
TAMKANG JOURNAL OF MATHEMATICS
Volume 51, Number 3, 245-259, September 2020
doi:10.5556/j.tkjm.51.2020.2985

-
+

+

-

-
-

-
-

BRÜCK CONJECTURE AND CERTAIN SOLUTION OF

SOME DIFFERENTIAL EQUATION

MOLLA BASIR AHAMED AND SANTOSH LINKHA

Abstract. We investigate on the famous Brück conjecture, and improved some of the ex-
isting results by extending them up to a differential monomial M[ f ] sharing small func-

tion with certain power f dM of a meromorphic function. The class of all meromorphic
solutions of the differential equation f dM ≡ M[ f ] has been explored. For the generaliza-

tion of our main result, some relevant questions finally have been posed for further study

in this direction.

1. Introduction, definitions and main results

In this paper, by a meromorphic function f , we mean a meromorphic function in the

whole complex plane. Let f and g be two non-constant meromorphic functions defined in

the open complex plane C. For a ∈ C∪ {∞}, we say that the meromorphic functions f and g

share the value a C M if f −a and g −a have the same set of zeros with counting multiplicities,

and we say that f and g share the value a I M if f −a and g −a have the same set of zeros with

ignoring multiplicities.

For the standard notations and symbols, we would like to refer our reader to follow the

monograph [9]. We need the following in the paper.

Definition 1.1. For a meromorphic function f and for a ∈C∪ {∞}, and for a positive inte-

ger k

(i) N(k (r, a; f )(N (k (r, a; f )) denotes the counting function (resp. reduced counting function)

of those a−points of f whose multiplicities are not less than k ;

(ii) Nk)(r, a; f )(N k)(r, a; f )) denotes the counting function (resp. reduced counting function)

of those a−points of f whose multiplicities are not greater than k ;

(iii) Nk (r, a; f ) denotes the sum N (r, a; f )+
k
∑

j=2

N ( j (r, a; f ).
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It is clear that Nk (r, a; f ) ≤ k N(r, a; f ).

Definition 1.2 ([4, 5]). A function a ≡ a(z)(6≡ 0,∞) is called a small function of a meromorphic

function f if T (r, a)= S(r, f ).

In 1926, Nevanlinna first showed that a non-constant meromorphic function on the com-

plex plane C is uniqueness determined by the pre-images, ignoring multiplicities, of five dis-

tinct values (including infinity). The beauty of this result lies in the fact that there is no coun-

terpart of it in the real function theory. A few years latter, he showed that when multiplicities

are taken into consideration, four points are enough and in that case either the two functions

coincides or one is a bilinear transformation of the other one. Clearly these results initiated

the study of the relation between two non-constant meromorphic functions f and g . The

study becomes more interesting if the function g is related with the function f .

It was Brück [7], who first proved the following result by investigating the uniqueness

problems of an entire function sharing a value counting multiplicities with its first derivative.

Theorem A ([7]). Let f be a non-constant entire function. If f and f ′ share the value 1 C M,

and N (r,0; f ′) = S(r, f ), then f −1 = c( f ′−1), where c is a non-zero constant.

Later, Yang [13] proved the following result for finite ordered entire function by consider-

ing general k-th derivative instead of the first derivative.

Theorem B ([13]). Let f be a non-constant entire function of finite order, and let a(6= 0,∞) be

a constant. If f and f (k) share the value a C M, then f −a = a
(

f (k) −a
)

, where c is a non-zero

constant, and k(≥ 1) is an integer.

Regarding the non-integral hyper order, Brück [7] proposed the following famous conjec-

ture which is known as Brück Conjecture, which inspired a number of people to work on the

topic.

Brück Conjecture. Let f be a non-constant entire function of finite non-integral hyper order.

If f and f ′ share one finite value a C M, then f ′−a = c( f −a) for some constant c(6= 0).

There are several results on the Brück Conjecture in the literature and many researchers

are devoted to solve the conjecture and they put their valuable efforts to find different as-

pects of it by considering the general k−th derivative of an entire or meromorphic function

f , or some polynomials expressions in f and its k−th derivative or sometimes a differential

monomial or polynomials generated by f but till now the original conjecture is open.

We recall here the definition of differential monomials and polynomials.
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Definition 1.3 ([4]). Let n0 j ,n1 j , . . . ,nk j be non-negative integers.

• The expression M j [ f ] = f n0 j
(

f ′
)n1 j . . .

(

f (k)
)nk j is called a differential monomial generated

by f of degree dM j
=

∑k
i=0 ni j and weight ΓM j

=
∑k

i=0(i +1)ni j .

• The sum P [ f ] =
∑t

j=1 b j M j [ f ] is called a differential polynomial generated by f of degree

d (P ) = max{dM j
: 1 ≤ j ≤ t } and weight ΓP = max{ΓM j

: 1 ≤ j ≤ t }, where b j ≡ b j (z) are

small functions of f for j = 1,2, . . . , t .

• The number d (P ) = min{dM j
: 1 ≤ j ≤ t } and k the highest order of the derivative of f in

P [ f ] are called respectively the lower of degree and order of P [ f ].

• P [ f ] is said to be homogeneous if d (P ) = d (P ).

• P [ f ] is called a linear differential polynomial generated by d (P ) = 1. Otherwise P [ f ] is

called non-linear differential polynomial. We denote by Q = max{ΓM j
−dM j

: 1 ≤ j ≤ t } =

max{n1 j +2n2 j + . . .+knk j : 1 ≤ j ≤ t }.

Considering differential polynomial, Qiu [12] extended Theorem A up to a linear differ-

ential polynomial.

In this direction, Al-Khaladi [2] in his investigation first observed that in the Theorem A,

one simply can not replace the value 1 by a small function.

Example 1.1. Let f (z) = 1+ eez

, and a(z) =
ez

ez −1
. Then a is a small function of f , and f −a

and f ′−a share the value 0 C M , and N
(

r,0; f ′
)

= 0. Also we see that f −a =
1

ez ( f ′−a).

Considering the sharing of small functions, Al-Khaladi [3] proved the following result.

Theorem C ([3]). Let f be a non-constant entire function satisfying N
(

r,0; f ′
)

= S(r, f ) and

a(6≡ 0,∞) be a small function of f . If f − a and f ′ − a share the value 0 C M, then f − a =
(

1+
c

a

)

( f ′
−a), where 1+

c

a
= eβ, c is a constant and β is an entire function.

For higher order derivative, Al-khaladi [3] proved the following result.

Theorem D ([3]). Let f be a non-constant entire function satisfying N
(

r,0; f (k)
)

= S(r, f ), k(>

1) be an integer, and let a(6≡ 0,∞) be a meromorphic small function of f . If f − a and f (k) −

a share the value 0 C M, then f − a =

(

1+
Pk−1

a

)

(

f (k) −a
)

, where Pk−1(z) is a polynomial of

degree at most k −1 and 1+
Pk−1

a
6≡ 0.

In 2011, Al-Khaladi [3] extended Theorem A to the class of meromorphic functions and

obtained the following result.

Theorem E ([3]). Let f be a non-constant meromorphic function satisfying the condition N (r,0; f ′)=

S(r, f ). If f and f ′ share the value 1 C M, then f −1 = c( f ′−1) for some non-zero constant.
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Also in [3], were considered the following examples, showing that the value sharing can

not be relaxed from C M to I M , and the condition N (r,0; f ′) = S(r, f ) is essential.

Example 1.2. Let f (z) = 1+tan z. Then clearly f ′−1 = ( f −1)2. We also see that N (r,0; f ′) = 0.

Clearly f and f ′ share the value 1 I M but the conclusion of Theorem E does not hold.

Example 1.3. Let f (z) =
z

1+e−z
. Then f and f ′ share the value 1 C M and N (r,0; f ′) 6= S(r, f ).

It is easy to verify that f ′−1 =
1

1+ez
( f −1).

Thus in order to replace value 1 by a small function some extra conditions are required.

We refer our reader for the more details to see ([1, 5, 6])

Chen - Wu [8] extended the result of Al-Khaladi up to a linear differential polynomial, and

obtained the following result.

Theorem F ([8]). Let f be a noon-constant entire function satisfying N
(

r,0; f ′
)

= S(r, f ), a(6≡

0,∞) be a small function of f and L ≡ L ( f ) =
k
∑

j=1

a j f ( j ), where k ∈ N, and a1, a2, . . . , ak (6≡ 0)

are small entire functions of f . If f − a and L − a share 0 C M, then f − a =

(

1+
c

a

)

(L − a),

where 1+
c

a
= eβ, c is a constant and β is an entire function.

We now define

L

(

f (k)
)

= a0 f (k)
+a1 f (k+1)

+ . . .+ap f (k+p),

where a0, a1, . . . , ap (6= 0) are constants, and k(≥ 1) and p(≥ 0) are integers such that p = 0 if

k = 1 and 0 ≤ p ≤ k −2 if k ≥ 2.

Recently Lahiri - Pal [11] considered the problem of sharing small function of a mero-

morphic function and its linear differential polynomial, and obtained the following result.

Theorem G ([11]). Let f be a transcendental meromorphic function be such that f − a and

L ( f (k))− a share the value 0 C M, where a(6≡ 0,∞) is a small function of f . If N
(

r,0; f (k)
)

=

S(r, f ), then

f −a =

(

1+
Pk−1

a

)

(

L ( f (k))−a
)

,

where Pk−1 is a polynomial of degree k −1 and 1+
Pk−1

a
6≡ 0.

The following example shows that the condition N
(

r,0; f (k)
)

= S(r, f ) is essential in The-

orem G.



BRÜCK CONJECTURE 249

Example 1.4. Let f (z) =
P(z)ez

1+ez
, where P(z) is a non-constant polynomial. Then

f ′ =
ez

(

P +P ′+P ′ez
)

(1+ez )2
, and hence N

(

r,0; f ′
)

6= S(r, f ). Also , f −P ′ and f ′−P ′ share 0 C M but

f ′
−P ′

=
1

ez +1

(

f −P ′
)

.

So we see that the Brück result and the research thereafter has a long history. Several

special forms on the Brück conjecture such as value sharing, small functions sharing, linear

differential polynomial etc. were meticulously investigated by many authors. But to the best

of my knowledge, no attempts have so far been mad by any research on the problem what

would happen if one considers certain power of a meromorphic function and its differential

monomial sharing small function ?

From the above discussions, we see that the authors have been obtained some relation

between a meromorphic functions and its k-th derivative or linear differential polynomial

but no one find the general meromorphic solution of the relation. In the modern uniqueness

theory of meromorphic function, finding the class of meromorphic functions which are the

solution of some differential equation is interesting and seldom studied.

Regarding the specific form of the function f which is a solution of a differential equation

f (k) = f , we have the following observations.

Note 1.1. Let us suppose that f ≡ f (k). Clearly the function f can not have any pole. Also we

see that no non-constant polynomial satisfies the relation, so it is very natural that the func-

tion f must be transcendental entire. So the general solution of f ≡ f (k) will be as follows:

(1) In the case when N (r,0; f ) 6= S(r, f ).

f (z) = d0 exp(z)+d1 exp(ζz)+d2 exp(ζ2z)+ . . .+dk−1 exp(ζk−1z),

(2) In the case when N (r,0; f ) = S(r, f ), we have

f (z) = d exp(ζz),

where ζ= cos

(

2π

k

)

+ i sin

(

2π

k

)

and d (6= 0), d
i−1 ∈C, not all zero, for i ∈ {1,2, . . . ,k}.

Observing Note 1.1, one may ask the natural question as follows:

Question 1.1. Is it possible to extend f (k) up to a general differential monomial M [ f ] to get a

certain form of the function which satisfies the relation f ≡ M [ f ]?

From the next discussions, we will see that the answer of Question 1.1 is not true in gen-

eral. Suppose M [ f ] = f (k) f (s) or
(

f (k)
)nk

(

f (s)
)ns , where k , s and nk , ns all are positive integers
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with k > s. It can be easily check that the form of the function in Note 1.1 does not satisfy the

relation f ≡ M [ f ].

As our main aim is to extend f (k) up to a general differential monomial M [ f ] and at the

same time to find a non-constant meromorphic solution of the relation f ≡ M [ f ], so it is

important to note that we need some power in the first setting of the relation. If we does so,

then the natural question arises: ‘ does it really help us to get the relation of the form f q ≡ M [ f ]

for the function in Note 1.1 ?’ The answer of this question is NO in general. One can see the

fact in the following.

(i). Suppose that f (z) = d1 exp(z)+d2 exp(−z) and M [ f ] =
(

f (k)
)nk

(

f (s)
)ns , where q = nk+ns ,

k and s are two even positive integers. In this case, we see that f p ≡ M [ f ].

(ii) But, if we suppose f (z) = d1 exp(z)+d2 exp(−z) and M [ f ] =
(

f (k)
)nk

(

f (s)
)ns , where one

of k and r is even and other is odd positive integer. Then clearly we have f q 6≡ M [ f ] for

all positive integer q .

Thus, we have the following observation regarding the precise solution.

Note 1.2. For a more general setting f dM ≡ M [ f ], where

M [ f ] =
(

f
)n0

(

f ′
)n1

(

f ′′
)n2 . . .

(

f (k)
)nk

, (1.1)

we see that f (z) = d exp(λz), λQM = 1, must be a solution of it, where QM = ΓM −dM , ΓM =
k
∑

i=0

(i +1)ni and dM =

k
∑

i=0

ni .

In this present paper, we consider the problem of sharing a small function a(z) by certain

power f dM of a meromorphic function and its differential monomial M [ f ] in conformity with

Brück Conjecture. Following theorems are the main results of this paper.

Theorem 1.1. Let f be meromorphic function with N
(

r,0; f ′
)

+N (r,∞; f ) = S(r, f ). Suppose

that M [ f ], as defined by (1.1), is a non-constant and k(≥ 2) is a positive integer. Let a ≡ a(z)(6=

0,∞) be a small function of f such that N (r,∞; a) ≤ λT (r, a)+ S(r, a), where 0 < λ < 1−
1
ΓM

.

If f dM − a and M [ f ]− a share 0 C M, then f dM ≡ M [ f ]. Furthermore f (z) assumes the form

f (z) = ceµz , where c(6= 0) a constant and µQM = 1.

Theorem 1.2. Let f be meromorphic function with N
(

r,0; f (2)
)

+N (2(r,∞; f ) = S(r, f ). Suppose

that M [ f ], as defined by (1.1), is a non-constant, where n1 = 0 and k(≥ 2) is a positive integer.

Let a ≡ a(z)(6= 0,∞) be a small function of f such that N (r,∞; a) ≤ λT (r, a)+ S(r, a), where

0 < λ < 1−
1
ΓM

. If f dM − a and M [ f ]− a share 0 C M, then f dM − a ≡ c(M [ f ]− a), where c is a

non-zero constant.

We have the following corollary of Theorem 1.1.
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Corollary 1.1. Let f be meromorphic function with N
(

r,0; f ′
)

+N (r,∞; f ) = S(r, f ). Suppose

that f (k) is non-constant and k(≥ 2) is a positive integer. Let a ≡ a(z)(6= 0,∞) be a small func-

tion of f such that N (r,∞; a)≤λT (r, a)+S(r, a) , where 0 <λ< 1− 1
k . If f −a and f (k)−a share

0 C M, then f ≡ f (k). Furthermore f (z) assumes the form f (z) = ceµz, where c(6= 0) a constant

and µk = 1.

2. Some useful lemmas

In this section, we present some lemmas which will be needed in sequel.

Lemma 2.1 ([3]). Let k(≥ 2) be a positive integer, and f be a non-constant meromorphic func-

tion. If N
(

r,0; f (k)
)

+N (2(r,∞; f ) = S(r, f ), then either N1)(r,∞; f ) = S(r, f ) or f (z)= −(k+1)k+1

k !c{z+d(k+1)}

+Pk−1(z)), where c(6= 0), d are constants and pk−1(z) is a polynomial of degree at most k −1.

Lemma 2.2. Let f be a non-constant meromorphic function, and k(≥ 2) be a positive integer.

Suppose that a(6≡ 0,∞) is a small function of f , and M [ f ], as defined in Theorem 1.2, is non-

constant. If N
(

r,0;
(

f dM
)(2)

)

+ N (2(r,∞; f ) = S(r, f ) and f dM − a, M [ f ]− a share 0 C M, then

N (r,∞; f ) = S(r, f ).

Proof. If f dM =
−27

2c(z+3d) + q1(z), then a(z) becomes constant. Therefore, clearly f dM − a and

M [ f ]−a can not share 0 C M . So from Lemma 2.1, we get N (r,∞; f )= S(r, f ). ���

Lemma 2.3. Let f be a meromorphic function and M [ f ] be a differential monomial generated

by f , then

T
(

r, M [ f ]
)

≤

k
∑

j=0

n j ( j +1)T (r, f )+O(1) (2.1)

and hence S(r, M [ f ]) can be replaced by S(r, f ).

Proof. We know for a meromorphic function f , f1 and f2, T
(

r,0; f ( j )
)

≤ ( j +1) T (r, f )+S(r. f )

and T (r, f1 f2) ≤ T (r, f1)+T (r, f2). Thus we see that

T
(

r, M [ f ]
)

= T

(

r,
k

∏

j=0

(

f ( j )
)n j

)

≤

k
∑

j=0

T
(

r,
(

f ( j )
)n j

)

+O(1)

≤

k
∑

j=0

n j T
(

r,
(

f ( j )
))

+O(1)

≤

k
∑

j=0

n j ( j +1) T
(

r,
(

f
))

+O(1)

and hence S(r, M [ f ]) can be replaced by S(r, f ). ���
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Lemma 2.4 ([9]). Let g be a non-constant meromorphic function, and a1, a2, a3 be distinct

meromorphic function small functions of g . Then

T (r, g ) ≤
3

∑

i=1

N (r,0; g −a j )+S(r, g ).

Lemma 2.5 ([10]). Given a transcendental meromorphic function g , and a constant Γ > 1.

Then there exists a set S (Γ) whose upper logarithmic density is at most

δ(Γ) = min
{

(

2eΓ−1)−1
, (1+e(Γ−1))exp(e(1−Γ))

}

such that for every positive integer k,

limsup
r→∞,r∈S (Γ)

T (r, g )

T
(

r, g (k)
) ≤ 3eΓ.

3. Proof of the main result

We prove here Theorem 1.2 only, as proof of Theorem 1.1 is similar to the proof of Theo-

rem 1.2.

Proof of Theorem 1.2. If f is not a transcendental, since by Lemma 2.2, we have N (r,∞; f ) =

S(r, f ), then f must a polynomial. Let deg( f ) = n. Thus we see that M [ f ] would be a poly-

nomial. If deg( f ) ≥
[

ΓM

dM

]

+ 1, then deg(M [ f ]) = dM deg( f )− ΓM . If deg( f ) ≤
[

ΓM

dM

]

, then

deg(M [ f ]) = 0, which is impossible as M [ f ] is non-constant. Since in this case a is a con-

stant, we see that f dM −a and M [ f ]−a can not share the value 0 C M , which contradicts our

assumption. Thus the function f must be a transcendental meromorphic function.

We set h =
f dM −a

M [ f ]−a
. Let if possible f has a pole at z0 of order q . Then, an elementary

calculation shows that z0 is a zero of h of multiplicity ΓM . Again it is clear that h is an entire

function. Then by the hypothesis and Lemma 2.2, we have

N (r,0;h)≤ N (r,∞; f ) = S(r, f ). (3.1)

Differentiating f dM −a = hM [ f ]−ha twice we get that

(

f dM

)(2)
−a(2)

=
(

hM [ f ]
)(2)

− (ha)(2) . (3.2)

Case 1. We suppose that a(2) 6≡ 0. We set

W =

(

hM [ f ]
)(2)

h
(

f dm
)(2)

−
(ha)(2)

ha(2)
. (3.3)
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Subcase 1.1. Suppose that W 6≡ 0.

Let z1 be a zero of
(

f dM
)(2)

−a(2) and a(2) 6≡ 0,∞. Then from (3.2), we see that z1 be a zero

of
(

hM [ f ]
)(2)

− (ha)(2), and hence W (z1) = 0.

Therefore, we see that

m(r,W ) ≤ m

(

r,

(

hM [ f ]
)(2)

h
(

f dm
)(2)

)

+m

(

r,
(ha)(2)

ha(2)

)

≤ m

(

r,

(

hM [ f ]
)(2)

hM [ f ]

)

+m

(

r,
M [ f ]

(

f dM
)(2)

)

+m

(

r,
(ha)(2)

ha

)

+m

(

r,
a

a(2)

)

= S(r, f ).

Therefore

N

(

r,0;
(

f dM

)(k)
−a(k)

)

≤ N (r,0;W )+S(r, f )

≤ T (r,W )+S(r,W )

= N (r,W )+m(r,W )+S(r,W )

= N (r,W )+S(r, f ). (3.4)

Let z2 is a zero of f of multiplicity p , such that a(z2) 6= 0,∞ and a(2)(z2) 6= 0. Then z2 is

a pole of h of multiplicity ΓM . Hence z2 is a pole of
(

hM [ f ]
)(2)

with multiplicity (pdM +ΓM −

ΓM )+2 = pdM +2. Also, z2 is a pole of

(

hM [ f ]
)(2)

h
(

f dM
) of multiplicity (pdM +2)− (pdM +2−2) =

2 ≤ k . Then z2 is a pole of W with multiplicity at most k . Let z3 be a zero of
(

f dM
)(2)

such that

a(z3) 6= 0,∞, a(2)(z2) 6= 0. If q > ΓM , then z3 be a zero of hM f with multiplicity q −ΓM +2, so

z3 is a zero of
(

hM [ f ]
)(2)

with multiplicity (q −ΓM +2)−2 = q −ΓM . Hence z3 be a zero of W

with multiplicity at most q − (q −ΓM )= ΓM .

We have

N (r,W ) ≤ ΓM N (r,∞; f )+NΓM

(

r,0;
(

f dM

)(2)
)

+N

(

r,0;
(

f dM

)(2)
)

+S(r, f )

= S(r, f ). (3.5)

By (3.4) and (3.5), we get N
(

r,0;
(

f dM
)(2)

−a(2)
)

= S(r, f ) and

T

(

r,
(

f dM

)(2)
)

≤ N

(

r,∞;
(

f dM

)(2)
)

+N

(

r,0;
(

f dM

)(2)
)

+N

(

r,0;
(

f dM

)(2)
−a(k)

)

+S
(

r, f (2))

= S(r, f ). (3.6)

Let S (Γ) be defined as in Lemma 2.5. Then by (3.6), there exists a sequence rn → ∞,

rn 6∈ S (Γ) such that
T

(

rn

(

f dM
)(2)

)

T (rn , f )
→ 0 as n →∞. This contradicts the Lemma 2.5. Thus we
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have W ≡ 0, and so from the equations (3.2) and (3.3), we get

(

(

f dM

)(2)
−a(2)

)

a(2)
= (ha)(2)

(

(

f dM

)(2)
−a(2)

)

.

Since
(

f dM
)(2)

6= a(2), we obtained that (ha)(2)
= a(2). On integration, we obtained that ha =

a +d1z +d0, d1,d0 ∈C and so h = 1+
d1z +d0

a
.

We again note that h is an entire and the zeros of h are precisely the poles of f . Also

we note that zeros of h is of multiplicity ΓM . Let d1 6= 0. Then, we have T (r,h) = T (r.a)+

O(log r ). Also N (r,1;h)= N (r,∞; a)+O(logr ) and N (r,0;h) = 1
ΓM

N (r,0;h). Thus by the Second

Fundamental Theorem, we have

T (r,h) ≤ N (r,1;h)+N (r,0;h)+N (r,∞;h)+S(r,h)

= N (r,∞; a)+
1

ΓM
N (r,0;h)+O(log r )+S(r,h)

≤ λT (r, a)+
1

ΓM
T (r,h)+O(log r )+S(r,h)

=

(

λ+
1

ΓM

)

T (r,h)+O(logr )+S(r,h),

and so we get by our assumption that T (r,h) = O(log r )+S(r,h). This implies that h −1 is a

polynomial, say P(z).

If P(z) ≡ 0, then h ≡ 1, and we get the result. We suppose that P(z) 6≡ 0. Then h = 1+

d1z +d0

a
implies that a =

d1z +d0

P(z)
.

We suppose that d1z+d0 is a factor of P(z). Then a =
1

Q(z)
, where P(z) = (d1z+d0)Q(z).

This implies that T (r, a)= (deg(Q) log r +O(1)= N (r,∞; a)+O(1), a contradiction. So d1z+d0

is not a factor of P(z). Then T (r, a)=max{deg(P),1} log r +O(1) and N (r,∞; a)=(deg(P)) log r

+O(1). Therefore by the hypothesis, we obtained that deg(P) ≤λmax{deg(P),1}. This implies

that deg(P) = 0, and so a =
d1z +d0

d
, where d (6= 0) a constant.

Let d1 = 0. Then h =
a +d0

a
. Since h is entire and each zero of h is of multiplicity ΓM ,

we have N (r,0; a) = 0 and N (r,0; a +d0) ≤
1

ΓM
N (r,0; a +d0). Therefore if d0 6= 0, we get by the

Second Fundamental Theorem,

T (r, a) = N (r,∞; a)+N (r,0; a)+N (r,0; a +d0)+S(r, f )

≤

(

λ+
1

ΓM

)

T (r, a)+S(r, a),

which contradicts 0 <λ< 1−
1

ΓM
. So d0 = 0 and hence h = 1.
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Case 2. Let a(2) ≡ 0. Then a(z) = a1z +a0, where a0, a1 ∈C. Then from (3.2), we see that

(

f dM

)(2)
=

(

hM [ f ]
)(2)

− (ah)(2).

i.e.,

1

h
=

(

hM [ f ]
)(2)

h
(

f dM
)(2)

−
(ah)(2)

h
(

f dM
)(2)

. (3.7)

We set F =
(

f dM
)(2)

, G =

(

hM [ f ]
)(2)

h
(

f dM
)(2)

and b =
(ah)(2)

h
. Therefore, from (3.7), we have

1

h
=

G −
b

F
. On differentiating, we have

−
1

h

h′

h
=G

′
−

b′

F
+

b

F
.
F

′

F
. (3.8)

From (3.7) and (3.8), we have
A

F
=G

′
+G

h′

h
, (3.9)

where A = b
h′

h
+b′

−b
F

′

F
.

We now discuss the following cases.

Subcase 2.1. Let G ≡ 0. i.e.,
(

hM [ f ]
)(2)

= 0. On integration, we get hM [ f ] = b1z+b0, b0,b1 ∈C.

Putting h =
f dM −a

M [ f ]−a
, we get

(

f dM −a
)

M [ f ] = (M [ f ]−a)(b1z +b0). (3.10)

Since a is a polynomial, so from (3.10), we see that f is an entire function. Therefore, h is an

entire function having no zero. We set h = ceα, where c 6= 0, α is an entire function.

Thus we see that f dM = a + (b1z + b0)− aceα and M [ f ] = c (b1z +b0)e−α. An elemen-

tary calculation shows that M [ f ] =P (α,α′, . . . ,α(k))eα, where P (α,α′, . . . ,α(k)) is a differential

polynomial in α,α′, . . . ,α(k). This shows that

2T
(

r,eα
)

= T
(

r,e2α)

= T

(

r,
c(b1z +b0)

P (α,α′, . . . ,α(k))

)

= S(r, f ),

which is not possible.

Subcase 2.2. Let G 6≡ 0.

Now we have the following two possibilities.
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Subcase 2.2.1. If h is constant, then we get our result.

Subcase 2.2.2. If h is non-constant. Suppose that b = 0 i.e., (ah)(2)
= 0. Then on integration,

we have ah = e1z +e0, where e1,e0 ∈C. i.e., h =
e1z+e0

a
. Since h is entire, and a is a polynomial

of degree 1, thus it is clear that a is a factor of the polynomial e1z +e0, and hence

h =Q1, (3.11)

where Q1 ≡ Q1(z) is a polynomial of degree at most 1. Since each pole of f is a zero of h of

multiplicity ΓM (≥ 2), by (3.11), we see that f must be an entire function. So, h is an entire

function having no zero and which by (3.11) implies that h must be a constant, a contradic-

tion. Thus we have, b ≡ 0.

Subcase 2.2.3. Suppose A ≡ 0.

Then from (3.9), we obtained
G

′

G
+

h′

h
= 0, on integration, we get G h =D such that

(

hM [ f ]
)(2)

≡B

(

f dM

)(2)
, (3.12)

where B is an arbitrary constant of integration. Again since,

A

b
=

h′

h
+

b′

b
−

F
′

F
,

so on integration, we get hb =DF , and so

(ah)(2)
=D

(

f dM

)(2)
, (3.13)

where D is an arbitrary constant of integration.

Since a is a polynomial, h is an entire function, then from (3.13), we see that f is an entire

function and so h = eα, where α≡α(z) is an entire function. Again integrating (3.12) twice we

obtained

hM f =B f dM +P1, (3.14)

where P1 ≡ P1(z) is a polynomial of degree at most 1. Since hM [ f ] = f dM − a + ah, so from

(3.14) we obtained

(1−B) f dM = a(1−eα)+P1. (3.15)

If B = 1, then from (3.15), we get eα = 1+ P1
a , a contradiction. Hence, B 6= 1, and from (3.15)

can be written as

f dM =
aeα

B−1
−

a +P1

B−1
. (3.16)

From the definition of differential monomial M [ f ], we have

M [ f ] =P (α,α′, . . . ,α(k))eα, (3.17)
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where P (α,α′, . . . ,α(k))(6≡) is a differential polynomial in α,α′, . . . ,α(k) with the coefficients as

polynomials.

From (3.15) and (3.17), we have

M [ f ] =
aB

B−1
−

(aB+P1)

B−1
e−α. (3.18)

Again from (3.17) and (3.18), we have

P (α,α′, . . . ,α(k))e2α
=

aBeα

B−1
−

(aB+P1)

B−1
, (3.19)

which implies that

2T
(

r,eα
)

= T
(

r,e2α)

= T

(

r,
aBeα

(B−1)P (α,α′, . . . ,α(k))
−

(aB+P1)

(B−1)P (α,α′ , . . . ,α(k))

)

≤ T

(

r,
eα

P (α,α′, . . . ,α(k))

)

+T

(

r,
aB+P1

P (α,α′, . . . ,α(k))

)

= S(r, f ),

and this is absurd.

Therefore A ≡ 0. Again since A = b

(

h′

h
+

b′

b
−

F
′

F

)

, clearly we have m(r,A ) = S(r, f ).

Also we note that the poles of A are coming from (i) the poles of b =
(ah)(2)

h
, (ii) the poles of

h′

h
and (iii). the poles of

F
′

F
=

(

f dM
)(3)

(

f dM
)(2)

. Since h is an entire function and the zeros of h are

precisely the poles of f , and each zero of h is of multiplicity ΓM , we get by the hypothesis and

Lemma 2.2

N (r,A ) ≤ (ΓM +1) N (r,∞; f )+N

(

r,0;
(

f dM

)(2)
)

+S(r, f )

= S(r, f ).

Therefore, we have T (r,A ) =m(r,A )+N (r,A ) = S(r, f ).

Next by (3.9), we obtained that

m

(

r,
1

F

)

≤ m

(

r,
1

A

)

+m

(

r,G ′
+G

h′

h

)

≤ T (r,A )+m(r,G )+m

(

r,
G

′

G
+

h′

h

)

= m(r,G )+S(r,h)

= m

(

r,

(

hM [ f ]
)(2)

hM [ f ]
.

M [ f ]
(

f dM
)(2)

)

+S(r, f )
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≤ m

(

r,

(

hM [ f ]
)(2)

hM [ f ]

)

+m

(

r,
M [ f ]

(

f dM
)(2)

)

= S(r, f ). (3.20)

In view of (3.1), we get that

T (r, f ) = N (r,b)+S(r, f )

= N

(

r,
(ah)(2)

h

)

+S(r, f )

≤ 2N (r,0;h)+S(r, f )

= S(r,h). (3.21)

Let z4 be a zero of F =
(

f dM
)(2)

such that a(z4) 6= 0. Then z4 will be a zero of
(

hM [ f ]
)(2)

with multiplicity at least q − (ΓM −2)−2 = q −ΓM . So, z4 is a zero of FG =

(

hM [ f ]
)(2)

h
with

multiplicity at least q −ΓM . Hence z4 is a zero of b =FG −
F

h
with multiplicity q −ΓM .

Therefore by (3.21), we get

N(ΓM+1

(

r,0;
(

f dM

)(2)
)

≤ N (r,0;b)+ΓM N (ΓM+1

(

r,0;
(

f dM

)(2)
)

= ΓM

(

r,0;
(

f dM

)(2)
)

.

Hence we have

N

(

r,
1

F

)

= N

(

r,0;
(

f dM

)(2)
)

= NΓM )

(

r,0;
(

f dM

)(2)
)

+ΓM N (ΓM+1

(

r,0;
(

f dM

)(2)
)

+S(r, f )

= ΓM N (ΓM+1

(

r,0;
(

f dM

)(2)
)

+S(r, f )

= S(r, f ). (3.22)

Then from (3.20) and (3.22), and by applying the First Fundamental Theorem, we get

T
(

r,
(

f dM
)(2)

)

= S(r, f ) which is (3.6), and likewise we get a contradiction.

This completes the proof. ���

4. Concluding remarks and open questions

From our previous discussions, we have noticed that solution of the relation f dM ≡ M [ f ]

is of the form f (z) = ceµz , where c(6= 0) a constant and µQM = 1. Now for the generalization of
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our results from differential monomial M [ f ] up to a differential polynomial P [ f ], we under-

stand that only a suitable power (like dM for the case of differential monomial M [ f ]) of the

function f is not enough to get a certain solution. We need some extra supposition for the

solution.

Thus we posed the following questions for the further study in this direction.

Question 4.1. Is it possible to prove the main results of this paper up to a general differential

polynomial P [ f ]?

Question 4.2. What should we set with the function f , so that when that setting shares a

small function with its differential polynomial P [ f ] we get a certain solution of the identical

relation?
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