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UPPER BOUNDS FOR RICCI CURVATURES FOR

SUBMANIFOLDS IN BOCHNER-KAEHLER MANIFOLDS
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Abstract. Chen established the relationship between the Ricci curvature and the squared

norm of mean curvature vector for submanifolds of Riemannian space form with arbi-

trary codimension known as Chen-Ricci inequality. Deng improved the inequality for

Lagrangian submanifolds in complex space form by using algebraic technique. In this

paper, we establish the same inequalities for different submanifolds of Bochner-Kaehler

manifolds. Moreover, we obtain improved Chen-Ricci inequality for Kaehlerian slant

submanifolds of Bochner-Kaehler manifolds.

1. Introduction

One of the most powerful tools to find relationships between intrinsic invariants and ex-

trinsic invariants of a submanifold is provided by Chen’s invariants.The study of Chen invari-

ants and inequalities has been an active field of research over the past two decades. Chen [8]

investigated sharp relationship between the Ricci curvature and the squared norm of mean

curvature for a submanifold in a Riemannian space form with arbitrary codimension. Tripathi

[27] named this inequality as Chen-Ricci inequality. Matsumoto et al. [18] obtained Chen-

Ricci inequality for submanifolds in complex space form. Matsumoto et al. [19] obtained the

same inequality for the slant submanifolds of complex space form. After that, many research

articles have been published by different geometers in this direction (see [26, 21, 24]). They

obtained the similar inequalities for different submanifolds and ambient spaces in complex

as well as in contact version.

Deng [10] improved the Chen-Ricci inequality for Lagrangian submanifolds in complex

space form by using algebraic technique. The same author obtained the improved Chen-

Ricci inequality for Quaternion space forms [11]. Mihai et al. [22] obtained the improved

Chen-Ricci Inequality for Kaehlerian slant submanifolds in complex space form. Mihai [20]
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generalizes the same inequality for Lagrangian submanifolds of complex space form and Leg-

endrian submanifolds in a Sasakian space form with semi-symmetric metric connections.

In 1949, Bochner [1] introduced a complex analogue of the Weyl conformal curvature

tensor for a Kaehler manifold. This tensor is the largest irreducible component of the Rie-

mannian curvature under the unitary group. A Kaehler metric with vanishing Bochner curva-

ture tensor is said to be a Bochner-Kaehler metric [9]. In a seminal paper published in 2001,

Bryant [2] provides an explicit local classification of Bochner-Kaehler metric and in depth

study of their global geometry, generating considerable interest on this kind of manifolds (see

[3, 12, 17, 23, 29]). In particular, we note that Inoue investegated [15] penrose transformation

on Hermitian manifolds that are conformal to Bochner-Kaehler manifolds, using the modifi-

cation of the O’Brien-Rawnsley twistor space for almost Hermitian manifolds.

There are several classes of submanifolds in Bochner-Kaehler manifolds that were inves-

tigated by many geometers: totally real submanifolds [14], anti-invariant submanifolds [28],

CR-submanifolds [25] and contact hypersurfaces [13] etc.

In the first part of the paper, we obtain the Chen-Ricci inequality for submanifolds of

Bochner-Kaehler manifolds and discuss the results for invariant, anti-invariant and slant sub-

manifolds. In the second part, we improve the inequality for Kaehlerian slant submanifolds

of Bochner-Kaehler manifolds using Deng’s technique.

2. Preliminaries

Let M
n be a submanifold of a Bochner-Kaehler manifold M

m
. Let ∇ and ∇ be the Rie-

mannian connections on M
n and M

m
respectively. Then the Gauss and Weingarten formu-

las are given by

∇X Y = ∇X Y +h(X ,Y ), (1)

∇X V = −AV X +DX Y , (2)

for all X ,Y tangent to M
n and vector field V normal to M

n , where h, D, AV denotes the

second fundamental form, normal connection and the shape operator in the direction of V .

The second fundamental form and the shape operator are related by

g (h(X ,Y ),V ) = g (AV X ,Y ). (3)

Let p ∈ M
n and {e1, . . . ,en} be an orthonormal basis of the tangent space TpM

n and

{en+1, . . . ,em} be the orthonormal basis of T ⊥
M

n . We denote by H (the mean curvature vector)

at p , that is

H (p)=
1

n

n
∑

i=1

h(ei ,ei ). (4)
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Also, we set

hr
i j = g (h(ei ,e j ),er ), i , j ∈ {1, . . . ,n}, r ∈ {n +1, . . . ,m}

and

‖h‖2
=

n
∑

i , j=1

(h(ei ,e j ),h(ei ,e j )). (5)

For any p ∈M
n and X ∈M

n , we put J X = P X +Q X , where P X and Q X are the tangential and

normal components of J X respectively.

We denote by

‖P‖
2
=

n
∑

i , j=1

g 2(Pei ,e j ),

For a Riemannian manifold M
n , we denote by K (π) the sectional curvature of M

n associ-

ated with a plane section π ⊂ TP M
n , p ∈ M

n . For an orthonormal basis {e1,e2, . . . ,en} of the

tangent space TpM
n , the scalar curvature ρ is defined by

ρ =
∑

i< j

Ki j ,

where Ki j denotes the sectional curvature of the 2-plane section spanned by ei and e j .

We recall that for a submanifold M
n in a Riemannian manifold, the relative null space of

M
n at a point p ∈M

n is defined by

Np = {X ∈ TpM
n
|h(X ,Y ) = 0,∀Y ∈ TpM

n}.

Let R be the curvature tensor of M
n , then the Gauss equation is given by

R(X ,Y , Z ,W )= R(X ,Y , Z ,W )+ g (h(X ,W ),h(Y , Z ))− g (h(X , Z ),h(Y ,W )),

for any vector fields X , Y , Z , W tangent to M
n .

The curvature tensor of M
m

is given by [25]

R(X ,Y , Z ,W ) = L(Y , Z )g (X ,W )−L(X , Z )g (Y ,W )+L(X ,W )g (Y , Z )

−L(Y ,W )g (X , Z )+M (X ,W )g (J X ,W )−M (X , Z )g (JY ,W )

+M (X ,W )g (JY , Z )−M (Y ,W )g (J X , Z )

−2M (X ,Y )g (J Z ,W )−2M (Z ,W )g (J X ,Y ), (6)

where

L(Y , Z ) =
1

2n +4
Ri c(Y , Z )−

ρ

2(2n +2)(2n +4)
g (Y , Z ), (7)

M (Y , Z )=−L(Y , J Z ), (8)

L(Y , Z )= L(Z ,Y ), L(Y , Z ) = L(JY , J Z ), L(Y , J Z ) =−L(JY , Z ), (9)

Ri c and ρ are the Ricci tensor and scalar curvature of M
m

.
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Definition 2.1. The Kaehler manifold M
m

is said to be Bochner-Kaehler if its Bochner curva-

ture tensor vanishes. These spaces are also known as Bochner-flat manifolds.

Definition 2.2. A Riemannian manifold M
n is said to be Einstein manifold if the Ricci tensor

is proportional to the metric tensor, that is, Ri c(X ,Y ) =λg (X ,Y ) for some constant λ.

Definition 2.3. A submanifold M
n of a Bochner-Kaehler manifold M

m
is said to be a slant

submanifold if for any p ∈M
n and any non zero vector X ∈ TpM

n , the angle between J X and

the tangent space TpM
n is constant.

Invariant and anti-invariant submanifolds are the slant submanifolds with slant angle

θ = 0 and θ =
π
2 respectively and when 0 < θ <

π
2 , then slant submanifold is called proper slant

submanifold.

A proper slant submanifold is said to be Kaehlerian slant if ∇P = 0. A Kaehlerian slant

submanifold is a Kaehler manifold with respect to the induced metric and an almost complex

structure J = secθJ . Let M
n be proper slant submanifold and {e1, . . . ,en} be an orthonormal

basis of Tp M . If m = n, an orthonormal basis {e∗
1 , . . . ,e∗

n} of the normal space T ⊥M n is defined

by

e∗
k =

1

si nθ
Qek , k = 1, . . . ,n. (10)

For Kaehlerian slant submanifold we have [5]

AQ X Y = AQY X ∀X ,Y ∈ Tp M n

or

hk
i j = h

j

i k
= hi

j k (11)

where A is the shape operator and

hk
i j = g (h(ei ,e j ),e∗

k ), i , j ,k = 1, . . . ,n. (12)

Now, the propositions given below characterize the submanifolds with ∇P = 0.

Proposition 2.1 ([5]). Let M
n be a submanifold of an almost Hermitian manifold M

m
. Then

∇P = 0 if and only if M is locally the Riemannian product M1 ×M2 ×·· ·×Mk , where each Mi

is either a complex submanifold, a totally real submanifold or a Kaehlerian slant submanifold

of M.

Proposition 2.2 ([5]). Let M
n be an irreducible submanifold of an almost Hermitian manifold

M
m

. If M is neither invariant nor totally real, then M is a Kaehlerian slant submanifold if and

only if the endomorphism P is parallel.



UPPER BOUNDS FOR RICCI CURVATURES 57

Definition 2.4. A slant H-umbilical submanifold of a Kaehler manifold M
n

is a slant sub-

manifold for which the second fundamental form takes the following forms

h(e1,e1) = λe∗
1 ,h(e2,e2) = ·· · = h(en,en) =µe∗

1

h(e1,e1) = µe∗
j ,h(e j ,ek ) = 0,2 ≤ j 6= k ≤ n,

where e∗
1 , . . . ,e∗

n defined as in (10).

3. Ricci curvature and squared norm of mean curvature

In this section, we prove some inequalities of Ricci curvatures for submanifolds of Bochner-

Kaehler manifolds.

Theorem 3.1. Let M
n be a submanifold of a Bochner-Kaehler manifold M

m
, then

(i) for each unit vector X ∈ TpM , we have

Ri c(X ) ≤
1

4
n2

‖H‖
2
+

4n3 −12n2 −2n +10− (3n2 −9n +3)‖P‖2

2(2n +2)(2n +4)
ρ

6

2n +4

∑

2≤i< j≤n

Ri c(ei , Je j )g (ei , Je j )−
3

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j ).

(ii) If H (p)= 0, the unit tangent vector X at p satisfies the equality if and only if X ∈Np .

(iii) The equality case holds identically for all unit tangent vectors at p if and only if either p

is totally geodesic point or n = 2 and p is totally umbilical point.

Proof. (i) Let X ∈ TpM be a unit tangent vector at p . We choose orthonormal basis

{e1,e2, . . . ,en ,en+1, . . . ,em} such that {e1,e2, . . . ,en} are tangent to M at p with e1 = X , then from

Gauss equation we have

R(X ,Y , Z ,W ) = L(Y , Z )g (X ,W )−L(X , Z )g (Y ,W )+L(X ,W )g (Y , Z )

−L(Y ,W )g (X , Z )+M (Y , Z )g (J X ,W )−M (X , Z )g (JY ,W )

+M (X ,W )g (JY , Z )−M (Y ,W )g (J X , Z )−2M (X ,Y )(J Z ,W )

−2M (Z ,W )g (J X ,Y )+ g (h(X ,W ),h(Y , Z ))− g (h(X , Z ),h(Y ,W )),

for any X, Y, Z, W ∈ TM. Therefore we may write

∑

i , j

R(ei ,e j ,e j ,ei ) =
∑

i , j

(

L(e j ,e j )g (ei ,ei )−L(ei ,e j )g (e j ,ei )+L(ei ,ei )g (e j ,e j )

−L(e j ,ei )g (ei ,e j )+M (e j ,e j )g (Jei ,ei )−M (ei ,e j )g (Je j ,ei )

+M (ei ,ei )g (Je j ,e j )−M (e j ,ei )g (Jei ,e j )−2M (ei ,e j )(Je j ,ei )
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−2M (e j ,ei )g (Jei ,e j )+ g (h(ei ,ei ),h(e j ,e j ))− g (h(ei ,e j ),h(e j ,ei )),
)

=
∑

i , j

(

L(e j ,e j )g (ei ,ei )−L(ei ,e j )g (e j ,ei )+L(ei ,ei )g (e j ,e j )

−L(e j ,ei )g (ei ,e j )−L(e j , Je j )g (Jei ,ei )+L(ei , Je j )g (Je j ,ei )

+L(ei , Jei )g (Je j ,e j )+L(e j , Jei )g (Jei ,e j )+2L(ei , Je j )(Je j ,ei )

+2L(e j , Jei )g (Jei ,e j )+ g (h(ei ,ei ),h(e j ,e j ))− g (h(ei ,e j ),h(e j ,ei ))
)

.

Using(4), (5) and (9), we have

∑

i , j

R(ei ,e j ,e j ,ei ) = 2n
∑

i

L(ei ,ei )−2
∑

i , j

L(ei ,e j )g (ei ,e j )+6
∑

i , j

L(ei , Je j )g (ei , Je j )

+n2
‖H‖

2
−‖h‖2.

Last equation simplifies to,

2ρ = 2(n −1)
∑

i

L(ei ,ei )+6
∑

i , j

L(ei , Je j )g (ei , Je j )+n2
‖H‖

2
−‖h‖2 (13)

Combining (7) and (13), we have

2ρ =
2(n −1)

2n +4

∑

i

Ri c(ei ,ei )−
2(n −1)ρ

2(2n +2)(2n +4)

∑

i

g (ei ,ei )

+
6

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j )−
∑

i , j

6ρ

2(2n +2)(2n +4)
g (ei , Je j )g (ei , Je j )

+n2
‖H‖

2
−‖h‖2.

This implies that

n2
‖H‖

2
= 2ρ−

(6n2 +2n −8−6‖P‖2

2(2n +2)(2n +4)

)

ρ+‖h‖2
−

6

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j ).

From which we have,

n2
‖H‖

2
= 2ρ−

(6n2 +2n −8−6‖P‖2

2(2n +2)(2n +4)

)

ρ+

m
∑

r=n+1

n
∑

i , j=1

(hr
i j )2

−
6

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j ).

that is

n2
‖H‖

2
= 2ρ−

(6n2 +2n −8−6‖P‖2

2(2n +2)(2n +4)

)

ρ+

m
∑

r=n+1

[

(hr
11)2

+ (hr
22)2

+·· ·+ (hr
nn)2

+2
∑

i< j

(hr
i j )2

]

−
6

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j ).
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Which simplifies to

n2
‖H‖

2
= 2ρ−

(6n2 +2n −8−6‖P‖2

2(2n +2)(2n +4)

)

ρ+

m
∑

r=n+1

[

(hr
11)2

+ (hr
22)2

+·· ·+ (hr
nn )2

]

+2
m
∑

r=n+1

∑

i< j

(hr
i j )2

−
6

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j ).

or

n2
‖H‖

2
= 2ρ−

(6n2 +2n −8−6‖P‖2

2(2n +2)(2n +4)

)

ρ+

m
∑

r=n+1

[

(hr
11)2

+ (hr
22 +·· ·+hr

nn)2
−2

∑

2≤i< j≤n

hr
i i hr

j j

]

+2
m
∑

r=n+1

∑

i< j

(hr
i j )2

−
6

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j ).

From which we derive that,

n2
‖H‖

2
= 2ρ−

(6n2 +2n −8−6‖P‖2

2(2n +2)(2n +4)

)

ρ+
1

2

m
∑

r=n+1

[

(hr
11 +hr

22 +·· ·+hr
nn )2

+(hr
11 −hr

22 −·· ·−hr
nn)2

]

−2
m
∑

r=n+1

∑

2≤i< j≤n

hr
i i hr

j j +2
m
∑

r=n+1

∑

i< j

(hr
i j )2

−
6

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j ).

or

n2
‖H‖

2
= 2ρ−

(6n2 +2n −8−6‖P‖2

2(2n +2)(2n +4)

)

ρ

+
1

2

m
∑

r=n+1

(hr
11 +hr

22 +·· ·+hr
nn)2

+
1

2

m
∑

r=n+1

(hr
11 −hr

22 −·· ·−hr
nn )2

+2
m
∑

r=n+1

n
∑

j=1

(hr
1 j )2

−2

[

m
∑

r=n+1

∑

2≤i< j≤n

hr
i i hr

j j − (hr
i j )2

]

−
6

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j ). (14)

Also, from Gauss equation, we have

Ki j = 2L(ei ,ei )+6L(ei ,ei )g (ei , Je j )+
m
∑

r=n+1

[

hr
i i hr

j j − (hr
i j )2

]

=
2

2n +4
Ri c(ei ,ei )−

2ρ

2(2n +2)(2n +4)
g (ei ,ei )+

6

2n +4
Ri c(ei , Je j )g (ei , Je j )

−
6ρ

2(2n +2)(2n +4)
g (ei , Je j )g (ei , Je j )+

m
∑

r=n+1

[

hr
i i hr

j j − (hr
i j )2

]

=
8n +6−6‖p‖2

2(2n +2)(2n +4)
ρ+

6

2n +4
Ri c(ei , Je j )g (ei , Je j )+

m
∑

r=n+1

[

hr
i i hr

j j − (hr
i j )2

]

and consequently

∑

2≤i< j≤n

Ki j =
4n3 −9n2 −n +6− (3n2 −9n +6)‖p‖2

2(2n +2)(2n +4)
ρ
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+
6

2n +4

∑

2≤i< j≤n

Ri c(ei , Je j )g (ei , Je j )+
m
∑

r=n+1

∑

2≤i< j≤n

[

hr
i i hr

j j − (hr
i j )2

]

. (15)

Incorporating (15) in (14), we get

1

2
n2

‖H‖
2
≥ 2Ri c(X )−

6n2 +2n −8−6‖P‖2

2(2n +2)(2n +4)
ρ+2

4n3 −9n2 −n +6− (3n2 −9n +6)‖P‖2

2(2n +2)(2n +4)
ρ

12

2n +4

∑

2≤i< j≤n

Ri c(ei , Je j )g (ei , Je j )−
6

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j )

or,

Ri c(X ) ≤
1

4
n2

‖H‖
2
+

4n3 −12n2 −2n +10− (3n2 +9n −3)‖P‖2

2(2n +2)(2n +4)
ρ

6

2n +4

∑

2≤i< j≤n

Ri c(ei , Je j )g (ei , Je j )−
3

2n +4

∑

i , j

Ri c(ei , Je j )g (ei , Je j )

(ii) Suppose H (p)= 0, equality holds if and only if







hr
12 = ·· · = hr

1n = 0,

hr
11 = hr

22 +·· ·+hr
nn ,r ∈ {n +1, . . . ,m}

Then hr
1 j

= 0∀ j ∈ {1,2, . . . ,n},r ∈ {n +1, . . . ,m}, i.e. X ∈N .

(iii) The equality case holds for all unit vectors at p if and only if







hr
12 = 0, i 6= j ,r ∈ {n +1, . . . ,m},

hr
11 +·· ·+hr

nn −2hr
i j
= 0, i ∈ {1,2, . . . ,n},r ∈ {n +1, . . . ,m}

We distinguish two cases:

(a) n 6= 2, then p is a totally geodesic point

(b) n=2, it follows that p is a totally umbilical point.

The converse is trivial. ���

The following proposition follows from the theorem 3.1, if the submanifold M
n is Ein-

stein.

Proposition 3.2. Let M
n be a submanifold of a Bochner-Kaehler manifold M

m
which is Ein-

stein, then

(i) For each unit vector X ∈ TpM , we have

Ri c(X )≤
1

4
n2

‖H‖
2
+

4n3 −12n2 −2n +10− (3n2 −9n +3)‖P‖2

2(2n +2)(2n +4)
ρ+

3

2n +2
λ‖P‖

2.

(ii) If H (p)= 0, the unit tangent vector X at p satisfies the equality if and only if X ∈Np .
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(iii) The equality case holds identically for all unit tangent vectors at p if and only if either p

is totally geodesic point or n = 2 and p is totally umbilical point.

If M
n is a slant submanifold of M

m , we have the following theorem.

Theorem 3.3. Let M
n be a slant submanifold of a Bochner-Kaehler manifold M

m
, then

(i) for each unit vector X ∈ TpM , we have

Ri c(X ) ≤
1

4
n2

‖H‖
2
+

4n3 −12n2 −2n +10− (3n2 −9n +3)cos2θ

2(2n +2)(2n +4)
ρ

+
6cosθ

2n +4

∑

2≤i< j≤n

Ri c(ei , Je j )−
3

2n +4
cosθ

∑

i , j

Ri c(ei , Je j ).

(ii) If H (p)= 0, the unit tangent vector X at p satisfies the equality if and only if X ∈Np .

(iii) The equality case holds identically for all unit tangent vectors at p if and only if either p

is totally geodesic point or n = 2 and p is totally umbilical point.

Following corollaries can be deduced from the last theorem.

Corollary 3.4. Let M
n be an anti-invariant submanifold of a Bochner-Kaehler manifold M

m
,

then

(i) for each unit vector X ∈ TpM , we have

Ri c(X ) ≤
1

4
n2

‖H‖
2
+

4n3 −12n2 −2n +10

2(2n +2)(2n +4)
ρ.

(ii) If H (p)= 0, the unit tangent vector X at p satisfies the equality if and only if X ∈Np .

(iii) The equality case holds identically for all unit tangent vectors at p if and only if either p

is totally geodesic point or n = 2 and p is totally umbilical point.

Corollary 3.5. Let M
n be a invariant submanifold of a Bochner-Kaehler manifold M

m
, then

(i) for each unit vector X ∈ TpM , we have

Ri c(X ) ≤
1

4
n2

‖H‖
2
+

4n3 −12n2 −2n +10− (3n2 −9n +3)

2(2n +2)(2n +4)
ρ

+
6

2n +4

∑

2≤i< j≤n

Ri c(ei , Je j )−
3

2n +4

∑

i , j

Ri c(ei , Je j ).

(ii) If H (p)= 0, the unit tangent vector X at p satisfies the equality if and only if X ∈Np .

(iii) The equality case holds identically for all unit tangent vectors at p if and only if either p

is totally geodesic point or n = 2 and p is totally umbilical point.
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4. Improved Chen-Ricci inequality

In 2009, Deng improved the Chen-Ricci inequality for Lagrangian submanifolds in com-

plex space forms using the algebraic technique. In this section we will improve the Chen-Ricci

inequality for Bochner-Kaehler manifolds. The following lemmas will be helpful for the proof

of the main result.

Lemma 4.1 ([10]). Let (x1, x2, . . . , xn) be a point in Rn . If x1 +x2 +·· ·+xn = na, we have

x1
2 +x2

2 +·· ·+x2
n ≥ na2.

The equality sign holds if and only if x1 = x2 = ·· · = xn = a.

Lemma 4.2 ([10]). Let f1(x1, x2, . . . , xn) be a function in Rn defined by

f1(x1, x2, . . . , xn) = x1

n
∑

j=2

x j −

n
∑

j=2

x2
j .

If x1 +x2 +·· ·+xn = 2na, we have

f1(x1, x2, . . . , xn) ≤
(n −1)

4n
(x1 +x2 + ...+xn )2.

The equality sign holds if and only if 1
n+1 x1 = x2 = ·· · = xn = a.

Lemma 4.3 ([10]). Let f2(x1, x2, . . . , xn) be a function in Rn defined by

f2(x1, x2, . . . , xn)= x1

n
∑

j=2

x j −x2
1 .

If x1 +x2 +·· ·+xn = 4a, we have

f2(x1, x2, . . . , xn) ≤
1

8
(x1 +x2 + ...+xn)2.

The equality sign holds if and only if x1 = a and x2 +·· ·+xn = 3a.

Now, we prove the main result of this section

Theorem 4.4. Let M
n be a Kaehlerian slant submanifold of a Bochner-Kaehler manifold M

2n
.

Let X be a unit tangent vector in the tangent space TxM
n at a point x in M . Then we have

Ri c(X ) ≤
(n −2)

2n +4
Ri c(X )+

2(n +3)

2(2n +2)(2n +4)
ρ−

6

2n +4

n
∑

j=2

Ri c(Je1,e j )cosθ

+
6

2(2n +2)(2n +4)
ρ cos2θ+

n(n −1)

4
‖H‖

2 (16)

where H is the mean curvature vector of M
n in M

2n
and Ri c(X ) is the Ricci curvature of M

n

at X . Ri c(X ) and ρ are the Ricci curvature and scalar curvature of M
2n

.

The equality sign holds for any unit tangent vector X at a point x iff either
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(i) M is a totally geodesic or

(ii) n = 2 and M is an H-umbilical surface with λ= 3µ.

Proof. Let X be a unit tangent vector at any fixed point x in M
n . For choosing an orthonor-

mal frame {e1,e2, . . . ,en} in TxM
n such that e1 = X and {e∗

1 =
Qe1

sinθ ,e∗
2 =

Qe2

sinθ , . . . ,e∗
n =

Qen

sinθ } an

orthonormal frame in T ⊥
x M

n . Using Gauss equation we have

R(e j ,e1,e1,e j ) = R(e j ,e1,e1,e j )+ g (h(e j ,e j ),h(e1,e1))− g (h(e j ,e1),h(e1,e j )),

By putting X =W = e j and Y = Z = e1, j = 2, . . . ,n in the curvature tensor of Bochner-Kaehler

manifold and using (7), we have

R(e j ,e1,e1,e j ) =
(n −2)

2n +4
Ri c(X )+

2(n +3)

2(2n +2)(2n +4)
ρ+

6

2n +4
Ri c(Je1,e j )g (Je1,e j )

−
6

2(2n +2)(2n +4)
ρg 2(Je1,e j )

By summing after j=2,. . . ,n. From above two equations, we have

Ri c(X ) =
(n −2)

2n +4
Ri c(X )+

2(n +3)

2(2n +2)(2n +4)
ρ+

6

2n +4

n
∑

j=2

Ri c(Je1,e j )g (Je1,e j )

−
6

2(2n +2)(2n +4)
ρ

n
∑

j=2

g 2(Je1,e j )+
n
∑

r=1

n
∑

j=2

[hr
11hr

j j − (hr
1 j )2].

Whereby we obtain

Ri c(X )−
(n −2)

2n +4
Ri c(X )−

2(n +3)

2(2n +2)(2n +4)
ρ−

6

2n +4

n
∑

j=2

Ri c(Je1,e j )g (Je1,e j )

+
6

2(2n +2)(2n +4)
ρ

n
∑

j=2

g 2(Je1,e j )≤
n
∑

r=1

n
∑

j=2

hr
11hr

j j −

n
∑

j=2

(h1
1 j )2

−

n
∑

j=2

(h1
1 j )2.

Since M is a Kaehlerian slant submanifold,using (11) we have

Ri c(X )−
(n −2)

2n +4
Ri c(X )−

2(n +3)

2(2n +2)(2n +4)
ρ−

6

2n +4

n
∑

j=2

Ri c(Je1,e j )cosθ

+
6

2(2n +2)(2n +4)
ρ cos2θ ≤

n
∑

r=1

n
∑

j=2

hr
11hr

j j −

n
∑

j=2

(h
j
11)2

−

n
∑

j=2

(h1
j j )2.

Now, we suppose that

f1(h1
11,h1

22, . . . ,h1
nn) = h1

11

n
∑

j=2

h1
j j −

n
∑

j=2

(h1
j j )2

and
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fr (hr
11,hr

22, . . . ,hr
nn) = hr

11

n
∑

j=2

hr
j j − (hr

11)2, f or r = 2, . . . ,n

It is known that

nH 1
= h1

11 +h1
22 + ...h1

nn .

Now by using lemma(4.2), we have

f1(h1
11,h1

22, . . . ,h1
nn) ≤

n −1

4n
(nH 1)2

Also by using lemma(4.3), we get

fr (hr
11,hr

22, . . . ,hr
nn)≤

1

8
(nH r )2

≤
n −1

4n
(nH r )2

Thus, we have

Ri c(X ) ≤
(n −2)

2n +4
Ri c(X )+

2(n +3)

2(2n +2)(2n +4)
ρ+

6

2n +4

n
∑

j=2

Ri c(Je1,e j )cosθ

−
6

2(2n +2)(2n +4)
ρ cos2θ+

n(n −1)

4
‖H‖

2

Now, consider the equality case, for n ≥ 3, we choose Qe1 parallel to the mean curvature

vector H . Then, we have H r = 0, for r ≥ 2.

From lemma(4.3), we get

h1
1 j =h

j

11 =
nH j

4
= 0, f or j ≥ 2

and

h1
j k = 0, f or j ,k ≥ 2, j 6= k .

Also from lemma (4.2), we have

h1
11 = (n +1)a, h1

j j = a, f or j ≥ 2 witha =
H 1

2

Similarly computing Ri c(e2) as we compute Ri c(X )=Ri c(e1), in the inequality 16, from the

equality we get

hr
2 j = h2

j r = 0, f or r 6= 2, j 6= 2, r 6= j

Using the lemma(4.2) and the equality, we get

h2
11

n +1
=h2

22 = ·· · = h2
nn =

H 2

2
= 0
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Since the equality holds for all unit vector fields, thus the argument is also true for matrices

(hr
j k

). So h2
2 j

= h
j
22 =

H j

2 = 0 for all j ≥ 3.

Thus the matrix (h2
j k

) has only two non-zero possible entries h2
12 = h2

21 = h1
22 =

H1

2
, sim-

ilarly the matrix (hr
j k

) has also only two non-zero possible entries hr
1r = hr

r 1 = h1
r r = H1

2
for

r ≥ 3.

Now for computing Ri c(e2), put X = Z = e2 and Y = W = e j in the Gauss equation, we

have

R(e2,e j ,e2,e j ) =R(e2,e j ,e2,e j )−
( H 1

2

)2

,∀ j ≥ 3

By putting X = Z = e2 and Y =W = e1 in the Gauss equation, we get

R(e2,e j ,e2,e j ) =R(e2,e j ,e2,e j )− (n +1)
( H 1

2

)2

+−

( H 1

2

)2

on combining the above two relations, we get

Ri c(X )−
(n −2)

2n +4
Ri c(X )−

2(n +3)

2(2n +2)(2n +4)
ρ+

6

2n +4

n
∑

j=2

Ri c(Je1,e j )cosθ

−
6

2(2n +2)(2n +4)
ρ cos2θ = 2(n −1)

( H 1

2

)2

on the other hand, the equality case of (16)implies that

Ri c(X )−
(n −2)

2n +4
Ri c(X )−

2(n +3)

2(2n +2)(2n +4)
ρ+

6

2n +4

n
∑

j=2

Ri c(Je1,e j )cosθ

−
6

2(2n +2)(2n +4)
ρ cos2θ = n(n −1)

( H 1

2

)2

We know that n 6= 1,2, thus from last two equations, we find that H 1 = 0. Thus (hr
j k

) are all

zero i.e M is totally geodesic submanifold in M
2n

.

For n = 2, if M 2 is not totally geodesic, we have

h(e1,e1) =λe∗
1 ,h(e2,e2) =µe∗

1 ,h(e1,e2) =µe∗
2

with λ= 3µ and such a surface is called H-umbilical surface. ���
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