ON A NEW CLASS OF SEQUENCES RELATED TO THE SPACE ℓ^{p}

BINOD CHANDRA TRIPATHY AND MAUSUMI SEN*

Abstract

In this article we introduce a new class of sequences named as $m(\phi, p)$. This generalizes the earlier sequence space $m(\phi)$ due to Sargent [2]. We study some of the properties of this space.

1. Introduction

The space $m(\phi)$ was introduced by Sargent [2]. He studied some properties of the space $m(\phi)$. Later on it was studied from sequence space point of view and some matrix classes with one member as $m(\phi)$ were characterized by Rath and Tripathy [1], Tripathy [3] and others. In this article we generalize this space by introducing the space $m(\phi, p)$.

Throughout the article $w, \ell^{p}, \ell^{l}, \ell^{\infty}$ denote the spaces of all p-absolutely summable, absolutely summable and bounded sequences respectively. Also N and C denote the set of all natural numbers and complex numbers respectively.

2. Definitions and Background

Let $x=\left(x_{n}\right)$ be a sequence, then $S(x)$ denotes the set of all permutation of the elements of $\left(x_{n}\right)$, i.e. $S(x)=\left\{\left(x_{\pi(n)}\right): \pi(n)\right.$ is a permutation on $\left.N\right\}$. A sequence space E is said to be symmetric if $S(x) \subseteq E$ for all $x \in E$.

A sequence space E is said to be solid if $\left(y_{n}\right) \in E$ whenever $\left(x_{n}\right) \in E$ and $\left|y_{n}\right| \leq\left|x_{n}\right|$ for all $n \in N$.

A $B K$-space is a Banach space in which the co-ordinate maps are continuous, i.e. if $\left(x_{k}^{(n)}\right)_{k} \in E$, then
$\left\|\left(x_{k}^{(n)}\right)-\left(x_{k}\right)\right\| \rightarrow 0$ as $n \rightarrow \infty \Rightarrow\left|x_{k}^{(n)}-x_{k}\right| \rightarrow 0$ as $n \rightarrow \infty$, for each fixed k.
\wp_{s} denotes the set of all subsets of N those do not contain more than s elements. Throughout the paper $\left\{\phi_{n}\right\}$ denotes a non-decreasing sequence of positive numbers such that $n \phi_{n+1} \leq(n+1) \phi_{n}$ for all $n \in N$.

[^0]The space $m(\phi)$ is defined as

$$
m(\phi)=\left\{\left(x_{k}\right) \in w:\|x\|_{m(\phi)}=\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{n \in \sigma}\left|x_{n}\right|<\infty\right\}
$$

Generalizing the above sequence space, we now introduce the space $m(\phi, p)$ as follows: For $1 \leq p<\infty$,

$$
m(\phi, p)=\left\{\left(x_{k}\right) \in w:\|x\|_{m(\phi, p)}=\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}}\left\{\sum_{n \in \sigma}\left|x_{n}\right|^{p}\right\}^{1 / p}<\infty\right\}
$$

From the definition it is clear that $m(\phi, 1) \equiv m(\phi)$. It is a routine work to verify that $m(\phi, p)$ is a normed linear space with respect to the above norm.

3. Main Results

Theorem 1. The space $m(\phi, p)$ is complete.
Proof. Let $\left\{x^{(n)}\right\}$ be a Cauchy sequence in $m(\phi, p)$. Hence

$$
\sup _{s \geq 1, \sigma \in \wp_{s}}\left[\frac{1}{\phi_{s}}\left\{\sum_{i \in \sigma}\left|x_{i}^{(n)}\right|^{p}\right\}^{1 / p}\right]<\infty, \quad \text { for all } n(n=1,2,3, \ldots)
$$

Then for each $\varepsilon>0$, there exists a positive integer n_{0} such that

$$
\begin{align*}
& \left\|x^{(m)}-x^{(n)}\right\|_{m(\phi, p)}<\varepsilon \quad \text { for all } m, n \geq n_{0} \\
\Rightarrow & \sup _{s \geq 1, \sigma \in \wp_{s}}\left[\frac{1}{\phi_{s}}\left\{\sum_{i \in \sigma}\left|x_{i}^{(m)}-x_{i}^{(n)}\right|^{p}\right\}^{1 / p}\right]<\varepsilon \quad \text { for all } m, n \geq n_{0} \tag{1}\\
\Rightarrow & \left|x_{i}^{(m)}-x_{i}^{(n)}\right|<\varepsilon \phi_{1} \quad \text { for all } m, n \geq n_{0}, \text { for all } i \in N .
\end{align*}
$$

Hence for each fixed $i(1 \leq i<\infty)$, the sequence $\left\{x_{i}^{(n)}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in C. Since C is complete, it converges in C. Let $x_{i}^{(n)} \rightarrow x_{i}$ as $n \rightarrow \infty$.

We define $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$
We now show that (a) $x \in m(\phi, p)$ and (b) $x^{(n)} \rightarrow x$.
From (1) we get, for each fixed s

$$
\sum_{i \in \sigma}\left|x_{i}^{(m)}-x_{i}^{(n)}\right|^{p}<\varepsilon^{p} \phi_{s}^{p} \quad \text { for all } m, n \geq n_{0}, \sigma \in \wp_{s}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{align*}
& \sum_{i \in \sigma}\left|x_{i}^{(m)}-x_{i}\right|^{p}<\varepsilon^{p} \phi_{s}^{p} \quad \text { for all } m \geq n_{0}, \sigma \in \wp_{s} \\
\Rightarrow & \sup _{s \geq 1, \sigma \in \wp_{s}}\left[\frac{1}{\phi_{s}}\left\{\sum_{i \in \sigma}\left|x_{i}^{(m)}-x_{i}\right|^{p}\right\}^{1 / p}\right]<\varepsilon \quad \text { for all } m \geq n_{0} \tag{2}\\
\Rightarrow & x^{(n)}-x \in m(\phi, p) \quad \text { for all } n \geq n_{0} .
\end{align*}
$$

Hence $x=x^{(n)}+\left(x-x^{(n)}\right) \in m(\phi, p)$, as $m(\phi, p)$ is a linear space.

$$
\begin{aligned}
\text { Also (2) } & \Rightarrow\left\|x^{(n)}-x\right\|_{m(\phi, p)}<\varepsilon \quad \text { for all } n \geq n_{0} \\
& \Rightarrow x^{(n)}-x \in m(\phi, p)
\end{aligned}
$$

Hence $m(\phi, p)(1 \leq p<\infty)$ is a Banach space.
Theorem 2. The space $m(\phi, p)$ is a BK-space.
Proof. Let $\left\|x^{(n)}-x\right\|_{m(\phi, p)} \rightarrow 0$ as $n \rightarrow \infty$.
Hence given $\varepsilon>0$, there exists $n_{0} \in N$ such that

$$
\begin{aligned}
& \left\|x^{(n)}-x\right\|_{m(\phi, p)}<\varepsilon \quad \text { for all } n \geq n_{0} \\
\Rightarrow & \sup _{s \geq 1, \sigma \in \wp_{s}}\left[\frac{1}{\phi_{s}}\left\{\sum_{k \in \sigma}\left|x_{k}^{(n)}-x_{k}\right|^{p}\right\}^{1 / p}\right]<\varepsilon \quad \text { for all } n \geq n_{0} \\
\Rightarrow & \left|x_{k}^{(n)}-x_{k}\right|<\varepsilon \phi_{1} \quad \text { for all } n \geq n_{0}, \quad \text { for all } k .
\end{aligned}
$$

So, $\left|x_{k}^{(n)}-x_{k}\right| \rightarrow 0$ as $n \rightarrow \infty$ and the proof is complete.
Using the definitions we formulate the following result.
Proposition 3. (i) The space $m(\phi, p)$ is a symmetric space. If $x \in m(\phi, p)$ and $u \in S(x)$, then $\|u\|_{m(\phi, p)}=\|x\|_{m(\phi, p)}$.
(ii). The space $m(\phi, p)$ is a normal space.

Proposition 4. $m(\phi) \subseteq m(\phi, p)$
Proof. Let $x \in m(\phi)$. Then $\|x\|_{m(\phi)}=\sup _{s \geq 1, \sigma \in \wp_{s}}\left\{\frac{1}{\phi_{s}} \sum_{n \in \sigma}\left|x_{n}\right|\right\}=K(<\infty)$. Hence for each fixed $s, \sum_{n \in \sigma}\left|x_{n}\right| \leq K \phi_{s}, \sigma \in \wp_{s}$.

$$
\begin{aligned}
& \Rightarrow\left\{\sum_{n \in \sigma}\left|x_{n}\right|^{p}\right\}^{1 / p} \leq K \phi_{s}, \sigma \in \wp_{s} \\
& \Rightarrow \sup _{s \geq 1, \sigma \in \wp_{s}}\left[\frac{1}{\phi_{s}}\left\{\sum_{n \in \sigma}\left|x_{n}\right|^{p}\right\}^{1 / p}\right] \leq K
\end{aligned}
$$

Thus $x \in m(\phi, p)$ and this completes the proof.
Proposition 5. $m(\phi, p) \subseteq m(\psi, p)$ if and only if $\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)<\infty$.
Proof. Suppose $\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)=K(<\infty)$. Then $\phi_{s} \leq K \psi_{s}$.
Now if $\left(x_{k}\right) \in m(\phi, p)$, then

$$
\sup _{s \geq 1, \sigma \in \wp_{s}}\left[\frac{1}{\phi_{s}}\left\{\sum_{n \in \sigma}\left|x_{n}\right|^{p}\right\}^{1 / p}\right]<\infty
$$

$$
\begin{aligned}
& \Rightarrow \sup _{s \geq 1, \sigma \in \wp_{s}}\left[\frac{1}{K \psi_{s}}\left\{\sum_{n \in \sigma}\left|x_{n}\right|^{p}\right\}^{1 / p}\right]<\infty \\
& \Rightarrow\|x\|_{m(\psi, p)}<\infty
\end{aligned}
$$

Hence $m(\phi, p) \subseteq m(\psi, p)$.
Conversely suppose that $m(\phi, p) \subseteq m(\psi, p)$. To show that

$$
\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)=\sup _{s \geq 1}\left(\eta_{s}\right)<\infty
$$

Suppose if possible $\sup _{s \geq 1}\left(\eta_{s}\right)=\infty$. Then there exists a subsequence $\left(\eta_{s_{i}}\right)$ of $\left(\eta_{s}\right)$ such that $\lim _{i \rightarrow \infty}\left(\eta_{s_{i}}\right)=\infty$.

Then for $\left(x_{k}\right) \in m(\phi, p)$ we have

$$
\sup _{s \geq 1, \sigma \in \wp_{s}}\left[\frac{1}{\psi_{s}}\left\{\sum_{n \in \sigma}\left|x_{n}\right|^{p}\right\}^{1 / p}\right] \geq \sup _{s_{i} \geq 1, \sigma \in \wp_{s_{i}}}\left[\eta_{s_{i}} \frac{1}{\phi_{s_{i}}}\left\{\sum_{n \in \sigma}\left|x_{n}\right|^{p}\right\}^{1 / p}\right]=\infty
$$

$\Rightarrow\left(x_{k}\right) \notin m(\psi, p)$, a contradiction. This completes the proof.
We formulate the following result in view of the above result.
Corollary 6. $m(\phi, p)=m(\psi, p)$ if and only if $\sup _{s \geq 1}\left(\eta_{s}\right)<\infty$ and $\sup _{s \geq 1}\left(\eta_{s}^{-1}\right)<$ ∞, where $\eta_{s}=\frac{\phi_{s}}{\psi_{s}}$.

Theorem 7. $\ell^{p} \subseteq m(\phi, p) \subseteq \ell^{\infty}$.
Proof. Since $m(\phi, p)=\ell^{p}$ for $\phi_{n}=1$, for all $n \in N$, so the first inclusion is clear.
Next we suppose that $x \in m(\phi, p)$
Then $\sup _{s \geq 1, \sigma \in \wp_{s}}\left[\frac{1}{\phi_{s}}\left\{\sum_{n \in \sigma}\left|x_{n}\right|^{p}\right\}^{1 / p}\right]=K(<\infty) \Rightarrow\left|x_{n}\right| \leq K \phi_{1}$, for all $n \in N$.
Thus $x \in \ell^{\infty}$, and the proof is complete.
Putting $\psi_{n}=1$, for all $n \in N$, in Corollary 6, we have
Proposition 8. $m(\phi, p)=\ell^{p}$ if and only if $\sup _{s \geq 1}\left(\phi_{s}\right)<\infty$ and $\sup _{s \geq 1}\left(\phi_{s}^{-1}\right)<\infty$.
Using the properties of ℓ^{p} spaces we have the following result.
Proposition 9. If $p<q$, then $m(\phi, p) \subset m(\phi, q)$.
Proposition 10. $m(\phi, p) \subset m(\psi, q)$ if $p<q$ and $\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)<\infty$.
Corollary 11. $m(\phi, p)=\ell^{\infty}$ if $\lim _{s \rightarrow \infty}\left(\phi_{s} / s\right)>0$.
Proof. $m(\phi, p)=\ell^{\infty}$ if $p=1$ and $\phi_{n}=n(n=1,2,3, \ldots)$.
Hence from proposition 10 it follows that $\ell^{\infty} \subseteq m(\phi, p)$ if $\sup _{s \geq 1}\left(\frac{s}{\phi_{s}}\right)<\infty$. This completes the proof.

References

[1] D. Rath and B. C. Tripathy, Characterization of certain matrix operators, J. Orissa Math. Soc. 8(1989), 121-134.
[2] W. L. C. Sargent, Some sequence spaces related to ℓ^{p} spaces, J. Lond. Math. Soc. 35(1960), 161-171.
[3] B. C. Tripathy, Matrix maps on the power series convergent on the unit Disc, J. Analysis 6(1998), 27-31.

Mathematical Sciences Division, Insitute of Advanced Study in Science and Technology, Khanapara, Guwahati-781 022 ASSAM, India.

E-mail: tripathybc@yahoo.com

[^0]: Received December 26, 2000; revised September 3, 2001.
 2000 Mathematics Subject Classification. 40A05
 Key words and phrases. Symmetrix space, normal space, complete, Banach space.

 * The work of the authors was carried under a project of Department of Science \& Technology, Govt. of India project no.:-DST/MS/IRHPA-001/93.

