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NONPARAMETRIC BAYES ESTIMATORS FOR HAZARD FUNCTIONS

BASED ON RIGHT CENSORED DATA

IAN W. MCKEAGUE AND MOURAD TIGHIOUART

Abstract. In this article, we analyse right censored survival data by modelling their common

hazard function nonparametrically. The hazard rate is assumed to be a stochastic process, with

sample paths taking the form of step functions. This process jumps at times that form a time-

homogeneous Poisson process, and a class of Markov random �elds is used to model the values

of these sample paths. Features of the posterior distribution, such as the mean hazard rate

and survival probabilities, are evaluated using the Metropolis{Hastings{Green algorithm. We

illustrate our methodology by simulation examples.

1. Introduction

Much of nonparametric Bayesian inference restricted the model distributions to con-

jugate families for their analytical tractability. In some medical studies, such models

were found to be too restrictive to describe the prior information in either the cumu-

lative distribution function or the cumulative hazard function. Recent developments in

Markov chain Monte Carlo techniques have widened the scopes of nonparametric (as well

as parametric) Bayesian analysis for high-dimensional parameter space.

In this article, the hazard function is modeled nonparametrically as a step function

that jumps at times that form time-homogeneous Poisson process. The levels of the

hazard rate (conditional on these jump times), form a Gaussian Markov random �eld

with a nearest neighbor structure.

The idea of nonparametric Bayesian inference became very popular following the

seminal paper of Cox [3]. Ferguson [7] and Susarla and Van Ryzin [19] used a Dirichlet

process prior for the cumulative distribution function. This has the attractive feature that

the posterior distribution is another Dirichlet process. Mixtures of Dirichlet processes

were used by Doss [5], and Polya tree distributions by Muliere [14]. Prior modeling of

the cumulative hazard function using beta processes was introduced by Hjort [11]. The

latter class of priors was shown to be a conjugate family, and Damien et al. [16] gave an

algorithm to generate random variates from the resulting posterior process. Dykstra and
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Laud [6] used a gamma process to model the hazard function, yielding an IHR property

(increasing hazard rate) of the model.

The prior processes used in the above procedures imply an independent increment

property for the cumulative hazard function, which is often unrealistic. In most practical

situations, a smooth or correlated prior processes for the hazard function is more suitable.

In a Cox-type model h(tjz) = h0(t) exp(�(t)
0z) , Gamerman [8] introduced classes of auto-

correlated processes to describe the prior information. He assumed that the baseline

hazard is a step function of the form

h0(t) =

kX
i=1

I(�i < t � �i+1)hi; (1.1)

where 0 = �1 < �2 < : : : < �k+1 is a �xed grid of jump times. The log-baseline hazard

levels �i = log(hi) form a �rst-order autoregressive process, �i+1j�i � N(�i; �
2), and a

similar structure is used for the covariate e�ect �(t).

Statistical inference based on model (1.1) is dependent upon the choice of the grid

of jump times. Putting a prior distribution on these jump times will result in a more

complex model but this helps achieve a dense support for the prior. Such an analysis is

feasible due to recent developments in Markov chain Monte Carlo (MCMC) techniques,

see, e.g., Smith and Roberts [18]. In particular, Arjas and Gasbarra [1] modeled h(t)

as a step function of the form (1.1) with k = 1, where the jump times �2 < �3 < : : :

form a time homogeneous Poisson process, and the levels of the hazard rate fhi; i � 1g
form a �rst-order autoregressive process. Estimation of the predictive hazard and sur-

vival functions was carried out using a dynamic version of the Gibbs sampler algorithm.

An extensive review of Bayesian methods for survival data can be found in Sinha and

Dey [17].

In this article, the hazard function is modeled as a stochastic process, with sample

paths taking the form of step functions. We assume that

h(t) =

1X
i=1

I(�i < t � �i+1)hi; (1.2)

where f�i; i � 2g is a time homogeneous Poisson process, and the local characteristics of

the log-hazard levels �i = log(hi) are normal distributions.

It follows that the conditional mean of �k given its two neighbors is

�k = �k + sk(�k�1 � �k�1) + rk(�k+1 � �k+1);

where the parameters �k = E(�k) represent the trend in the levels of the hazard function,

and sk; rk represent the in
uences on �k of its left and right neighbors, respectively.

Arjas and Heikkinen [2] introduced a similar model for the (prior) intensity of a non-

homogeneous Poisson process, but they did not study it in the present survival analysis

context.
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An appropriate choice of the trend parameters �k and in
uence parameters sk and rk
give rise to the models proposed by Arjas and Gasbara [1] and Gamerman [8]. Features

of the posterior distribution of (h0(t); �(t)) will be calculated using the Metropolis{

Hastings{Green (MHG) algorithm, Metropolis et al. [15], Hastings [10], Green [9].

The article is organized as follows. Section 2 describes the model for simple right

censored survival times. The Metropolis{Hastings{Green algorithm used for sampling

from the posterior distribution of the parameter of interest is described in the Appendix.

In Section 3, we describe the inclusion of covariate e�ects in the model and present some

simulations. Section 4 contains some concluding remarks.

2. Survival Function Estimation

2.1. The model

Let T1; : : : ; Tn be nonnegative independent random variables with a common hazard

function h. Assume that the data may be subject to right censoring, i.e., we observe

(X1; �1); : : : ; (Xn; �n) where Xj = min(Tj ; Uj), Uj being the censoring time for the j-

th individual, and �j = IfTj � Ujg. Our Bayesian approach consists of putting a prior

distribution on the unknown hazard function and then extracting features of the posterior

distributioxn of h given the data using the Metropolis{Hastings{Green algorithm.

The structure of the hazard rate is given by:

h(t) =

1X
i=1

If�i < t � �i+1ghi ;

where If g is the indicator function, 0 = �1 < �2 < �3 < : : : is an increasing sequence

of jump times, and the hi's represent the levels of the hazard function. Let �max =

max1�j�nXj .

We specify the prior distribution on h(t) for 0 < t � �max as follows:

1. The jump times �2; �3; : : : form a time-homogeneous Poisson process with rate �.

2. Given that there are m � 1 jumps in the interval [0; �max], (�1; �2; : : : ; �m) is a

Gaussian Markov random �eld, with a nearest neighbor structure, speci�ed by its

local characteristics: �kjf�i; i 6= kg � N(�k; �
2
k), where �i = log(hi).

It can be shown that the conditional mean �k is given by

�k = �k + sk(�k�1 � �k�1) + rk(�k+1 � �k+1);

where the hyperparameters �k = E(�k) represent the trend in the levels of the hazard

function, and sk; rk are the in
uences of the left and right neighbors of �k, respectively.

The models proposed by Arjas and Gasbara (1994) and Gamerman (1991) essentially

arise as special cases: use a constant trend and let ri ! 0 and si ! 1. The joint distri-

bution of �1; : : : ; �m (given m �xed) is completely determined by its local characteristics
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provided they satisfy the following consistency conditions: sk; rk are nonnegative with

sk + rk < 1, and rk�
2
k+1 = sk+1�

2
k, see, e.g., Besag and Kooperberg (1995). Now we

specify sk; rk and �2k , the aim being to force the corresponding hazard function h(t) to

be relatively `smooth.' Of the two neighbors of �k , the one corresponding to the longer

interval should have the greatest in
uence on its mean �k. We propose to use

rk =
(�k +�k+1) c

�k�1 + 2�k +�k+1

; sk =
(�k�1 +�k) c

�k�1 + 2�k +�k+1

;

�2k =
2�2

�k�1 + 2�k +�k+1

;

where �k = �k+1 � �k is the gap between the k-th and (k + 1)-st jump times, 2 � k �
m � 1. The in
uence parameters r1; s1; rm; sm at the boundaries are de�ned as above,

but identifying the endpoints �1 and �m as neighbors. It is readily checked that the

above consistency conditions are satis�ed in this case. Other choices of rk; sk; �
2
k are also

possible.

Arjas and Heikkinen [2] used the Voronoi tessellation of f�ig to specify the jump times
in their model for the intensity of a non-homogeneous Poisson process. This is technically

appealing because of the one-to-one correspondence it induces between �1; : : : ; �m and

the log-intensity levels �1; : : : ; �m. However, we prefer using f�ig as the the jump times

to facilitate comparison with the survival analysis models of Arjas and Gasbara [1] and

Gamerman [8].

Given m, the joint distribution of (�1; �2; : : : ; �m) is Gaussian with mean vector �m
and covariance matrix (I �C)�1M , where �m = (�1; : : : ; �m), C = (cij)1�i;j�m, where

cii+1 = ri; cii�1 = si, M = diag(�21 ; �
2
2 ; : : : ; �

2
m), and I is the identity matrix.

Our model has hyperparameters �; (�k); c and �. The parameter � controls the

rate of jump times, (�k) is the trend in the log-hazard function, c controls the nearest

neighbor interaction (0 � c < 1), and �2 represents the precision of the prior information.

Choosing a value of c close to 1 amounts to vague prior knowledge of the trend parameters

�k. For example, if �k = � for all k, then �k = �(1 � c) + sk�k�1 + rk�k+1 and the

in
uence of � on �k vanishes as c! 1. For simplicity of presentation, we restrict attention

to the case �k = �; which indicates a constant prior level in the mean of the log-hazard

function.

The likelihood is proportional to

nY
j=1

[h(Xj)
�j expf�

Z Xj

0

h(s) dsg]

=

nY
j=1

(h(Xj))
�j expf�

Z �max

0

Y (s)h(s) dsg;

where Y (t) =
Pn

j=1 IfXj � tg is the number of individuals at risk at time t, see, e.g.,

Cox and Oakes [4, Ch. 3]. Here we have assumed that the censoring mechanism is non-

informative so the normalizing constant does not depend on h(t). Let Ni be the number
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of observed deaths in the interval (�i; �i+1], and denote by (�m;�m) the 2m-dimensional

vector (�1; : : : ; �m; �1; : : : ; �m). The posterior density of the parameter ( �m;�m) given

the data is proportional to the product of the prior and the likelihood:

�m (2�)�
m
2 jAj�

1

2 exp

�
�
1

2
(�m � �m)

0A(�m � �m)

�

� exp

(
mX
i=1

Ni�i �

Z �max

0

Y (s)h(s) ds

)

where A =M�1(I � C).

We have devised a Metropolis{Hastings{Green sampler to extract features from this

posterior distribution, see the appendix.

2.2. Numerical Examples

The numerical results we present here are based on data generated from two di�erent

hazard functions. The censoring times were generated from a uniform distribution on

the interval (0; �), where � is chosen to achieve a desired censoring probability. We �rst

simulated 100 failure times from the hazard function shown by the solid line in the second

plot of Figure 1. Eight observations were censored, and �fteen observations exceeded 1.0.

The hyperparameter values used were � = 0:4; c = 0:98; � = 0:4, and � = 6:0; which

corresponds to a prior mean level for the hazard rate of exp(�) = 1:49, and prior mean

number of jump times of ��1:0 = 6:0. In practice, one can chose a value of exp(�) within

the range of a smoothed version of the hazard function, using for example the Nelson{

Aalen estimator of the cumulative hazard function. When �max = 1 and the number of

failure times n is between 50 and 300, we recommend values of � in the interval [5; 10].

For a more complete Bayesian analysis, second stage priors could be placed on �; �; c;

and �.

The sampler was run for 1,000,000 updates, after a burn-in period of 100,000 updates.

Convergence of the sampler was assessed by observing independent runs of the algorithm,

taking di�erent starting sample paths, changing the values of the sampler parameters,

and plotting the autocorrelation function at four time points.

The sampler parameters used were � = 0:2; � = 0:2; and � = 1:2. The resulting

rejection rate of the MHG sampler was about 28%. Based on our experience with the

sampler, we suggest using values of �; �; and � in the intervals (0:1; 0:3); (�=4; 2�=3), and

(2�; 4�), respectively. This will result in a rejection rate between 25% and 30%.

The MCMC sample used to approximate the Bayes estimates shown in Figure 1

was obtained by using every 1000-th realization of the Markov chain (to save storage).

The proposed estimator of the predictive survival function closely follows the Kaplan{

Meier curve, except that it is much smoother. The posterior mean hazard function is

a smooth curve due to the averaging of a large number of step functions with random

jump locations, and follows the pattern of the true hazard function quite closely. The

true hazard curve lies completely within the posterior pointwise quantile curves except

in the neighborhood of t = 0:8.
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Figure 1. Proposed Bayes estimates based on n = 100 failure times.
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A sensitivity analysis of the e�ect of the trend parameter on the Bayes estimates is

shown in Figure 2. Three levels of the trend parameter � were chosen; these correspond

to constant log-hazard rates of 0.49 (low), 1.49 (medium), and 2.71 (high). The cor-

responding estimates are indicated by a dashed line (low trend), dotted line (medium

trend), and an irregular dashed line (high trend). The other hyperparameters are as in

the �rst simulation. There is almost no di�erence in the corresponding posterior mean

hazard curves, except in a neighborhood of t = 0:95, and the predictive survival curves

are indistinguishable.
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Figure 2. Sensitivity analysis for the trend parameter �.
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As a second illustration, we generated 200 failure times from a rather complex hazard

function shown by the solid line at the bottom of Figure 3. From those, 26 observations

exceeded t = 1:0, and 6 observations were censored in the interval (0; 1).
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Figure 3. Proposed Bayes estimates based on n = 200 failure times.

The hyperparameter values we used are � = 0:7 which corresponds to a prior mean

level of exp(�) = 2:01 for the hazard rate, c = 0:98; � = 0:75, and � = 6:0. The predictive

survival curve is close to both the Kaplan{Meier curve and the true survival curve. The
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posterior mean hazard function is a smooth curve, and captures the key features of the

true hazard function remarkably well. The true hazard function lies completely between

the pointwise 5% and 95% posterior quantile curves.

3. Adjusting for Covariate E�ects

3.1. The model

The data now consist of n independent right-censored survival times and associated

p-dimensional covariate vectors zj , j = 1; : : : ; n. The prior conditional hazard function

now has the structure

h(tjz) =
1X
i=1

I(�i < t � �i+1)hi exp(�
0
iz);

where f�i; i � 1g = f(�i1; : : : ; �ip)
0; i � 1g is a p-dimensional process describing the e�ect

of the covariate vector z. The prior distribution of the (�i; hi) is the same as in Section 2.1.

A complete prior speci�cation of h(tjz) is then achieved by assuming that, conditional

on the �rst m � 1 jump times �2; : : : ; �m in the interval (0; �max), and independently of

h1; : : : ; hm, the p covariate e�ects (�1k; �2k; : : : ; �mk); k = 1; 2; : : : ; p, are independent

and for each k, (�1k ; �2k; : : : ; �mk) is a Gaussian Markov random �eld, speci�ed by its

local characteristics. The expressions of the in
uences ri; si and conditional variances �2i
we used to model the hazard function in Section 2.1 are adopted for each covariate e�ect.

The resulting trend, nearest neighbor interaction, and precision of the prior information

hyperparameters are denoted by (�ik), ck, and �2k , respectively.

Simulating sample paths from the resulting posterior distribution is accomplished

by adding p transition kernels to the ones de�ned in the Appendix, corresponding to a

change in height of the covariate e�ects �1(t); �2(t); : : : ; �p(t).

3.2. Simulated data example

The numerical results we present here are based on n = 100 data generated from

model (2) with p = 2. First, we generate the covariates z1; z2 independently from U(0; 1).

Next, we generate a failure time from the conditional hazard function (given z1; z2), where

the true log-baseline hazard function is shown in the �rst plot of Figure 4, and the true

covariate e�ects are shown in Figure 5. The censoring time is again generated from

U(0; �). Seven observations exceeded t = 1:0, and 4 observations were censored in the

interval (0; 1). The hyperparameters we used were � = 6 which corresponds to a prior

mean number of jump times of 6, (�; �; c) = (0:15; 0:4; 0:98) for the log-baseline hazard

function, and (�1; �1; c1) = (�2; �2; c2) = (0:8; 0:25; 0:25) for the two covariate e�ects. In

practice, one can �t the Cox model, and use the maximum likelihood estimates of the

covariate e�ects for the trend parameters �1 and �2. The standard error estimates of

the covariate e�ects can be used for the hyperparameters �1; �2.
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Figure 4. Bayes estimates of the log-baseline hazard function and number of jump

times.

The proposed estimate of the posterior mean log-baseline hazard function shown in

the �rst plot of Figure 4 follows the pattern of the true log-baseline hazard function

much better for t � 0:6. The pointwise quantile curves are much wider due the increased

number of parameters in the model. The second plot of Figure 4 shows the histogram of

the posterior number of jump times, with a posterior mean below the prior mean. The
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posterior mean covariate e�ect shown in the �rst plot of Figure 5 is centered around the

True covariate e�ect, with a slight tendency to increase for t � 0:6. The posterior mean

covariate e�ect in the second plot of Figure 5 follows the pattern of the True covariate

e�ect remarkably well for t � 0:3.

. . . . ... . . .. ... .... .. . ... .. .. ....... .......... ... .. . . ..... . .... .. .. . . . ... .... . .. ... . . . . . . . . . .

. . .

. . . . ... . . .. ... .... .. . ... .. .. ....... .......... ... .. . . ..... . .... .. .. . . . ... .... . .. ... . . . . . . . . . .

. . .

Time

C
o
v
a
ri
a
te
E
�
ec
t

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

DATA

TRUE COVARIATE EFFECT

POSTERIOR MEAN EFFECT

5% AND 95% POINTWISE QUANTILES

Time

C
o
v
a
ri
a
te
E
�
ec
t

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

DATA

TRUE COVARIATE EFFECT

POSTERIOR MEAN EFFECT

5% AND 95% POINTWISE QUANTILES

Figure 5. Proposed estimates of the posterior mean covariate e�ects.

The predictive hazard and survival functions of an individual with covariate vector

z = (z1; z2) are h(tjdata; z) = E�fh(tjz)jdatag, and S(tjdata; z) = E�fS(tjz)jdatag,
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respectively. Using the sample paths for the log-baseline hazard function �i(t), and the

two covariate e�ects �i1(t); �
i
2(t) obtained from our MCMC sample, the predictive hazard

function is approximated by

1

N

NX
i=1

exp
�
�i(t) + �i1(t)z1 + �i2(t)z2

	
;

and the predictive survival function by

1

N

NX
i=1

exp

�
�

Z t

0

exp(�i(u) + �i1(u)z1 + �i2(u)z2)du

�
:

In Figure 6, we compared the predictive hazard and survival curves (dotted lines) for

an individual with given covariates z1 = 0:5; z2 = 0:25 to the true conditional hazard

and survival functions (solid lines). The predictive survival function is very close to the

true conditional survival function.
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Figure 6. Predictive survival and hazard curves.
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McKeague and Tighiouart [12] �tted the model in Section 3 to analyze nasopharynx

cancer survival data. They showed the advantage and 
exibility of this model over the

one used by West [20].

4. Concluding Remarks

We used a simple, yet rich class of prior processes to model the common hazard

function for right-censored survival data. This class of prior distributions is more 
exible

than those of earlier approaches; it extends the model proposed by Arjas and Gasbara [1]

by including covariate e�ects, and is more general than the approach considered by

Gamerman [8] in the sense that (1) inference is not conditional on the jump times,

and (2) Bayes estimates are not step functions. Moreover, an IHR or DHR (decreasing

hazard rate) or a bath-tub shape assumption on the trend of the hazard rate levels can

be easily implemented in our model through the trend parameters �1; �2; : : : . Another

advantage of our approach is the computational method we used to extract features of

the posterior distribution of the hazard function. It is based on the Metropolis{Hastings{

Green algorithm, and is easily extended to models incorporating time-varying covariate

e�ects, whereas it is not clear how the dynamic version of the Gibbs sampler used by

Arjas and Gasbara can be used to accommodate for covariate e�ects.

APPENDIX. Metropolis{Hastings{Green Algorithm

The procedure for calculating features of the posterior distribution of (�m; �m) (note

that here m is random) consists of running a reversible Markov chain on the state space

S = [i�1Si, where Si = Di � IRi, and Di = f(x1; x2; : : : ; xi) : 0 = x1 < x2 < : : : < xi <

�maxg , using the Metropolis{Hastings{Green algorithm. Suppose that the current state

of the chain is (�m; �m) 2 Sm, and denote by (�
0
m0
; �0m0

) 2 Sm0 the next state of the chain.

Whenm0 = m, the update can be done using the classical Metropolis{Hastings algorithm,

otherwise some adjustments in the transition kernels are needed when transitions are

made between subspaces of di�erent dimension. Green (1995) generalized the classical

Metropolis{Hastings algorithm by preserving reversibility of the Markov chain when

moving between subspaces of di�erent dimension. To simplify the description of the

algorithm, let x = (�m; �m) and denote by � the posterior distribution of the parameter.

We will consider three transition kernels Pi(x;A); i = 1; 2; 3, with corresponding state-

dependent mixing probabilities pi(x); satisfying
P3

i=1 pi(x) = 1. Denote Qi(x;A) =

pi(x)Pi(x;A). We also need three symmetric measures �i(dx; dx
0); such that �i dominates

�(dx)Qi(x; dx
0) for each i. Finally, let

fi(x; x
0) =

�(dx)Qi(x; dx
0)

�i(dx; dx0)
:

The Metropolis{Hastings{Green algorithm updates the current state x of the Markov

chain as follows:
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1. Select a proposal kernel Pi with probability pi(x);

2. Generate x0 from Pi(x; �);

3. Accept x0 with probability minf1; fi(x
0;x)

fi(x;x0)
g, otherwise stay at x.

It can be shown that the resulting MHG transition kernel is reversible with respect

to �, see Green (1995). In the context of our problem, transition from (�m; �m) to a

new point (� 0m0
; �0m0

) is accomplished by randomly selecting one of three types of moves

(H,B,D): a change of height of a randomly selected level of the hazard rate, birth of a

new jump time at a randomly selected location in (0; �max), and death of a randomly

selected jump time, respectively. Denote by pmH ; p
m
B , and p

m
D the probabilities of selecting

the three di�erent types of moves H, B, and D when the current state of the Markov

chain is (�m; �m). Note that N(�max) = #fi : �i < �maxg has a Poisson distribution with

parameter ��max. The choice of the state-dependent mixing probabilities will be similar

to the ones chosen by Green (1995). We take pmB = 
minf1; P (N(�max)=m+1)

P (N(�max)=m)
g; pmD =


minf1; P (N(�max)=m�1)

P (N(�max)=m)
g, with pmB + pmD = � where � is a sampler parameter, and 
 is

completely determined by �. Finally, we set p1D = 0. When selecting a move of type H,

the acceptance probability is the same as in the classical Metropolis{Hastings algorithm:

minf1; (likelihood ratio)� (prior ratio) � (proposal ratio)g;

whereas if moves of type B or D are selected, the current state (�m; �m) is mapped onto

(� 0m0
; �0m0

) by a one-to-one transformation � . The acceptance probability then takes the

form

minf1; (likelihood ratio)� (prior ratio)� (proposal ratio) �J(�)g,

where J(�) is the Jacobian of the transformation � . A detailed description of the various

transitions and expressions for the acceptance probabilities is given below.

Move of type H. An index k is uniformly selected from f1; 2; : : : ;mg and V is generated

uniformly in the interval (��; �), where � is a sampler parameter. The proposed new

level for the log-hazard function is �0k = �k + V . The proposed new point is (� 0m; �
0
m)

with � 0m = �m and �0i = �i for i 6= k.

The likelihood ratio is

exp

�
Nk(�

0
k � �k) + (e�k � e�

0

k)

Z �k+1

�k

Y (s) ds

�
:

The prior ratio is

expf��H(A; �; �m; �
0
m)=2g;

where

�H(A; �; �m; �
0
m) = akk(�

0
k � �k)(�k + �0k � 2�) + 2akk�1(�k�1 � �)(�0k � �k)

+2akk+1(�k+1 � �)(�0k � �k):

The proposal ratio is 1 by symmetry of the proposal density.
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Move of type B. A new jump time �? is drawn uniformly in the interval (�1; �max). Sup-

pose that �? 2 (�k�1; �k). This new jump time induces two new levels �0k�1 and �0k for

the log-hazard rate constructed using the following transformation ��;V : �rst, draw V

uniformly in the interval (��; �), where � is a sampler parameter, then the new log-hazard

levels �0k�1 and �0k are taken to be convex combinations of the perturbations �k�1 + V

and �k+1 � V with �k�2 and �k, respectively. More speci�cally, we let

�0k�1 =
�0k�1
�k�1

�k�2 +
�0k
�k�1

(�k�1 + V );

�0k =
�0k�1
�k�1

(�k�1 � V ) +
�0k
�k�1

�k :

The proposed new point is (� 0m0
; �0m0

), with � 0i = �i for i � k � 1, � 0k = �?, � 0j = �j�1,

�0j = �j�1 for j � k + 1, and �0i = �i for i � k � 2.

The likelihood ratio is

exp

(
N 0
k�1�

0
k�1 +N 0

k�
0
k �Nk�1�k�1 + e�k�1

Z �k

�k�1

Y (s) ds

�e�
0

k�1

Z � 0k

�k�1

Y (s) ds� e�
0

k

Z �k

� 0
k

Y (s) ds

)
:

The prior ratio is

� (2�)�1=2
�
jA0j

jAj

�1=2
exp(�B(A;A

0; �; �m; �
0
m0)=2);

where �B(A;A
0; �; �m; �

0
m0
) is given by

(�k�2 � �)2(ak�2k�2 � a0k�2k�2) + (�k � �)2(akk � a0kk)

+ak�1k�1(�k�1 � �)2 � a0k�1k�1(�
0
k�1 � �)2 � a0k+1k+1(�k � �)2

�2(�k�2 � �)[a0k�2k�1(�
0
k�1 � �)� ak�2k�1(�k�1 � �)]

�2(�k � �)[a0kk+1(�
0
k � �)� ak�1k(�k�1 � �)]

�2a0k�1k(�
0
k�1 � �)(�0k � �):

The proposal ratio for this type of move takes the simple form 2�=�.

The Jacobian of the transformation ��;V is 2 ��0k�
0
k�1=�

2
k�1:

Move of type D. An index k is uniformly selected from f2; 3; : : : ;mg corresponding to

the removal of the jump time �k. The proposed new point is (� 0m0
; �0m0

), with �0i = �i for

i � k� 2, �0j = �j+1; �
0
j = �j+1 for j � k, and � 0i = �i for i � k� 1. The likelihood, prior,

proposal ratios, and the Jacobian for this type of move are the inverse ratios of the ones

for the move of type B with the proper labelling of the jump times and the log-hazard

levels.
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The above type of moves imply that the corresponding Markov chain is �-irreducible.

Denote by �i(t); i = 1; : : : ; N the sample paths generated by a run of length N of the

MHG sampler. Then for any real valued function H : S ! R integrable with respect to

�, we have almost surely

lim
N!1

1

N

NX
i=1

H(�i(t)) =

Z
S

H((�; �))d�((�; �)jdata);

see Meyn and Tweedie [13, Ch. 17]. In particular, the posterior mean hazard function

E�(h(t)jdata) is approximated by

1

N

NX
i=1

exp(�i(t));

and the predictive survival function P�(T > tjdata) by

1

N

NX
i=1

expf�

Z t

0

exp(�i(u))dug:
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