UPPER BOUNDS FOR RICCI CURVATURES FOR SUBMANIFOLDS IN BOCHNER-KAEHLER MANIFOLDS

MEHRAJ AHMAD LONE, YOSHIO MATSUYAMA, FALLEH R. AL-SOLAMY, MOHAMMAD HASAN SHAHID AND MOHAMMED JAMALI

Abstract

Chen established the relationship between the Ricci curvature and the squared norm of mean curvature vector for submanifolds of Riemannian space form with arbitrary codimension known as Chen-Ricci inequality. Deng improved the inequality for Lagrangian submanifolds in complex space form by using algebraic technique. In this paper, we establish the same inequalities for different submanifolds of Bochner-Kaehler manifolds. Moreover, we obtain improved Chen-Ricci inequality for Kaehlerian slant submanifolds of Bochner-Kaehler manifolds.

1. Introduction

One of the most powerful tools to find relationships between intrinsic invariants and extrinsic invariants of a submanifold is provided by Chen's invariants. The study of Chen invariants and inequalities has been an active field of research over the past two decades. Chen [8] investigated sharp relationship between the Ricci curvature and the squared norm of mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. Tripathi [27] named this inequality as Chen-Ricci inequality. Matsumoto et al. [18] obtained ChenRicci inequality for submanifolds in complex space form. Matsumoto et al. [19] obtained the same inequality for the slant submanifolds of complex space form. After that, many research articles have been published by different geometers in this direction (see [26, 21, 24]). They obtained the similar inequalities for different submanifolds and ambient spaces in complex as well as in contact version.

Deng [10] improved the Chen-Ricci inequality for Lagrangian submanifolds in complex space form by using algebraic technique. The same author obtained the improved ChenRicci inequality for Quaternion space forms [11]. Mihai et al. [22] obtained the improved Chen-Ricci Inequality for Kaehlerian slant submanifolds in complex space form. Mihai [20]
generalizes the same inequality for Lagrangian submanifolds of complex space form and Legendrian submanifolds in a Sasakian space form with semi-symmetric metric connections.

In 1949, Bochner [1] introduced a complex analogue of the Weyl conformal curvature tensor for a Kaehler manifold. This tensor is the largest irreducible component of the Riemannian curvature under the unitary group. A Kaehler metric with vanishing Bochner curvature tensor is said to be a Bochner-Kaehler metric [9]. In a seminal paper published in 2001, Bryant [2] provides an explicit local classification of Bochner-Kaehler metric and in depth study of their global geometry, generating considerable interest on this kind of manifolds (see [3, 12, 17, 23, 29]). In particular, we note that Inoue investegated [15] penrose transformation on Hermitian manifolds that are conformal to Bochner-Kaehler manifolds, using the modification of the O'Brien-Rawnsley twistor space for almost Hermitian manifolds.

There are several classes of submanifolds in Bochner-Kaehler manifolds that were investigated by many geometers: totally real submanifolds [14], anti-invariant submanifolds [28], CR-submanifolds [25] and contact hypersurfaces [13] etc.

In the first part of the paper, we obtain the Chen-Ricci inequality for submanifolds of Bochner-Kaehler manifolds and discuss the results for invariant, anti-invariant and slant submanifolds. In the second part, we improve the inequality for Kaehlerian slant submanifolds of Bochner-Kaehler manifolds using Deng's technique.

2. Preliminaries

Let \mathscr{M}^{n} be a submanifold of a Bochner-Kaehler manifold $\overline{\mathscr{M}}^{m}$. Let ∇ and $\bar{\nabla}$ be the Riemannian connections on \mathscr{M}^{n} and $\overline{\mathscr{M}}^{m}$ respectively. Then the Gauss and Weingarten formulas are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \tag{1}\\
& \bar{\nabla}_{X} V=-A_{V} X+D_{X} Y, \tag{2}
\end{align*}
$$

for all X, Y tangent to \mathscr{M}^{n} and vector field V normal to \mathscr{M}^{n}, where h, D, A_{V} denotes the second fundamental form, normal connection and the shape operator in the direction of V. The second fundamental form and the shape operator are related by

$$
\begin{equation*}
g(h(X, Y), V)=g\left(A_{V} X, Y\right) \tag{3}
\end{equation*}
$$

Let $p \in \mathscr{M}^{n}$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of the tangent space $T_{p} \mathscr{M}^{n}$ and $\left\{e_{n+1}, \ldots, e_{m}\right\}$ be the orthonormal basis of $T^{\perp} \mathscr{M}^{n}$. We denote by H (the mean curvature vector) at p, that is

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) . \tag{4}
\end{equation*}
$$

Also, we set

$$
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad i, j \in\{1, \ldots, n\}, \quad r \in\{n+1, \ldots, m\}
$$

and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n}\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \tag{5}
\end{equation*}
$$

For any $p \in \mathscr{M}^{n}$ and $X \in \mathscr{M}^{n}$, we put $J X=P X+Q X$, where $P X$ and $Q X$ are the tangential and normal components of $J X$ respectively.

We denote by

$$
\|P\|^{2}=\sum_{i, j=1}^{n} g^{2}\left(P e_{i}, e_{j}\right)
$$

For a Riemannian manifold \mathscr{M}^{n}, we denote by $K(\pi)$ the sectional curvature of \mathscr{M}^{n} associated with a plane section $\pi \subset T_{P} \mathscr{M}^{n}, p \in \mathscr{M}^{n}$. For an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of the tangent space $T_{p} \mathscr{M}^{n}$, the scalar curvature ρ is defined by

$$
\rho=\sum_{i<j} K_{i j}
$$

where $K_{i j}$ denotes the sectional curvature of the 2-plane section spanned by e_{i} and e_{j}.
We recall that for a submanifold \mathscr{M}^{n} in a Riemannian manifold, the relative null space of \mathscr{M}^{n} at a point $p \in \mathscr{M}^{n}$ is defined by

$$
\mathscr{N}_{p}=\left\{X \in T_{p} \mathscr{M}^{n} \mid h(X, Y)=0, \forall Y \in T_{p} \mathscr{M}^{n}\right\} .
$$

Let R be the curvature tensor of \mathscr{M}^{n}, then the Gauss equation is given by

$$
\bar{R}(X, Y, Z, W)=R(X, Y, Z, W)+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
$$

for any vector fields X, Y, Z, W tangent to \mathscr{M}^{n}.
The curvature tensor of $\overline{\mathscr{M}}^{m}$ is given by [25]

$$
\begin{align*}
\bar{R}(X, Y, Z, W)= & L(Y, Z) g(X, W)-L(X, Z) g(Y, W)+L(X, W) g(Y, Z) \\
& -L(Y, W) g(X, Z)+M(X, W) g(J X, W)-M(X, Z) g(J Y, W) \\
& +M(X, W) g(J Y, Z)-M(Y, W) g(J X, Z) \\
& -2 M(X, Y) g(J Z, W)-2 M(Z, W) g(J X, Y) \tag{6}
\end{align*}
$$

where

$$
\begin{gather*}
L(Y, Z)=\frac{1}{2 n+4} \overline{\mathscr{R}} i c(Y, Z)-\frac{\bar{\rho}}{2(2 n+2)(2 n+4)} g(Y, Z), \tag{7}\\
M(Y, Z)=-L(Y, J Z), \tag{8}\\
L(Y, Z)=L(Z, Y), \quad L(Y, Z)=L(J Y, J Z), \quad L(Y, J Z)=-L(J Y, Z), \tag{9}
\end{gather*}
$$

$\overline{\mathscr{R}} i c$ and $\bar{\rho}$ are the Ricci tensor and scalar curvature of $\overline{\mathscr{M}}^{m}$.

Definition 2.1. The Kaehler manifold $\overline{\mathscr{M}}^{m}$ is said to be Bochner-Kaehler if its Bochner curvature tensor vanishes. These spaces are also known as Bochner-flat manifolds.

Definition 2.2. A Riemannian manifold \mathscr{M}^{n} is said to be Einstein manifold if the Ricci tensor is proportional to the metric tensor, that is, $\mathscr{R} i c(X, Y)=\lambda g(X, Y)$ for some constant λ.

Definition 2.3. A submanifold \mathscr{M}^{n} of a Bochner-Kaehler manifold $\overline{\mathscr{M}}^{m}$ is said to be a slant submanifold if for any $p \in \mathscr{M}^{n}$ and any non zero vector $X \in T_{p} \mathscr{M}^{n}$, the angle between $J X$ and the tangent space $T_{p} \mathscr{M}^{n}$ is constant.

Invariant and anti-invariant submanifolds are the slant submanifolds with slant angle $\theta=0$ and $\theta=\frac{\pi}{2}$ respectively and when $0<\theta<\frac{\pi}{2}$, then slant submanifold is called proper slant submanifold.

A proper slant submanifold is said to be Kaehlerian slant if $\nabla P=0$. A Kaehlerian slant submanifold is a Kaehler manifold with respect to the induced metric and an almost complex structure $\bar{J}=\sec \theta J$. Let \mathscr{M}^{n} be proper slant submanifold and $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of $T_{p} M$. If $m=n$, an orthonormal basis $\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ of the normal space $T^{\perp} M^{n}$ is defined by

$$
\begin{equation*}
e_{k}^{*}=\frac{1}{\sin \theta} Q e_{k}, \quad k=1, \ldots, n \tag{10}
\end{equation*}
$$

For Kaehlerian slant submanifold we have [5]

$$
A_{Q X} Y=A_{Q Y} X \quad \forall X, Y \in T_{p} M^{n}
$$

or

$$
\begin{equation*}
h_{i j}^{k}=h_{i k}^{j}=h_{j k}^{i} \tag{11}
\end{equation*}
$$

where A is the shape operator and

$$
\begin{equation*}
h_{i j}^{k}=g\left(h\left(e_{i}, e_{j}\right), e_{k}^{*}\right), \quad i, j, k=1, \ldots, n . \tag{12}
\end{equation*}
$$

Now, the propositions given below characterize the submanifolds with $\nabla P=0$.
Proposition 2.1 ([5]). Let \mathscr{M}^{n} be a submanifold of an almost Hermitian manifold $\overline{\mathscr{M}}^{m}$. Then $\nabla P=0$ if and only if M is locally the Riemannian product $M_{1} \times M_{2} \times \cdots \times M_{k}$, where each M_{i} is either a complex submanifold, a totally real submanifold or a Kaehlerian slant submanifold of \bar{M}.

Proposition 2.2 ([5]). Let \mathscr{M}^{n} be an irreducible submanifold of an almost Hermitian manifold $\overline{\mathscr{M}}^{m}$. If M is neither invariant nor totally real, then M is a Kaehlerian slant submanifold if and only if the endomorphism P is parallel.

Definition 2.4. A slant H-umbilical submanifold of a Kaehler manifold $\overline{\mathscr{M}}^{n}$ is a slant submanifold for which the second fundamental form takes the following forms

$$
\begin{aligned}
& h\left(e_{1}, e_{1}\right)=\lambda e_{1}^{*}, h\left(e_{2}, e_{2}\right)=\cdots=h\left(e_{n}, e_{n}\right)=\mu e_{1}^{*} \\
& h\left(e_{1}, e_{1}\right)=\mu e_{j}^{*}, h\left(e_{j}, e_{k}\right)=0,2 \leq j \neq k \leq n,
\end{aligned}
$$

where $e_{1}^{*}, \ldots, e_{n}^{*}$ defined as in (10).

3. Ricci curvature and squared norm of mean curvature

In this section, we prove some inequalities of Ricci curvatures for submanifolds of BochnerKaehler manifolds.

Theorem 3.1. Let \mathscr{M}^{n} be a submanifold of a Bochner-Kaehler manifold $\overline{\mathcal{M}}^{m}$, then
(i) for each unit vector $X \in T_{p} \mathscr{M}$, we have

$$
\begin{aligned}
\mathscr{R} i c(X) \leq & \frac{1}{4} n^{2}\|H\|^{2}+\frac{4 n^{3}-12 n^{2}-2 n+10-\left(3 n^{2}-9 n+3\right)\|P\|^{2}}{2(2 n+2)(2 n+4)} \bar{\rho} \\
& \frac{6}{2 n+4} \sum_{2 \leq i<j \leq n} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)-\frac{3}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) .
\end{aligned}
$$

(ii) If $H(p)=0$, the unit tangent vector X at p satisfies the equality if and only if $X \in \mathscr{N}_{p}$.
(iii) The equality case holds identically for all unit tangent vectors at p if and only if either p is totally geodesic point or $n=2$ and p is totally umbilical point.

Proof. (i) Let $X \in T_{p} \mathscr{M}$ be a unit tangent vector at p. We choose orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}\right\}$ such that $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ are tangent to \mathscr{M} at p with $e_{1}=X$, then from Gauss equation we have

$$
\begin{aligned}
R(X, Y, Z, W)= & L(Y, Z) g(X, W)-L(X, Z) g(Y, W)+L(X, W) g(Y, Z) \\
& -L(Y, W) g(X, Z)+M(Y, Z) g(J X, W)-M(X, Z) g(J Y, W) \\
& +M(X, W) g(J Y, Z)-M(Y, W) g(J X, Z)-2 M(X, Y)(J Z, W) \\
& -2 M(Z, W) g(J X, Y)+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)),
\end{aligned}
$$

for any $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W} \in \mathrm{TM}$. Therefore we may write

$$
\begin{aligned}
\sum_{i, j} R\left(e_{i}, e_{j}, e_{j}, e_{i}\right)= & \sum_{i, j}\left(L\left(e_{j}, e_{j}\right) g\left(e_{i}, e_{i}\right)-L\left(e_{i}, e_{j}\right) g\left(e_{j}, e_{i}\right)+L\left(e_{i}, e_{i}\right) g\left(e_{j}, e_{j}\right)\right. \\
& -L\left(e_{j}, e_{i}\right) g\left(e_{i}, e_{j}\right)+M\left(e_{j}, e_{j}\right) g\left(J e_{i}, e_{i}\right)-M\left(e_{i}, e_{j}\right) g\left(J e_{j}, e_{i}\right) \\
& +M\left(e_{i}, e_{i}\right) g\left(J e_{j}, e_{j}\right)-M\left(e_{j}, e_{i}\right) g\left(J e_{i}, e_{j}\right)-2 M\left(e_{i}, e_{j}\right)\left(J e_{j}, e_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-2 M\left(e_{j}, e_{i}\right) g\left(J e_{i}, e_{j}\right)+g\left(h\left(e_{i}, e_{i}\right), h\left(e_{j}, e_{j}\right)\right)-g\left(h\left(e_{i}, e_{j}\right), h\left(e_{j}, e_{i}\right)\right),\right) \\
= & \sum_{i, j}\left(L\left(e_{j}, e_{j}\right) g\left(e_{i}, e_{i}\right)-L\left(e_{i}, e_{j}\right) g\left(e_{j}, e_{i}\right)+L\left(e_{i}, e_{i}\right) g\left(e_{j}, e_{j}\right)\right. \\
& -L\left(e_{j}, e_{i}\right) g\left(e_{i}, e_{j}\right)-L\left(e_{j}, J e_{j}\right) g\left(J e_{i}, e_{i}\right)+L\left(e_{i}, J e_{j}\right) g\left(J e_{j}, e_{i}\right) \\
& +L\left(e_{i}, J e_{i}\right) g\left(J e_{j}, e_{j}\right)+L\left(e_{j}, J e_{i}\right) g\left(J e_{i}, e_{j}\right)+2 L\left(e_{i}, J e_{j}\right)\left(J e_{j}, e_{i}\right) \\
& \left.+2 L\left(e_{j}, J e_{i}\right) g\left(J e_{i}, e_{j}\right)+g\left(h\left(e_{i}, e_{i}\right), h\left(e_{j}, e_{j}\right)\right)-g\left(h\left(e_{i}, e_{j}\right), h\left(e_{j}, e_{i}\right)\right)\right) .
\end{aligned}
$$

Using(4), (5) and (9), we have

$$
\begin{aligned}
\sum_{i, j} R\left(e_{i}, e_{j}, e_{j}, e_{i}\right)= & 2 n \sum_{i} L\left(e_{i}, e_{i}\right)-2 \sum_{i, j} L\left(e_{i}, e_{j}\right) g\left(e_{i}, e_{j}\right)+6 \sum_{i, j} L\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) \\
& +n^{2}\|H\|^{2}-\|h\|^{2} .
\end{aligned}
$$

Last equation simplifies to,

$$
\begin{equation*}
2 \rho=2(n-1) \sum_{i} L\left(e_{i}, e_{i}\right)+6 \sum_{i, j} L\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)+n^{2}\|H\|^{2}-\|h\|^{2} \tag{13}
\end{equation*}
$$

Combining (7) and (13), we have

$$
\begin{aligned}
2 \rho= & \frac{2(n-1)}{2 n+4} \sum_{i} \overline{\mathscr{R}} i c\left(e_{i}, e_{i}\right)-\frac{2(n-1) \bar{\rho}}{2(2 n+2)(2 n+4)} \sum_{i} g\left(e_{i}, e_{i}\right) \\
& +\frac{6}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)-\sum_{i, j} \frac{6 \bar{\rho}}{2(2 n+2)(2 n+4)} g\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) \\
& +n^{2}\|H\|^{2}-\|h\|^{2} .
\end{aligned}
$$

This implies that

$$
n^{2}\|H\|^{2}=2 \rho-\left(\frac{6 n^{2}+2 n-8-6\|P\|^{2}}{2(2 n+2)(2 n+4)}\right) \bar{\rho}+\|h\|^{2}-\frac{6}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) .
$$

From which we have,

$$
n^{2}\|H\|^{2}=2 \rho-\left(\frac{6 n^{2}+2 n-8-6\|P\|^{2}}{2(2 n+2)(2 n+4)}\right) \bar{\rho}+\sum_{r=n+1}^{m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-\frac{6}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) .
$$

that is

$$
\begin{aligned}
n^{2}\|H\|^{2}= & 2 \rho-\left(\frac{6 n^{2}+2 n-8-6\|P\|^{2}}{2(2 n+2)(2 n+4)}\right) \bar{\rho}+\sum_{r=n+1}^{m}\left[\left(h_{11}^{r}\right)^{2}+\left(h_{22}^{r}\right)^{2}+\cdots+\left(h_{n n}^{r}\right)^{2}+2 \sum_{i<j}\left(h_{i j}^{r}\right)^{2}\right] \\
& -\frac{6}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) .
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
n^{2}\|H\|^{2}= & 2 \rho-\left(\frac{6 n^{2}+2 n-8-6\|P\|^{2}}{2(2 n+2)(2 n+4)}\right) \bar{\rho}+\sum_{r=n+1}^{m}\left[\left(h_{11}^{r}\right)^{2}+\left(h_{22}^{r}\right)^{2}+\cdots+\left(h_{n n}^{r}\right)^{2}\right] \\
& +2 \sum_{r=n+1}^{m} \sum_{i<j}\left(h_{i j}^{r}\right)^{2}-\frac{6}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \begin{aligned}
n^{2}\|H\|^{2}= & 2 \rho-\left(\frac{6 n^{2}+2 n-8-6\|P\|^{2}}{2(2 n+2)(2 n+4)}\right) \bar{\rho}+\sum_{r=n+1}^{m}\left[\left(h_{11}^{r}\right)^{2}+\left(h_{22}^{r}+\cdots+h_{n n}^{r}\right)^{2}-2 \sum_{2 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}\right] \\
& +2 \sum_{r=n+1}^{m} \sum_{i<j}\left(h_{i j}^{r}\right)^{2}-\frac{6}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) .
\end{aligned}
\end{aligned}
$$

From which we derive that,

$$
\begin{aligned}
n^{2}\|H\|^{2}= & 2 \rho-\left(\frac{6 n^{2}+2 n-8-6\|P\|^{2}}{2(2 n+2)(2 n+4)}\right) \bar{\rho}+\frac{1}{2} \sum_{r=n+1}^{m}\left[\left(h_{11}^{r}+h_{22}^{r}+\cdots+h_{n n}^{r}\right)^{2}\right. \\
& \left.+\left(h_{11}^{r}-h_{22}^{r}-\cdots-h_{n n}^{r}\right)^{2}\right]-2 \sum_{r=n+1}^{m} \sum_{2 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}+2 \sum_{r=n+1}^{m} \sum_{i<j}\left(h_{i j}^{r}\right)^{2} \\
& -\frac{6}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) .
\end{aligned}
$$

or

$$
\begin{align*}
n^{2}\|H\|^{2}= & 2 \rho-\left(\frac{6 n^{2}+2 n-8-6\|P\|^{2}}{2(2 n+2)(2 n+4)}\right) \bar{\rho} \\
& +\frac{1}{2} \sum_{r=n+1}^{m}\left(h_{11}^{r}+h_{22}^{r}+\cdots+h_{n n}^{r}\right)^{2}+\frac{1}{2} \sum_{r=n+1}^{m}\left(h_{11}^{r}-h_{22}^{r}-\cdots-h_{n n}^{r}\right)^{2} \\
& +2 \sum_{r=n+1}^{m} \sum_{j=1}^{n}\left(h_{1 j}^{r}\right)^{2}-2\left[\sum_{r=n+1}^{m} \sum_{2 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] \\
& -\frac{6}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) . \tag{14}
\end{align*}
$$

Also, from Gauss equation, we have

$$
\begin{aligned}
K_{i j}= & 2 L\left(e_{i}, e_{i}\right)+6 L\left(e_{i}, e_{i}\right) g\left(e_{i}, J e_{j}\right)+\sum_{r=n+1}^{m}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] \\
= & \frac{2}{2 n+4} \overline{\mathscr{R}} i c\left(e_{i}, e_{i}\right)-\frac{2 \bar{\rho}}{2(2 n+2)(2 n+4)} g\left(e_{i}, e_{i}\right)+\frac{6}{2 n+4} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right) \\
& -\frac{6 \bar{\rho}}{2(2 n+2)(2 n+4)} g\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)+\sum_{r=n+1}^{m}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] \\
= & \frac{8 n+6-6\|p\|^{2}}{2(2 n+2)(2 n+4)} \bar{\rho}+\frac{6}{2 n+4} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)+\sum_{r=n+1}^{m}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right]
\end{aligned}
$$

and consequently

$$
\sum_{2 \leq i<j \leq n} K_{i j}=\frac{4 n^{3}-9 n^{2}-n+6-\left(3 n^{2}-9 n+6\right)\|p\|^{2}}{2(2 n+2)(2 n+4)} \bar{\rho}
$$

$$
\begin{equation*}
+\frac{6}{2 n+4} \sum_{2 \leq i<j \leq n} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)+\sum_{r=n+1}^{m} \sum_{2 \leq i<j \leq n}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] . \tag{15}
\end{equation*}
$$

Incorporating (15) in (14), we get

$$
\begin{aligned}
& \frac{1}{2} n^{2}\|H\|^{2} \geq 2 \mathscr{R} i c(X)-\frac{6 n^{2}+2 n-8-6\|P\|^{2}}{2(2 n+2)(2 n+4)} \bar{\rho}+2 \frac{4 n^{3}-9 n^{2}-n+6-\left(3 n^{2}-9 n+6\right)\|P\|^{2}}{2(2 n+2)(2 n+4)} \bar{\rho} \\
& \frac{12}{2 n+4} \sum_{2 \leq i<j \leq n} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)-\frac{6}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)
\end{aligned}
$$

or,

$$
\begin{aligned}
\mathscr{R} i c(X) \leq & \frac{1}{4} n^{2}\|H\|^{2}+\frac{4 n^{3}-12 n^{2}-2 n+10-\left(3 n^{2}+9 n-3\right)\|P\|^{2}}{2(2 n+2)(2 n+4)} \bar{\rho} \\
& \frac{6}{2 n+4} \sum_{2 \leq i<j \leq n} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)-\frac{3}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)
\end{aligned}
$$

(ii) Suppose $H(p)=0$, equality holds if and only if

$$
\left\{\begin{array}{l}
h_{12}^{r}=\cdots=h_{1 n}^{r}=0, \\
h_{11}^{r}=h_{22}^{r}+\cdots+h_{n n}^{r}, r \in\{n+1, \ldots, m\}
\end{array}\right.
$$

Then $h_{1 j}^{r}=0 \forall j \in\{1,2, \ldots, n\}, r \in\{n+1, \ldots, m\}$, i.e. $X \in \mathscr{N}$.
(iii) The equality case holds for all unit vectors at p if and only if

$$
\left\{\begin{array}{l}
h_{12}^{r}=0, i \neq j, r \in\{n+1, \ldots, m\}, \\
h_{11}^{r}+\cdots+h_{n n}^{r}-2 h_{i j}^{r}=0, i \in\{1,2, \ldots, n\}, r \in\{n+1, \ldots, m\}
\end{array}\right.
$$

We distinguish two cases:
(a) $n \neq 2$, then p is a totally geodesic point
(b) $\mathrm{n}=2$, it follows that p is a totally umbilical point.

The converse is trivial.
The following proposition follows from the theorem 3.1, if the submanifold \mathscr{M}^{n} is Einstein.

Proposition 3.2. Let \mathscr{M}^{n} be a submanifold of a Bochner-Kaehler manifold $\overline{\mathcal{M}}^{m}$ which is Einstein, then
(i) For each unit vector $X \in T_{p} \mathscr{M}$, we have

$$
\mathscr{R} i c(X) \leq \frac{1}{4} n^{2}\|H\|^{2}+\frac{4 n^{3}-12 n^{2}-2 n+10-\left(3 n^{2}-9 n+3\right)\|P\|^{2}}{2(2 n+2)(2 n+4)} \bar{\rho}+\frac{3}{2 n+2} \lambda\|P\|^{2} .
$$

(ii) If $H(p)=0$, the unit tangent vector X at p satisfies the equality if and only if $X \in \mathscr{N}_{p}$.
(iii) The equality case holds identically for all unit tangent vectors at p if and only if either p is totally geodesic point or $n=2$ and p is totally umbilical point.

If \mathscr{M}^{n} is a slant submanifold of \mathscr{M}^{m}, we have the following theorem.
Theorem 3.3. Let \mathscr{M}^{n} be a slant submanifold of a Bochner-Kaehler manifold $\overline{\mathcal{M}}^{m}$, then
(i) for each unit vector $X \in T_{p} \mathscr{M}$, we have

$$
\begin{aligned}
\mathscr{R} i c(X) \leq & \frac{1}{4} n^{2}\|H\|^{2}+\frac{4 n^{3}-12 n^{2}-2 n+10-\left(3 n^{2}-9 n+3\right) \cos ^{2} \theta}{2(2 n+2)(2 n+4)} \bar{\rho} \\
& +\frac{6 \cos \theta}{2 n+4} \sum_{2 \leq i<j \leq n} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right)-\frac{3}{2 n+4} \cos \theta \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) .
\end{aligned}
$$

(ii) If $H(p)=0$, the unit tangent vector X at p satisfies the equality if and only if $X \in \mathscr{N}_{p}$.
(iii) The equality case holds identically for all unit tangent vectors at p if and only if either p is totally geodesic point or $n=2$ and p is totally umbilical point.

Following corollaries can be deduced from the last theorem.
Corollary 3.4. Let \mathscr{M}^{n} be an anti-invariantsubmanifold of a Bochner-Kaehler manifold $\overline{\mathcal{M}}^{m}$, then
(i) for each unit vector $X \in T_{p} \mathscr{M}$, we have

$$
\mathscr{R} i c(X) \leq \frac{1}{4} n^{2}\|H\|^{2}+\frac{4 n^{3}-12 n^{2}-2 n+10}{2(2 n+2)(2 n+4)} \bar{\rho} .
$$

(ii) If $H(p)=0$, the unit tangent vector X at p satisfies the equality if and only if $X \in \mathscr{N}_{p}$.
(iii) The equality case holds identically for all unit tangent vectors at p if and only if either p is totally geodesic point or $n=2$ and p is totally umbilical point.

Corollary 3.5. Let \mathscr{M}^{n} be a invariant submanifold of a Bochner-Kaehler manifold $\overline{\mathscr{M}}^{m}$, then
(i) for each unit vector $X \in T_{p} \mathscr{M}$, we have

$$
\begin{aligned}
\mathscr{R} i c(X) \leq & \frac{1}{4} n^{2}\|H\|^{2}+\frac{4 n^{3}-12 n^{2}-2 n+10-\left(3 n^{2}-9 n+3\right)}{2(2 n+2)(2 n+4)} \bar{\rho} \\
& +\frac{6}{2 n+4} \sum_{2 \leq i<j \leq n} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right)-\frac{3}{2 n+4} \sum_{i, j} \overline{\mathscr{R}} i c\left(e_{i}, J e_{j}\right) .
\end{aligned}
$$

(ii) If $H(p)=0$, the unit tangent vector X at p satisfies the equality if and only if $X \in \mathscr{N}_{p}$.
(iii) The equality case holds identically for all unit tangent vectors at p if and only if either p is totally geodesic point or $n=2$ and p is totally umbilical point.

4. Improved Chen-Ricci inequality

In 2009, Deng improved the Chen-Ricci inequality for Lagrangian submanifolds in complex space forms using the algebraic technique. In this section we will improve the Chen-Ricci inequality for Bochner-Kaehler manifolds. The following lemmas will be helpful for the proof of the main result.

Lemma 4.1 ([10]). Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point in \mathbf{R}^{n}. If $x_{1}+x_{2}+\cdots+x_{n}=n a$, we have

$$
x_{2}^{1}+x_{2}^{2}+\cdots+x_{n}^{2} \geq n a^{2} .
$$

The equality sign holds if and only if $x_{1}=x_{2}=\cdots=x_{n}=a$.
Lemma 4.2 ([10]). Let $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a function in \mathbf{R}^{n} defined by

$$
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \sum_{j=2}^{n} x_{j}-\sum_{j=2}^{n} x_{j}^{2} .
$$

If $x_{1}+x_{2}+\cdots+x_{n}=2 n a$, we have

$$
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \frac{(n-1)}{4 n}\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{2} .
$$

The equality sign holds if and only if $\frac{1}{n+1} x_{1}=x_{2}=\cdots=x_{n}=a$.
Lemma 4.3 ([10]). Let $f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a function in \mathbf{R}^{n} defined by

$$
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \sum_{j=2}^{n} x_{j}-x_{1}^{2} .
$$

If $x_{1}+x_{2}+\cdots+x_{n}=4 a$, we have

$$
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \frac{1}{8}\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{2} .
$$

The equality sign holds if and only if $x_{1}=a$ and $x_{2}+\cdots+x_{n}=3 a$.
Now, we prove the main result of this section
Theorem 4.4. Let \mathscr{M}^{n} be a Kaehlerian slant submanifold of a Bochner-Kaehler manifold $\overline{\mathcal{M}}^{2 n}$. Let X be a unit tangent vector in the tangent space $T_{x} \mathscr{M}^{n}$ at a point x in \mathscr{M}. Then we have

$$
\begin{align*}
\mathscr{R} i c(X) \leq & \frac{(n-2)}{2 n+4} \overline{\mathscr{R}} i c(X)+\frac{2(n+3)}{2(2 n+2)(2 n+4)} \bar{\rho}-\frac{6}{2 n+4} \sum_{j=2}^{n} \overline{\mathscr{R}} i c\left(J e_{1}, e_{j}\right) \cos \theta \\
& +\frac{6}{2(2 n+2)(2 n+4)} \bar{\rho} \cos ^{2} \theta+\frac{n(n-1)}{4}\|H\|^{2} \tag{16}
\end{align*}
$$

where H is the mean curvature vector of \mathscr{M}^{n} in $\overline{\mathscr{M}}^{2 n}$ and $\mathscr{R} i c(X)$ is the Ricci curvature of \mathscr{M}^{n} at $X . \overline{\mathscr{R}} i c(X)$ and $\bar{\rho}$ are the Ricci curvature and scalar curvature of $\overline{\mathcal{M}}^{2 n}$.

The equality sign holds for any unit tangent vector X at a point x iff either
(i) M is a totally geodesic or
(ii) $n=2$ and M is an H-umbilical surface with $\lambda=3 \mu$.

Proof. Let X be a unit tangent vector at any fixed point x in \mathscr{M}^{n}. For choosing an orthonormal frame $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ in $T_{x} \mathscr{M}^{n}$ such that $e_{1}=X$ and $\left\{e_{1}^{*}=\frac{Q e_{1}}{\sin \theta}, e_{2}^{*}=\frac{Q e_{2}}{\sin \theta}, \ldots, e_{n}^{*}=\frac{Q e_{n}}{\sin \theta}\right\}$ an orthonormal frame in $T_{x}^{\perp} \mathscr{M}^{n}$. Using Gauss equation we have

$$
R\left(e_{j}, e_{1}, e_{1}, e_{j}\right)=\bar{R}\left(e_{j}, e_{1}, e_{1}, e_{j}\right)+g\left(h\left(e_{j}, e_{j}\right), h\left(e_{1}, e_{1}\right)\right)-g\left(h\left(e_{j}, e_{1}\right), h\left(e_{1}, e_{j}\right)\right),
$$

By putting $X=W=e_{j}$ and $Y=Z=e_{1}, j=2, \ldots, n$ in the curvature tensor of Bochner-Kaehler manifold and using (7), we have

$$
\begin{aligned}
\bar{R}\left(e_{j}, e_{1}, e_{1}, e_{j}\right)= & \frac{(n-2)}{2 n+4} \overline{\mathscr{R}} i c(X)+\frac{2(n+3)}{2(2 n+2)(2 n+4)} \bar{\rho}+\frac{6}{2 n+4} \overline{\mathscr{R}} i c\left(J e_{1}, e_{j}\right) g\left(J e_{1}, e_{j}\right) \\
& -\frac{6}{2(2 n+2)(2 n+4)} \bar{\rho} g^{2}\left(J e_{1}, e_{j}\right)
\end{aligned}
$$

By summing after $\mathrm{j}=2, \ldots, \mathrm{n}$. From above two equations, we have

$$
\begin{aligned}
\mathscr{R} i c(X)= & \frac{(n-2)}{2 n+4} \overline{\mathscr{R}} i c(X)+\frac{2(n+3)}{2(2 n+2)(2 n+4)} \bar{\rho}+\frac{6}{2 n+4} \sum_{j=2}^{n} \overline{\mathscr{R}} i c\left(J e_{1}, e_{j}\right) g\left(J e_{1}, e_{j}\right) \\
& -\frac{6}{2(2 n+2)(2 n+4)} \bar{\rho} \sum_{j=2}^{n} g^{2}\left(J e_{1}, e_{j}\right)+\sum_{r=1}^{n} \sum_{j=2}^{n}\left[h_{11}^{r} h_{j j}^{r}-\left(h_{1 j}^{r}\right)^{2}\right] .
\end{aligned}
$$

Whereby we obtain

$$
\begin{array}{r}
\mathscr{R} i c(X)-\frac{(n-2)}{2 n+4} \overline{\mathscr{R}} i c(X)-\frac{2(n+3)}{2(2 n+2)(2 n+4)} \bar{\rho}-\frac{6}{2 n+4} \sum_{j=2}^{n} \overline{\mathscr{R}} i c\left(J e_{1}, e_{j}\right) g\left(J e_{1}, e_{j}\right) \\
+\frac{6}{2(2 n+2)(2 n+4)} \bar{\rho} \sum_{j=2}^{n} g^{2}\left(J e_{1}, e_{j}\right) \leq \sum_{r=1}^{n} \sum_{j=2}^{n} h_{11}^{r} h_{j j}^{r}-\sum_{j=2}^{n}\left(h_{1 j}^{1}\right)^{2}-\sum_{j=2}^{n}\left(h_{1 j}^{1}\right)^{2} .
\end{array}
$$

Since M is a Kaehlerian slant submanifold, using (11) we have

$$
\begin{aligned}
\mathscr{R} i c(X)- & \frac{(n-2)}{2 n+4} \overline{\mathscr{R}} i c(X)-\frac{2(n+3)}{2(2 n+2)(2 n+4)} \bar{\rho}-\frac{6}{2 n+4} \sum_{j=2}^{n} \overline{\mathscr{R}} i c\left(J e_{1}, e_{j}\right) \cos \theta \\
& +\frac{6}{2(2 n+2)(2 n+4)} \bar{\rho} \cos ^{2} \theta \leq \sum_{r=1}^{n} \sum_{j=2}^{n} h_{11}^{r} h_{j j}^{r}-\sum_{j=2}^{n}\left(h_{11}^{j}\right)^{2}-\sum_{j=2}^{n}\left(h_{j j}^{1}\right)^{2} .
\end{aligned}
$$

Now, we suppose that

$$
f_{1}\left(h_{11}^{1}, h_{22}^{1}, \ldots, h_{n n}^{1}\right)=h_{11}^{1} \sum_{j=2}^{n} h_{j j}^{1}-\sum_{j=2}^{n}\left(h_{j j}^{1}\right)^{2}
$$

and

$$
f_{r}\left(h_{11}^{r}, h_{22}^{r}, \ldots, h_{n n}^{r}\right)=h_{11}^{r} \sum_{j=2}^{n} h_{j j}^{r}-\left(h_{11}^{r}\right)^{2}, \quad \text { for } \quad r=2, \ldots, n
$$

It is known that

$$
n H^{1}=h_{11}^{1}+h_{22}^{1}+\ldots h_{n n}^{1}
$$

Now by using lemma(4.2), we have

$$
f_{1}\left(h_{11}^{1}, h_{22}^{1}, \ldots, h_{n n}^{1}\right) \leq \frac{n-1}{4 n}\left(n H^{1}\right)^{2}
$$

Also by using lemma(4.3), we get

$$
f_{r}\left(h_{11}^{r}, h_{22}^{r}, \ldots, h_{n n}^{r}\right) \leq \frac{1}{8}\left(n H^{r}\right)^{2} \leq \frac{n-1}{4 n}\left(n H^{r}\right)^{2}
$$

Thus, we have

$$
\begin{aligned}
\mathscr{R} i c(X) \leq & \frac{(n-2)}{2 n+4} \overline{\mathscr{R}} i c(X)+\frac{2(n+3)}{2(2 n+2)(2 n+4)} \bar{\rho}+\frac{6}{2 n+4} \sum_{j=2}^{n} \overline{\mathscr{R}} i c\left(J e_{1}, e_{j}\right) \cos \theta \\
& -\frac{6}{2(2 n+2)(2 n+4)} \bar{\rho} \cos ^{2} \theta+\frac{n(n-1)}{4}\|H\|^{2}
\end{aligned}
$$

Now, consider the equality case, for $n \geq 3$, we choose $Q e_{1}$ parallel to the mean curvature vector H. Then, we have $H^{r}=0$, for $r \geq 2$.

From lemma(4.3), we get

$$
h_{1 j}^{1}=h_{11}^{j}=\frac{n H^{j}}{4}=0, \quad \text { for } \quad j \geq 2
$$

and

$$
h_{j k}^{1}=0, \quad \text { for } \quad j, k \geq 2, \quad j \neq k
$$

Also from lemma (4.2), we have

$$
h_{11}^{1}=(n+1) a, \quad h_{j j}^{1}=a, \quad \text { for } \quad j \geq 2 \quad \text { with } a=\frac{H^{1}}{2}
$$

Similarly computing $\overline{\mathscr{R}} i c\left(e_{2}\right)$ as we compute $\mathscr{R} i c(X)=\overline{\mathscr{R}} i c\left(e_{1}\right)$, in the inequality 16 , from the equality we get

$$
h_{2 j}^{r}=h_{j r}^{2}=0, \quad \text { for } \quad r \neq 2, \quad j \neq 2, \quad r \neq j
$$

Using the lemma(4.2) and the equality, we get

$$
\frac{h_{11}^{2}}{n+1}=h_{22}^{2}=\cdots=h_{n n}^{2}=\frac{H^{2}}{2}=0
$$

Since the equality holds for all unit vector fields, thus the argument is also true for matrices $\left(h_{j k}^{r}\right)$. So $h_{2 j}^{2}=h_{22}^{j}=\frac{H^{j}}{2}=0$ for all $j \geq 3$.

Thus the matrix ($h_{j k}^{2}$) has only two non-zero possible entries $h_{12}^{2}=h_{21}^{2}=h_{22}^{1}=\frac{H^{1}}{2}$, similarly the matrix ($h_{j k}^{r}$) has also only two non-zero possible entries $h_{1 r}^{r}=h_{r 1}^{r}=h_{r r}^{1}=\frac{H^{1}}{2}$ for $r \geq 3$.

Now for computing $\overline{\mathscr{R}} i c\left(e_{2}\right)$, put $X=Z=e_{2}$ and $Y=W=e_{j}$ in the Gauss equation, we have

$$
\bar{R}\left(e_{2}, e_{j}, e_{2}, e_{j}\right)=R\left(e_{2}, e_{j}, e_{2}, e_{j}\right)-\left(\frac{H^{1}}{2}\right)^{2}, \forall j \geq 3
$$

By putting $X=Z=e_{2}$ and $Y=W=e_{1}$ in the Gauss equation, we get

$$
\bar{R}\left(e_{2}, e_{j}, e_{2}, e_{j}\right)=R\left(e_{2}, e_{j}, e_{2}, e_{j}\right)-(n+1)\left(\frac{H^{1}}{2}\right)^{2}+-\left(\frac{H^{1}}{2}\right)^{2}
$$

on combining the above two relations, we get

$$
\begin{array}{r}
\mathscr{R} i c(X)-\frac{(n-2)}{2 n+4} \overline{\mathscr{R}} i c(X)-\frac{2(n+3)}{2(2 n+2)(2 n+4)} \bar{\rho}+\frac{6}{2 n+4} \sum_{j=2}^{n} \overline{\mathscr{R}} i c\left(J e_{1}, e_{j}\right) \cos \theta \\
-\frac{6}{2(2 n+2)(2 n+4)} \bar{\rho} \cos ^{2} \theta=2(n-1)\left(\frac{H^{1}}{2}\right)^{2}
\end{array}
$$

on the other hand, the equality case of (16)implies that

$$
\begin{array}{r}
\mathscr{R} i c(X)-\frac{(n-2)}{2 n+4} \overline{\mathscr{R}} i c(X)-\frac{2(n+3)}{2(2 n+2)(2 n+4)} \bar{\rho}+\frac{6}{2 n+4} \sum_{j=2}^{n} \overline{\mathscr{R}} i c\left(J e_{1}, e_{j}\right) \cos \theta \\
-\frac{6}{2(2 n+2)(2 n+4)} \bar{\rho} \cos ^{2} \theta=n(n-1)\left(\frac{H^{1}}{2}\right)^{2}
\end{array}
$$

We know that $n \neq 1,2$, thus from last two equations, we find that $H^{1}=0$. Thus ($h_{j k}^{r}$) are all zero i.e M is totally geodesic submanifold in $\overline{\mathscr{M}}^{2 n}$.

For $n=2$, if M^{2} is not totally geodesic, we have

$$
h\left(e_{1}, e_{1}\right)=\lambda e_{1}^{*}, h\left(e_{2}, e_{2}\right)=\mu e_{1}^{*}, h\left(e_{1}, e_{2}\right)=\mu e_{2}^{*}
$$

with $\lambda=3 \mu$ and such a surface is called H -umbilical surface.

References

[1] S. Bochner, Curvature and Betti numbers II, Ann. Math., 50(1949), 77-93.
[2] R. L. Bryant, Bochner-Kaehler metrics, J. Amer. Math. Soc., 14(2001), 623-715.
[3] G. Calvaruso, Nulity index of BochnerKaehler manifolds, Note Mat., 29(2009), 115-122.
[4] B. Y. Chen, A general inequality for submanifolds in complex space forms and its applications, Arch. Math., 67(1996), 519-528.
[5] B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universitiet Leuven, 1990.
[6] B. Y. Chen, Mean curvature and shape operator of isometric immersions in real space forms, Glasgow. Math. J., 38(1996), 87-97.
[7] B. Y. Chen, Relationship between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow. Math. J., 41(1999), 33-41.
[8] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. math., 60(1993), 568578.
[9] B. Y. Chen, Some topological obstructions to Bochner kaehler metrics and their applications, J. Differential Geom., 13(1978), 547—558.
[10] S. Deng, An improved Chen-Ricci inequality, Int. Electronic J. Geom., 2(2009), 39-45.
[11] S. Deng, Improved Chen-Ricci inequality for Lagrangian submanifolds in quartenion space forms, Int. Electronic J. Geom., 1 (2012), 163-170.
[12] G. Ganchev, V. Mihova, Warped product Kaehler manifolds and bochner Kaehler metrics, J. Geom. Phys., 58(2008), 803-824.
[13] A. Ghosh, R. Sharma, Contact hypersurfaces of a bochner-Kaehler manifolds, Results in math., 64(2013), 155163
[14] C. S. Houh, Totally real submanifolds in a Bochner-Kaehler manifolds, Tensor N.S, 32(1978), 293-296.
[15] Y. Inoue, The penrose transformation on conformally Bochner-Kaehler manifolds, J. Math. Kyoto University, 47(2007), 327-357.
[16] J. S. Kim, Y. M. Song, M. M. Tripathi, B. Y. Chen inequalities for submanifolds in generilized complex space forms, Bull. Korean Math. Soc., 40(2003), 411-423.
[17] M. A. Lone, M. Jamali, M. H. Shahid, On some inequalities for submanifolds of Bochner-Kaehler manifolds, To Appear in Filomat.
[18] K. Matsumoto, I. Mihai, A. Oiaga, Ricci curvature of submanifolds in complex space form, Rev. Roumaine Math. Pures Appl., 46(2001), 775-782.
[19] K. Matsumoto, I. Mihai, Y. Tazawa, Ricci tensor of slant submanifolds in complex space form, Kodai Math. J., 26(2003), 85-94.
[20] I. Mihai, Inequalities on the Ricci curvature, J. Math. Inequalities, 9(2015), 811-822.
[21] I. Mihai, Ricci curvature of submanifolds in sasakian space forms, J. Austral. Math. Soc., 72(2002), 247-256.
[22] I. Mihai, I. N. Radulescu An improved Chen-Ricci inequality for Kaehlerian slant submanifolds in complex space form, Taiwanese J. Math., 1(2012), 761-770.
[23] L. J. Schwachhofer, Special connections on symplectic manifolds, Rend. Cric. Mat. Palremo, 75(2005), 197223.
[24] M. H. Shahid, F. R. Al-Solamy, Ricci tensor of slant submanifolds in a quaternion projective space, C. R. Acad. Sci. Paris, Ser., 349(2011), 571-373.
[25] M. H. Shahid, S. I. Husain, CR-submanifolds of a Bochner-Kaehler manifold, Indian J. Pure. and Applied Math., 18(1987), 605-610.
[26] A. Song, X. Liu, Some inequalities of slant submanifolds in generilized complex space form, Tamkang Math. J., 36(2005), 223-229.
[27] M. M. Tripathi, Improved Chen-Ricci inequality for curvature like tensors and its applications, Differ. Geom. Appl., 29(2011), 685-692.
[28] P. Verheven, L. Verstraelen, Quasiumbilical anti-invariant submanifolds, Riv. Mat. Univ. Parma, 4(1983), 233240.
[29] G. E. Vilcu, Some submersions of extrinsic hypersurfaces of a Bochner-Kaehler manifolds, Rend. Cric. Mat. Palremo, 54(2005), 343-351.

Department of Mathematics, NIT Srinagar, Hazratbal-190006, India.
E-mail: mehraj.jmi@gmail.com
Department of Mathematics, Chuo University, Faculity of Sciences and Engineering, 1-13-27 Kasuga, Bunkyo-Ku, Tokyo 112-8551, Japan.

E-mail: matsuyama@math.chuo-u.ac.jp
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
E-mail: falleh@hotmail.com
Department of Mathematics, Jamia Millia Islamia, New Delhi-110 025, India.
E-mail: hassan.jmi@yahoo.com
Department of Mathematics, Al-Falah University, Haryana-121004, India.
E-mail: jamali.dbd@yahoo.com

