ON A NEW CLASS OF SEQUENCES RELATED TO THE SPACE ℓ^p

BINOD CHANDRA TRIPATHY AND MAUSUMI SEN*

Abstract. In this article we introduce a new class of sequences named as $m(\phi, p)$. This generalizes the earlier sequence space $m(\phi)$ due to Sargent [2]. We study some of the properties of this space.

1. Introduction

The space $m(\phi)$ was introduced by Sargent [2]. He studied some properties of the space $m(\phi)$. Later on it was studied from sequence space point of view and some matrix classes with one member as $m(\phi)$ were characterized by Rath and Tripathy [1], Tripathy [3] and others. In this article we generalize this space by introducing the space $m(\phi, p)$.

Throughout the article $w, \ell^p, \ell^l, \ell^\infty$ denote the spaces of all *p*-absolutely summable, absolutely summable and bounded sequences respectively. Also N and C denote the set of all natural numbers and complex numbers respectively.

2. Definitions and Background

Let $x = (x_n)$ be a sequence, then S(x) denotes the set of all permutation of the elements of (x_n) , i.e. $S(x) = \{(x_{\pi(n)}) : \pi(n) \text{ is a permutation on } N\}$. A sequence space E is said to be *symmetric* if $S(x) \subseteq E$ for all $x \in E$.

A sequence space E is said to be *solid* if $(y_n) \in E$ whenever $(x_n) \in E$ and $|y_n| \leq |x_n|$ for all $n \in N$.

A *BK*-space is a Banach space in which the co-ordinate maps are continuous, i.e. if $(x_k^{(n)})_k \in E$, then

 $||(x_k^{(n)}) - (x_k)|| \to 0$ as $n \to \infty \Rightarrow |x_k^{(n)} - x_k| \to 0$ as $n \to \infty$, for each fixed k.

 \wp_s denotes the set of all subsets of N those do not contain more than s elements. Throughout the paper $\{\phi_n\}$ denotes a non-decreasing sequence of positive numbers such that $n\phi_{n+1} \leq (n+1)\phi_n$ for all $n \in N$.

Received December 26, 2000; revised September 3, 2001.

²⁰⁰⁰ Mathematics Subject Classification. 40A05

Key words and phrases. Symmetrix space, normal space, complete, Banach space.

^{*}The work of the authors was carried under a project of Department of Science & Technology, Govt. of India project no.:-DST/MS/IRHPA-001/93.

The space $m(\phi)$ is defined as

$$m(\phi) = \Big\{ (x_k) \in w : \|x\|_{m(\phi)} = \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{n \in \sigma} |x_n| < \infty \Big\}.$$

Generalizing the above sequence space, we now introduce the space $m(\phi, p)$ as follows: For $1 \le p < \infty$,

$$m(\phi, p) = \Big\{ (x_k) \in w : \|x\|_{m(\phi, p)} = \sup_{s \ge 1, \sigma \in \varphi_s} \frac{1}{\phi_s} \Big\{ \sum_{n \in \sigma} |x_n|^p \Big\}^{1/p} < \infty \Big\}.$$

From the definition it is clear that $m(\phi, 1) \equiv m(\phi)$. It is a routine work to verify that $m(\phi, p)$ is a normed linear space with respect to the above norm.

3. Main Results

Theorem 1. The space $m(\phi, p)$ is complete.

Proof. Let $\{x^{(n)}\}$ be a Cauchy sequence in $m(\phi, p)$. Hence

$$\sup_{s \ge 1, \sigma \in \wp_s} \left[\frac{1}{\phi_s} \left\{ \sum_{i \in \sigma} |x_i^{(n)}|^p \right\}^{1/p} \right] < \infty, \quad \text{for all } n(n = 1, 2, 3, \ldots).$$

Then for each $\varepsilon > 0$, there exists a positive integer n_0 such that

$$\|x^{(m)} - x^{(n)}\|_{m(\phi,p)} < \varepsilon \quad \text{for all } m, n \ge n_0$$

$$\Rightarrow \sup_{s \ge 1, \sigma \in \varphi_s} \left[\frac{1}{\phi_s} \left\{ \sum_{i \in \sigma} |x_i^{(m)} - x_i^{(n)}|^p \right\}^{1/p} \right] < \varepsilon \quad \text{for all } m, n \ge n_0 \quad (1)$$

$$\Rightarrow |x_i^{(m)} - x_i^{(n)}| < \varepsilon \phi_1 \quad \text{for all } m, n \ge n_0, \text{ for all } i \in N.$$

Hence for each fixed $i(1 \le i < \infty)$, the sequence $\{x_i^{(n)}\}_{n=1}^{\infty}$ is a Cauchy sequence in C. Since C is complete, it converges in C. Let $x_i^{(n)} \to x_i$ as $n \to \infty$.

We define $x = (x_1, x_2, x_3, ...)$ We now show that (a) $x \in m(\phi, p)$ and (b) $x^{(n)} \to x$. From (1) we get, for each fixed s

$$\sum_{i \in \sigma} |x_i^{(m)} - x_i^{(n)}|^p < \varepsilon^p \phi_s^p \quad \text{for all } m, n \ge n_0, \ \sigma \in \wp_s$$

Letting $n \to \infty$, we get

$$\sum_{i \in \sigma} |x_i^{(m)} - x_i|^p < \varepsilon^p \phi_s^p \quad \text{for all } m \ge n_0, \sigma \in \wp_s$$

$$\Rightarrow \sup_{s \ge 1, \sigma \in \wp_s} \left[\frac{1}{\phi_s} \left\{ \sum_{i \in \sigma} |x_i^{(m)} - x_i|^p \right\}^{1/p} \right] < \varepsilon \quad \text{for all } m \ge n_0 \quad (2)$$

$$\Rightarrow x^{(n)} - x \in m(\phi, p) \quad \text{for all } n \ge n_0.$$

Hence $x = x^{(n)} + (x - x^{(n)}) \in m(\phi, p)$, as $m(\phi, p)$ is a linear space.

Also (2)
$$\Rightarrow ||x^{(n)} - x||_{m(\phi,p)} < \varepsilon$$
 for all $n \ge n_0$
 $\Rightarrow x^{(n)} - x \in m(\phi, p).$

Hence $m(\phi, p)(1 \le p < \infty)$ is a Banach space.

Theorem 2. The space $m(\phi, p)$ is a BK-space.

Proof. Let $||x^{(n)} - x||_{m(\phi,p)} \to 0$ as $n \to \infty$. Hence given $\varepsilon > 0$, there exists $n_0 \in N$ such that

$$\begin{aligned} \|x^{(n)} - x\|_{m(\phi,p)} &< \varepsilon \quad \text{for all } n \ge n_0 \\ \Rightarrow \sup_{s \ge 1, \sigma \in \varphi_s} \left[\frac{1}{\phi_s} \Big\{ \sum_{k \in \sigma} |x_k^{(n)} - x_k|^p \Big\}^{1/p} \Big] &< \varepsilon \quad \text{for all } n \ge n_0 \\ \Rightarrow \|x_k^{(n)} - x_k\| &< \varepsilon \phi_1 \quad \text{for all } n \ge n_0, \quad \text{for all } k. \end{aligned}$$

So, $|x_k^{(n)} - x_k| \to 0$ as $n \to \infty$ and the proof is complete.

Using the definitions we formulate the following result.

Proposition 3. (i) The space $m(\phi, p)$ is a symmetric space. If $x \in m(\phi, p)$ and $u \in S(x)$, then $\|u\|_{m(\phi,p)} = \|x\|_{m(\phi,p)}$. (ii). The space $m(\phi, p)$ is a normal space.

Proposition 4. $m(\phi) \subseteq m(\phi, p)$

Proof. Let $x \in m(\phi)$. Then $||x||_{m(\phi)} = \sup_{s \ge 1, \sigma \in \wp_s} \left\{ \frac{1}{\phi_s} \sum_{n \in \sigma} |x_n| \right\} = K(<\infty)$. Hence for each fixed s, $\sum_{n \in \sigma} |x_n| \le K\phi_s$, $\sigma \in \wp_s$.

$$\Rightarrow \left\{ \sum_{n \in \sigma} |x_n|^p \right\}^{1/p} \le K \phi_s, \sigma \in \wp_s$$
$$\Rightarrow \sup_{s \ge 1, \sigma \in \wp_s} \left[\frac{1}{\phi_s} \left\{ \sum_{n \in \sigma} |x_n|^p \right\}^{1/p} \right] \le K.$$

Thus $x \in m(\phi, p)$ and this completes the proof.

Proposition 5. $m(\phi, p) \subseteq m(\psi, p)$ if and only if $\sup_{s \ge 1} \left(\frac{\phi_s}{\psi_s}\right) < \infty$.

Proof. Suppose $\sup_{s\geq 1} \left(\frac{\phi_s}{\psi_s}\right) = K(<\infty)$. Then $\phi_s \leq K\psi_s$. Now if $(x_k) \in m(\phi, p)$, then

$$\sup_{s \ge 1, \sigma \in \varphi_s} \left[\frac{1}{\phi_s} \Big\{ \sum_{n \in \sigma} |x_n|^p \Big\}^{1/p} \right] < \infty$$

$$\Rightarrow \sup_{s \ge 1, \sigma \in \varphi_s} \left[\frac{1}{K\psi_s} \left\{ \sum_{n \in \sigma} |x_n|^p \right\}^{1/p} \right] < \infty$$
$$\Rightarrow \|x\|_{m(\psi, p)} < \infty.$$

Hence $m(\phi, p) \subseteq m(\psi, p)$. Conversely suppose that $m(\phi, p) \subseteq m(\psi, p)$. To show that

$$\sup_{s\geq 1}\left(\frac{\phi_s}{\psi_s}\right) = \sup_{s\geq 1}(\eta_s) < \infty.$$

Suppose if possible $\sup_{s\geq 1}(\eta_s) = \infty$. Then there exists a subsequence (η_{s_i}) of (η_s) such that $\lim_{i\to\infty}(\eta_{s_i}) = \infty$.

Then for $(x_k) \in m(\phi, p)$ we have

$$\sup_{s \ge 1, \sigma \in \wp_s} \left[\frac{1}{\psi_s} \left\{ \sum_{n \in \sigma} |x_n|^p \right\}^{1/p} \right] \ge \sup_{s_i \ge 1, \sigma \in \wp_{s_i}} \left[\eta_{s_i} \frac{1}{\phi_{s_i}} \left\{ \sum_{n \in \sigma} |x_n|^p \right\}^{1/p} \right] = \infty$$

 $\Rightarrow (x_k) \notin m(\psi, p)$, a contradiction. This completes the proof.

We formulate the following result in view of the above result.

Corollary 6. $m(\phi, p) = m(\psi, p)$ if and only if $\sup_{s \ge 1}(\eta_s) < \infty$ and $\sup_{s \ge 1}(\eta_s^{-1}) < \infty$, where $\eta_s = \frac{\phi_s}{\psi_s}$.

Theorem 7. $\ell^p \subseteq m(\phi, p) \subseteq \ell^{\infty}$.

Proof. Since $m(\phi, p) = \ell^p$ for $\phi_n = 1$, for all $n \in N$, so the first inclusion is clear. Next we suppose that $x \in m(\phi, p)$

Then $\sup_{s \ge 1, \sigma \in \varphi_s} \left[\frac{1}{\phi_s} \left\{ \sum_{n \in \sigma} |x_n|^p \right\}^{1/p} \right] = K(<\infty) \Rightarrow |x_n| \le K\phi_1$, for all $n \in N$. Thus $x \in \ell^\infty$, and the proof is complete.

Putting $\psi_n = 1$, for all $n \in N$, in Corollary 6, we have

Proposition 8. $m(\phi, p) = \ell^p$ if and only if $\sup_{s \ge 1}(\phi_s) < \infty$ and $\sup_{s \ge 1}(\phi_s^{-1}) < \infty$.

Using the properties of ℓ^p spaces we have the following result.

Proposition 9. If p < q, then $m(\phi, p) \subset m(\phi, q)$.

Proposition 10. $m(\phi, p) \subset m(\psi, q)$ if p < q and $\sup_{s \ge 1} \left(\frac{\phi_s}{\psi_s}\right) < \infty$.

Corollary 11. $m(\phi, p) = \ell^{\infty}$ if $\lim_{s \to \infty} (\phi_s/s) > 0$.

Proof. $m(\phi, p) = \ell^{\infty}$ if p = 1 and $\phi_n = n(n = 1, 2, 3, ...)$.

Hence from proposition 10 it follows that $\ell^{\infty} \subseteq m(\phi, p)$ if $\sup_{s \ge 1} \left(\frac{s}{\phi_s}\right) < \infty$. This completes the proof.

170

References

- D. Rath and B. C. Tripathy, Characterization of certain matrix operators, J. Orissa Math. Soc. 8(1989), 121-134.
- [2] W. L. C. Sargent, Some sequence spaces related to l^p spaces, J. Lond. Math. Soc. 35(1960), 161-171.
- B. C. Tripathy, Matrix maps on the power series convergent on the unit Disc, J. Analysis 6(1998), 27-31.

Mathematical Sciences Division, Insitute of Advanced Study in Science and Technology, Khanapara, Guwahati-781 022 ASSAM, India.

E-mail: tripathybc@yahoo.com