
l

n−1
∑

j=0

γl j (τ, t f )A
j

l
xα∆τ

=

∫t f

tl−1

eT
Al

(τ, t f )Bl

n−1
∑

j=0

γl j (τ, t f )B T
l A

j

l
xα∆τ

=0,

for 2 ≤ l ≤ k −1. Similarly, Gk (tk−1, tk , t f )xα = 0, which follows that

r ank(G0 G1 · · · Gk ) < n.

This contradicts the conclusion (ii) of Theorem 14 and therefore, we can conclude that the

condition (20) is true.

Conversely, suppose that (20) holds. If the impulsive system (7) is not controllable on
[

t0, t f

]

T
(t f ∈ [tk−1, tk )T), then it follows from the conclusion (i) of Theorem 14 that the matri-

ces G1(t0, t f , t f ),Gl (tl−1, tl , t f ) and Gk (tk−1, tk , t f ) are not invertible. Thus, there exist xα ∈ R
n

with xα 6= 0, such that

xT
αG1(t0, t f , t f )xα =

∫t f

t0

xT
αeT

A1
(τ, t f )B1B T

1 e A1
(τ, t f )xα∆τ= 0,

xT
αGl (tl−1, tl , t f )xα =

∫t f

t0

xT
αeT

Al
(τ, t f )Bl B T

l e Al
(τ, t f )xα∆τ= 0,2 ≤ l ≤ k −1,

xT
αGk (tk−1, tk , t f )xα =

∫t f

t0

xT
αeT

Ak
(τ, t f )Bk B T

k e Ak
(τ, t f )xα∆τ= 0.

Exactly as in proof of Theorem 14, it follows that

B T
1 e A1

(t , t f )xα = 0, for t ∈ [t0, t1]T , (22)

B T
l e Al

(t , t f )xα = 0, for t ∈ [tl−1, tl )T, (23)

where 2 ≤ l ≤ k −1, and

B T
k e Ak

(t , t f )xα = 0, , for t ∈ [tk−1, tk )T. (24)

Differentiating equations (22), (23) and (24) j times, where
(

0 ≤ j ≤ n −1
)

, we have

B T
1 A

j
1e A1

(τ, t f )xα = 0, for t ∈ [t0, t1]T , (25)

B T
l A

j

l
e Al

(t , t f )xα = 0, for t ∈ [tl−1, tl )T, (26)
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where 2 ≤ l ≤ k −1, and

B T
k A

j

k
e Ak

(t , t f )xα = 0, for t ∈ [tk−1, tk )T. (27)

If we take t = t f in equations (25), (26) and (27), then it follows that B T
i

A
j

i
xα = 0, for i = 1, ···,k ,

and j = 0, ···.n−1. Which implies that the rank condition (20) fails, which gives contradiction.

So the impulsive system (7) ic controllable on
[

t0, t f

]

T
(t f ∈ [tk−1, tk )T). ���

4. Observability

In this section we have to study the observability properties for the following linear time-

varying impulsive dynamic system:























x∆(t ) = −Ak (t )xσ (t )+Bk (t )u (t ) , t ∈ [tk−1, tk)T,

x(t+
k

) = (1+ck )x(tk ), t = tk ,k = 1,2, . . . ,

y(t ) = Ck (t )x (t )+Dk (t )u (t ) ,

x(t0) = x0,

(28)

under the following conditions:

(i) Time scale T is unbounded above with bounded graininess (i.e. supT=∞ and µ(t ) <

∞).

(ii) t0 < t1 < t2 < ·· · tk < ·· · , with limk→∞ tk =∞. where , tk ∈T+ are right-dense.

(iii) x(t+
k

) := limh→0+ x(tk +h), x(t−
k

) := limh→0+ x(tk −h) and ck ∈R are constants.

(iv) Ak (·) ∈ Crd R(T+, Mn(R)), Bk (·) ∈ Crd R(T+, Mn×m(R)), x ∈ R
n is the state variable and

u ∈R
m is the control input.

(v) Ck (·) ∈Crd R(T+, Mp×n(R)),Dk (·) ∈Crd R(T+, Mp×m(R)), y ∈R
p is the output.

Complete observability of linear impulsive systems is define as follows:

Definition 16. The impulsive system (28) is said to be completely observable on
[

t0, t f

]

T

(

t f > t0

)

if any initial state x(t0) = x0 ∈R
n is uniquely determined by the correspond-

ing system input u(t ) and the system output y(t ) for
[

t0, t f

]

T
.

Theorem 17. Assume that 1+ci ≥ 0, i = 1,2, . . . ,k . Then, the impulsive system (28) is observable

on
[

t0, t f

]

T
(t f ∈ (tk , tk+1])T if and only if the matrix

M (t0, t f ) :=M (t0, t0, t1)+
k−1
∑

i=2

i
∏

j=1

(1+c j )M (t0, ti−1, ti )+
k
∏

j=1

(1+c j )M (t0, tk−1, t f )

is invertible, where

M (t0, t0, t1) :=

∫t1

t0

ΦA1
(t0,τ)C T

1 (τ)C1(τ)ΦT
A1

(t0,τ)∆τ,
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M (t0, ti−1, ti ) :=

∫ti

ti−1

Ωi (t0,τ)C T
i (τ)Ci (τ)ΩT

i (t0,τ)∆τ i = 2, . . . ,k −1,

and

M (t0, tk−1, t f ) =

∫t f

tk−1

Ωk (t0,τ)C T
k (τ)Ck (τ)ΩT

k (t0,τ)∆τ.

with

Ω
T
i (t0,τ) =Φ

T
Ai

(ti−1,τ)ΦT
Ai−1

(ti−2, ti−1) · · ·ΦT
A1

(t0, t1), i = 1, . . . ,k .

Proof. Suppose M (t0, t f )T is invertible. From (8) and (28), we obtain

y(t )=C1(t )ΦT
A1

(t0, t )x0 +C1(t )

∫t1

t0

Φ
T
A1

(τ, t )B1(τ)u(τ)∆τ+D1(t )u(t ), t ∈ [t0, t1]T (29)

and

y(t )=Cl (t )ΦT
Al

(tl−1, t )

{ 1
∏

i=l−1

(1+ci )
1

∏

i=l−1

Φ
T
Ai

(ti−1, ti )x0

Cl (t )+
l−2
∑

i=1

( i
∏

j=l−1

(

1+c j

)

i+1
∏

j=l−1

Φ
T
A j

(t j−1, t j )

∫ti

ti−1

Φ
T
Ai

(τ, ti )Bi (τ)u (t )∆τ
)

Cl (t )+ (1+ck−1)

∫tl−1

tl−2

Φ
T
Al−1

(τ, tl−1)Bl−1 (τ)u (t )∆τ

}

Cl (t )+

∫t

tl−1

Φ
T
Al

(τ, t )Bl (τ)u (t )∆τ+Dl (τ)u(τ), for t ∈ (tl−1, tl ]T, l = 2, . . . ,k . (30)

It is easy from the Definition 16 that the observability of system (28) is equivalent to the ob-

servability of y(t ) is given by

y(t )=















C1(t )ΦT
A1

(t0, t )x0 t ∈ [t0, t1]T

1
∏

i=l−1

(1+ci )Cl (t )ΩT
l

(t0, t )x0 t ∈ (tl−1, tl ]T, l = 2, . . . ,k ,
(31)

as u(t ) = 0. Now, multiply by Ωl (t0, t )C T
l

(t ) to both sides of (31) and integrating with respect

to t0 to t f , we have

∫t f

t0

Ωl (t0,τ)C T
l (τ)y(τ)∆τ

=

[
∫t1

t0

ΦA1
(t0,τ)C T

1 (τ)C1(τ)ΦT
A1

(t0,τ)∆τ+
k−1
∑

i=2

i
∏

j=i

(1+c j )

∫ti

ti−1

Ωi (t0,τ)C T
i (τ)Ci (τ)ΩT

i (t0,τ)∆τ

+

k
∏

j=1

(1+c j )

∫t f

tk−1

Ωk (t0,τ)C T
k (τ)Ck (τ)ΩT

k (t0,τ)∆τ

]

x0

and so,

∫t f

t0

Ωl (t0,τ)C T
l (τ)y(τ)∆τ
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=

[

M (t0, t0, t1)+
k−1
∑

i=2

i
∏

j=1

(1+c j )M (t0, ti−1, ti )+
k

∏

j=1

(1+c j )M (t0, tk−1, t f )

]

x0

=M (t0, t f )x0. (32)

Obviously, the left hand side of equation (32) depends on y(t ), t ∈
[

t0, t f

]

T
. Since the matrix

M (t0, t f ) is invertible, then from linear algebraic equation (32) we deduce that x(t0) = x0 is

uniquely determined by the corresponding system output y(t ) for t ∈ [t0, t f ]T.

Conversely, suppose that the matrix M (t0, t f ) is not invertible, then there exist a nonzero

xα ∈R
n , such that

xT
α M (t0, t f )xα = 0.

Since 1+ci ≥ 0, i = 1,2, . . . ,k , M (t0, t0, t1), M (t0, ti−1, ti ) for i = 2 · · · ,k−1 and M (t0, tk−1, t f ) are

positive semidefinite matrics, we have

xT
α M (t0, t0, t1)xα = 0,

xT
α M (t0, ti−1, ti )xα = 0, for i = 2, . . . ,k −1

xT
α M (t0, tk−1, t f )xα = 0.

(33)

Choose x0 = xα. Then, from (31) and (33), it follows that
∫t f

t0

yT (τ)y(τ)∆τ=

∫t1

t0

xT
αΦA1

(t0,τ)C T
1 (τ)C1(τ)ΦT

A1
(t0,τ)xα∆τ

+

k−1
∑

i=2

[

i
∏

j=1

(1+c j )

]2
∫ti

ti−1

xT
αΩi (t0,τ)C T

i (τ)Ci (τ)ΩT
i (t0,τ)xα∆τ

+

[

k
∏

j=1

(1+c j )

]2
∫t f

tk−1

xT
αΩk (t0,τ)C T

k (τ)Ck (τ)ΩT
k (t0,τ)xα∆τ.

Further, we have

∫t f

t0

yT (τ)y(τ)∆τ=xT
α M (t0, t0, t1)xα+

k−1
∑

i=2

[

i
∏

j=1

(1+c j )

]2

xT
α M (t0, ti−1, ti )xα

+

[

k
∏

j=1

(1+c j )

]2

xT
α M (t0, tk−1, t f )xα = 0

and so,
∫t f

t0

∥

∥y(τ)
∥

∥

2
∆τ= 0.

It follows that

0 = y(t )=



































C1(t )ΦT
A1

(t0, t )x0, t ∈ [t0, t1]T,
l

∏

j=1

(1+c j )Cl (t )ΩT
l (t0, t )x0 t ∈ [tl−1, tl )T, l = 2, . . . ,k −1,

k
∏

j=1

(1+c j )Ck (t )ΩT
k (t0, t )x0 t ∈ [tk−1, tk )T.
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The last equality implies, by Definition 16, that the impulsive system is not observable on

[t0, t f ]T(t f ∈ [tk−1, tk )T). ���

Our next result give us the sufficient and necessary criterion for time-invarient case for

impulsive system (28).

Let us define the following matrix

S =









V1

...

Vk









and Vi =















Ci

Ci AT
i

...

Ci

(

AT
i

)n−1















(34)

Theorem 18. Assume that 1 + ci ≥ 0, i = 1,2, . . . ,k and Ak (t ) = Ak ,Ck (t ) = Ck are constant

matrices. Then, the impulsive system (28) is observable on
[

t0, t f

]

T
(t f ∈ [tk−1, tk)T) if and only

if r ank(S)= n.

Proof. Suppose that r ank(S) = n and we aim to show that system (28) is observable on
[

t0, t f

]

T
(t f ∈ [tk−1, tk)T). If otherwise, namely system (28) is not observable then by Theo-

rem 17, it follows that the matrix M (t0, t f ) is not invertible, which leads to that there exists a

nonzero vector xα 6= 0. Then by using Theorem 17, we obtain

xT
α M (t0, t0, t1)xα =

∫t1

t0

xT
α e A1

(t0,τ)C T
1 C1eT

A1
(t0,τ)xα∆τ

=

∫t1

t0

[

C1eT
A1

(t0,τ)xα

]T [

C1eT
A1

(t0,τ)xα

]

∆τ,

it follows that

C1eT
A1

(t0, t )xα. (35)

Similarly,

CiΩ
T
i (t0, t )xα = 0, i = 1, · · ·,k −1, (36)

and

CkΩ
T
k (t0, t )xα = 0, (37)

where

Ω
T
i (t0, t )= eT

Ai
(ti−1, t )eT

Ai−1
(ti−2, ti−1) · · ·eT

A1
(t0, t1)

Obviously, at t = t0, we have Ci xα = 0, for i = 1, · · ·,k , and differentiating the equations (35),

(36) and(37) n −1 times and evaluating the result at t = t0 gives

Ci A
j

i
xα = 0, j = 0,1, . . . ,n −1, i = 1, · · ·,k (38)
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Therefore, by (34) and (38) we have Sxα = 0 and moreover xα 6= 0 implies that r ank(S) < n

which leads to a contradiction with the assumptions that r ank(S)= n. The proof of sufficient

part is finished.

Conversely, we suppose that r ank(S) < n. Then, there exist vα 6= 0 such that Sxα = 0,

which leads to (38).

By using (14) and (38), we have

M (t0, t0, t1)xα =

∫t1

t0

n−1
∑

j=0

γ j (t0,τ)e A1
(t0,τ)C T

1 C1eT
A1

(t0,τ)xα∆τ

=

∫t1

t0

n−1
∑

j=0

γ1 j (t0,τ)e A1
(t0,τ)C T

1 C1 AT
1 xα∆τ= 0,

similarly, for i = 1,2, . . . ,k −1

M (t0, ti−1, ti )xα =0

and

M (t0, tk−1, tk )xα =0

(38) yields M (t0, t f )xα = 0. Since xα 6= 0, the matrix M (t0, t f ) is not invertible. Hence the sys-

tem is not observable and it contradicts with the assumption of observability. The proof is

completed. ���

5. Conclusion

In this paper, we investigated the issue on the controllability and observability criteria

for linear impulsive adjoint system on time scales. Using the adjoint system, we find some

necessary and sufficient results of controllability for adjoint impulsive system (for both time

varying and time invariant) on time scales. we also find some necessary and sufficient results

of observability for adjoint impulsive system (for both time varying and time invariant) on

time scales.
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