TAMKANG JOURNAL OF MATHEMATICS Volume 39, Number 4, 303-308, Winter 2008

ON γ -SEMIOPEN SETS

P. SIVAGAMI AND D. SIVARAJ

Abstract. Characterizations of γ -semiopen sets, γ -semiclosed sets, γ -semiclosure and γ -semiinterior are given. Properties of γ -semiopen sets and γ -semiclosed sets are also discussed.

1. Introduction and Preliminaries

In 2005, Güldürdek and Özbakir [3], introduced and studied γ -semiopen sets. In this paper, we further extend the study of γ -semiopen sets. Let *X* be any nonempty set. We denote by Γ , the collection of all mappings $\gamma \colon \wp(X) \to \wp(X)$ such that $A \subset B$ implies $\gamma(A) \subset \gamma(B)$. As defined in [1], we mention here the following subcollections of Γ .

$$\begin{split} &\Gamma_0 = \{\gamma \in \Gamma \mid \gamma(\emptyset) = \emptyset\} \\ &\Gamma_1 = \{\gamma \in \Gamma \mid \gamma(X) = X\}, \\ &\Gamma_2 = \{\gamma \in \Gamma \mid \gamma^2(A) = \gamma(A) \text{ for every subset } A \text{ of } X\}, \\ &\Gamma_- = \{\gamma \in \Gamma \mid \gamma(A) \subset A \text{ for every subset } A \text{ of } X\} \text{ and } \\ &\Gamma_+ = \{\gamma \in \Gamma \mid A \subset \gamma(A) \text{ for every subset } A \text{ of } X\}. \end{split}$$

A subset *A* of *X* is said to be $\gamma - open$ [1] if $A \subset \gamma(A)$. *B* is said to be $\gamma - closed$ [1] if its complement is γ -open. The smallest γ -closed set containing *A* is called the $\gamma - closure$ of *A* [1] and is denoted by $c_{\gamma}(A)$. The largest γ -open set contained in *A* is called the $\gamma - interior$ of *A* [1] and is denoted by $i_{\gamma}(A)$. If $\gamma_1, \gamma_2 \in \Gamma$, then we will denote $\gamma_1 \circ \gamma_2$ by $\gamma_1 \gamma_2$. For $\gamma \in \Gamma$, define $\gamma^* : \mathcal{O}(X) \rightarrow \mathcal{O}(X)$ by $\gamma^*(A) = X - \gamma(X - A)$ [1] for every subset *A* of *X*. By a space *X*, we always mean a topological space (X, τ) with no separation properties assumed. The closure and interior of any subset *A* of *X* are denoted by c(A) and i(A) respectively. Moreover, $\Gamma_3 = \{\gamma \in \Gamma \mid G \cap \gamma(A) \subset \gamma(G \cap A)$ for every subset $A \subset X$ and $G \in \tau\}$. If *I* is a collection of some of the symbols 0,2,3, -, + and 1, then $\Gamma_I = \{\gamma \in \Gamma \mid \gamma \in \Gamma_i \text{ for every } i \in I\}$. The following lemmas will be useful in the sequel.

Lemma 1.1. *If* $\gamma \in \Gamma$ *, then* $i_{\gamma} \in \Gamma_{02-}$ [1, Proposition 1.3], $i_{\gamma} \in \Gamma_1$ *if and only if* $\gamma \in \Gamma_1$ *and* $c_{\gamma} \in \Gamma_{12+}$ [1, Proposition 1.9].

Lemma 1.2. If $\gamma \in \Gamma_3$, then $i_{\gamma} \in \Gamma_3$ [1, Proposition 2.4], $c_{\gamma} \in \Gamma_3$ [1, Proposition 2.6] and $c_{\gamma}i_{\gamma} \in \Gamma_3$ [1, Proposition 2.1].

Received December 28, 2006.

2000 Mathematics Subject Classification. Primary 54A05.

Key words and phrases. γ -closure, γ -interior, γ -open set, γ -semiclosure, γ -semiinterior, γ -semiopen set.

Lemma 1.3. If $\gamma \in \Gamma$, then $\gamma^* \in \Gamma$, $(\gamma^*)^* = \gamma$, $(i_{\gamma})^* = c_{\gamma}$ and $(c_{\gamma})^* = i_{\gamma}$ [1, Proposition 1.7].

Lemma 1.4. If γ_1 and $\gamma_2 \in \Gamma$, then (i) $\gamma_1 \gamma_2 \in \Gamma$, (ii) $\gamma_1, \gamma_2 \in \Gamma_n \Rightarrow \gamma_1 \gamma_2 \in \Gamma_n$ for n = 0, 1, +, and $(\gamma_1 \gamma_2)^* = (\gamma_1)^* (\gamma_2)^*$ [1, Proposition 1.11].

2. γ -semiopen Sets

Let *X* be any nonempty set and $\gamma \in \Gamma$. A subset *A* of *X* is said to be γ – *semiopen* [3] if there exists a γ -open set *G* such that $G \subset A \subset c_{\gamma}(G)$. In [3], it is established that *X* is γ -semiopen, arbitrary union of γ -semiopen sets is γ -semiopen, every γ -open set is γ -semiopen and the intersection of two γ -semiopen sets need not be a γ -semiopen set. The complement of a γ -semiopen set is called a γ – *semiclosed* set [3]. The intersection of all γ -semiclosed sets containing *A* is called the γ – *semiclosure* [3] of *A* and is denoted by $sc_{\gamma}(A)$. It is easy to verify the following.

Theorem 2.1. Let A be a subset of X and $\gamma \in \Gamma$. Then the following hold.

- (a) $sc_{\gamma}(A)$ is the smallest γ -semiclosed set containing A.
- (b) A is γ -semiclosed if and only if $A = sc_{\gamma}(A)$.
- (c) $x \in sc_{\gamma}(A)$ if and only if for every γ -semiopen set G containing $x, G \cap A \neq \emptyset$.
- (d) $sc_{\gamma} \in \Gamma_{012+}$ ($sc_{\gamma} \in \Gamma_{0}$, since X is γ -semiopen [3, Proposition 1.2] and so ϕ is γ -semiclosed. $sc_{\gamma} \in \Gamma_{1}$, since ϕ is γ -open [1] and so is γ -semiopen [3, Proposition 1.3] which implies that X is γ -semiclosed).

The union of all γ -semiopen sets contained in *A* is called the γ – *semiinterior* [3] of *A* and is denoted by $si_{\gamma}(A)$. It is easy to verify the following.

Theorem 2.2. *Let A be a subset of X and* $\gamma \in \Gamma$ *. Then the following hold.*

- (a) $si_{\gamma}(A)$ is the largest γ -semiopen set contained in A.
- (b) A is γ -semiopen if and only if $A = si_{\gamma}(A)$.
- (c) $x \in si_{\gamma}(A)$ if and only if there is a γ -semiopen set G containing x such that $G \subset A$.
- (d) $si_{\gamma} \in \Gamma_{012-}$.

The following Theorem 2.3 gives the relation between sc_{γ} and si_{γ} .

Theorem 2.3. If X is any nonempty set and $\gamma \in \Gamma$, then the following hold.

- (a) $(si_{\gamma})^* = sc_{\gamma}$.
- (b) $(sc_{\gamma})^* = si_{\gamma}$.
- (c) $si_{\gamma}(X A) = X sc_{\gamma}(A)$ for every subset A of X.
- (d) $sc_{\gamma}(X A) = X si_{\gamma}(A)$ for every subset A of X.

Proof. (a) Let *A* be a subset of *X*. Then $(si_{\gamma})^*(A) = X - si_{\gamma}(X - A)$. Since $si_{\gamma}(X - A)$ is the largest γ -semiopen set contained in X - A, $X - si_{\gamma}(X - A)$ is the smallest γ -semiclosed set containing *A* and so $X - si_{\gamma}(X - A) = sc_{\gamma}(A)$. Hence $(si_{\gamma})^* = sc_{\gamma}$. (b) By Lemma 1.3 and (a), $(sc_{\gamma})^* = ((si_{\gamma})^*)^* = si_{\gamma}$. This proves (b).

304

(c) If *A* is a subset of *X*, $(si_{\gamma})^*(A) = X - si_{\gamma}(X - A)$ and so by (b), $sc_{\gamma}(A) = X - si_{\gamma}(X - A)$ which implies that $si_{\gamma}(X - A) = X - sc_{\gamma}(A)$ for every subset *A* of *X*. (d) The proof is similar to the proof of (c).

The following Theorem 2.4 and Theorem 2.5(a) give characterizations of γ -semiopen sets in terms of γ -interior and γ -closure operators. Theorem 2.5(b), (c) and (d) give properties of γ -semiinterior and γ -semiclosure operators. In Theorem 2.6, we prove that the closure of every γ -semiopen set is a γ -semiopen set.

Theorem 2.4. Let A be a subset of X and $\gamma \in \Gamma$. Then the following are equivalent.

(a) A is γ -semiopen.

(b) $A \subset c_{\gamma} i_{\gamma}(A)$.

(c) $c_{\gamma}(A) = c_{\gamma}i_{\gamma}(A)$.

Proof. (a) \Rightarrow (b). Suppose *A* is γ -semiopen. Then there exists a γ -open set *G* such that $G \subset A \subset c_{\gamma}(G)$. Since *G* is γ -open, $G = i_{\gamma}(G)$ and so $A \subset c_{\gamma}i_{\gamma}(G)$. Since $c_{\gamma}i_{\gamma} \in \Gamma$, by Lemma 1.4 and $G \subset A$, it follows that $A \subset c_{\gamma}i_{\gamma}(A)$ which proves (b).

(b) \Rightarrow (c). Since $c_{\gamma} \in \Gamma$ and $i_{\gamma}(A) \subset A$, we have $c_{\gamma}i_{\gamma}(A) \subset c_{\gamma}(A)$. By hypothesis and Lemma 1.1, $c_{\gamma}(A) \subset c_{\gamma}c_{\gamma}i_{\gamma}(A) = c_{\gamma}i_{\gamma}(A)$. Therefore, $c_{\gamma}(A) = c_{\gamma}i_{\gamma}(A)$.

(c) \Rightarrow (a). Since $i_{\gamma}(A)$ is a γ -open set such that $i_{\gamma}(A) \subset A \subset c_{\gamma}i_{\gamma}(A)$, A is γ -semiopen.

Theorem 2.5. Let A be a subset of X and $\gamma \in \Gamma$. Then the following hold.

(a) A is γ -semiopen if and only if A is $c_{\gamma}i_{\gamma}$ -open if and only if $A = i_{c_{\gamma}i_{\gamma}}(A)$.

- (b) $si_{\gamma} = i_{c_{\gamma}i_{\gamma}}$ and $sc_{\gamma} = c_{c_{\gamma}i_{\gamma}}$.
- (c) $si_{\gamma}(A) = A \cap c_{\gamma}i_{\gamma}(A)$.
- (d) $sc_{\gamma}(A) = A \cup i_{\gamma}c_{\gamma}(A)$.

Proof. The proof of (a) follows from Theorem 2.4(a) and (b).

(b) If $x \in si_{\gamma}(A)$, then there exists a γ -semiopen set B such that $x \in B \subset A$. By (a), B is a $c_{\gamma}i_{\gamma}$ -open set and so $x \in i_{c_{\gamma}i_{\gamma}}(A)$. Hence $si_{\gamma}(A) \subset i_{c_{\gamma}i_{\gamma}}(A)$. Similarly, we can prove that $i_{c_{\gamma}i_{\gamma}}(A) \subset si_{\gamma}(A)$. Therefore, $si_{\gamma} = i_{c_{\gamma}i_{\gamma}}$. Again, $sc_{\gamma} = (si_{\gamma})^*$, by Theorem 2.3(a) and so $sc_{\gamma} = (i_{c_{\gamma}i_{\gamma}})^* = c_{c_{\gamma}i_{\gamma}}$, by Lemma 1.3.

(c) Since $i_{\gamma}(i_{\gamma}(A)) = i_{\gamma}(A)$ and $i_{\gamma}(A) \subset i_{\gamma}c_{\gamma}(A)$ for every subset *A* of *X*, by Theorem 1.3 of [2], we have $i_{c_{\gamma}i_{\gamma}}(A) = A \cap c_{\gamma}i_{\gamma}(A)$ and so, by (b), $si_{\gamma}(A) = A \cap c_{\gamma}i_{\gamma}(A)$.

(d) Since $i_{c_{\gamma}i_{\gamma}}(A) = A \cap c_{\gamma}i_{\gamma}(A)$, by Theorem 3.1 of [2], $c_{c_{\gamma}i_{\gamma}}(A) = A \cup (c_{\gamma}i_{\gamma})^*(A) = A \cup (c_{\gamma})^*(i_{\gamma})^*(A) = A \cup i_{\gamma}c_{\gamma}(A)$, by Lemmas 1.3 and 1.4. By (b), $sc_{\gamma}(A) = A \cup i_{\gamma}c_{\gamma}(A)$.

Theorem 2.6. If $\gamma \in \Gamma$, $A \subset B \subset c_{\gamma}(A)$ and A is γ -semiopen, then B is γ -semiopen. In particular, the γ -closure of every γ -semiopen set is a γ -semiopen set.

Proof. Since *A* is γ -semiopen, by Theorem 2.4(c), $c_{\gamma}(A) = c_{\gamma}i_{\gamma}(A)$ and so $c_{\gamma}(A) \subset c_{\gamma}i_{\gamma}(B)$. Since $B \subset c_{\gamma}(A), B \subset c_{\gamma}i_{\gamma}(B)$ and so by Theorem 2.4, *B* is γ -semiopen.

The following Theorem 2.7 gives characterizations of γ -semiclosed sets.

Theorem 2.7. Let A be a subset of X and $\gamma \in \Gamma$. Then the following are equivalent.

- (a) A is γ -semiclosed.
- (b) $i_{\gamma}c_{\gamma}(A) \subset A$.
- (c) $i_{\gamma}c_{\gamma}(A) = i_{\gamma}(A)$.
- (d) There exists a γ -closed set F such that $i_{\gamma}(F) \subset A \subset F$.

Proof. (a) \Rightarrow (b). *A* is γ -semiclosed $\Rightarrow X - A$ is γ -semiopen $\Rightarrow X - A \subset c_{\gamma}i_{\gamma}(X - A)$, by Theorem 2.4(b). By Lemma 1.3, it follows that $c_{\gamma}i_{\gamma}(X - A) = X - i_{\gamma}c_{\gamma}(A)$ and so $i_{\gamma}c_{\gamma}(A) \subset A$. (b) \Rightarrow (c). $i_{\gamma}c_{\gamma}(A) \subset A \Rightarrow i_{\gamma}c_{\gamma}(A) \subset i_{\gamma}(A)$ and so $i_{\gamma}c_{\gamma}(A) = i_{\gamma}(A)$.

(c) \Rightarrow (d). If $F = c_{\gamma}(A)$, then *F* is a γ -closed set such that $i_{\gamma}(F) = i_{\gamma}c_{\gamma}(A) = i_{\gamma}(A) \subset A \subset F$, which proves (d).

(d) \Rightarrow (a). If there exists a γ -closed set F such that $i_{\gamma}(F) \subset A \subset F$, then $X - F \subset X - A \subset X - i_{\gamma}(F) = c_{\gamma}(X - F)$. Since X - F is γ -open, X - A is γ -semiopen and so A is γ -semiclosed.

We say that *A* is c_{γ} -*dense* if $c_{\gamma}(A) = X$. The following Theorem 2.8 characterizes c_{γ} -dense subsets.

Theorem 2.8. *If X is any nonempty set, A is a subset of X and* $\gamma \in \Gamma$ *, then the following are equivalent.*

(a) $c_{\gamma}(A) = X$.

- (b) $sc_{\gamma}(A) = X$.
- (c) If B is any γ -semiclosed subset of X such that $A \subset B$, then B = X.
- (d) Every nonempty γ -semiopen set has a nonempty intersection with A.
- (e) $si_{\gamma}(X-A) = \emptyset$.

Proof. (a) \Rightarrow (b). Suppose $x \notin sc_{\gamma}(A)$. Then there exists a γ -semiopen set G containing x such that $G \cap A = \emptyset$. Since G is a nonempty γ -semiopen set, there is a nonempty γ -open set H such that $H \subset G$ and so $H \cap A = \emptyset$ which implies that $c_{\gamma}(A) \neq X$, a contradiction. Hence $sc_{\gamma}(A) = X$.

(b) \Rightarrow (c). If *B* is any γ -semiclosed set such that $A \subset B$, then $X = sc_{\gamma}(A) \subset sc_{\gamma}(B) = B$ and so B = X.

(c) \Rightarrow (d). If *G* is any nonempty γ -semiopen set such that $G \cap A = \emptyset$, then $A \subset X - G$ and X - G is γ -semiclosed. By hypothesis, X - G = X and so $G = \emptyset$, a contradiction. Therefore, $G \cap A \neq \emptyset$. (d) \Rightarrow (e). Suppose $si_{\gamma}(X - A) \neq \emptyset$. Then $si_{\gamma}(X - A)$ is a nonempty γ -semiopen set such that $si_{\gamma}(X - A) \cap A = \emptyset$, a contradiction. Therefore, $si_{\gamma}(X - A) = \emptyset$.

(e) \Rightarrow (a). $si_{\gamma}(X - A) = \emptyset \Rightarrow X - si_{\gamma}(X - A) = X \Rightarrow sc_{\gamma}(A) = X$. By Theorem 2.5(a), $sc_{\gamma}(B) \subset c_{\gamma}(B)$ for every subset *B* of *X*. Therefore, $sc_{\gamma}(A) = X$ implies that $c_{\gamma}(A) = X$.

Theorem 2.9. If X is any nonempty set, A is a subset of X and $\gamma \in \Gamma$, then the following hold.

(a) $si_{\gamma}(sc_{\gamma}(A)) = sc_{\gamma}(A) \cap c_{\gamma}i_{\gamma}c_{\gamma}(A).$ (b) $sc_{\gamma}(si_{\gamma}(sc_{\gamma}(A))) = si_{\gamma}(sc_{\gamma}(A)).$ (c) $A \cup si_{\gamma}(sc_{\gamma}(A)) = sc_{\gamma}(A).$ (d) $sc_{\gamma}(si_{\gamma}(A)) = si_{\gamma}(A) \cup i_{\gamma}c_{\gamma}i_{\gamma}(A).$

(e) $si_{\gamma}(sc_{\gamma}(si_{\gamma}(A))) = sc_{\gamma}(si_{\gamma}(A)).$

306

(f) $A \cap sc_{\gamma}(si_{\gamma}(A)) = si_{\gamma}(A)$.

Proof. (a) $si_{\gamma}(sc_{\gamma}(A)) = sc_{\gamma}(A) \cap c_{\gamma}i_{\gamma}(sc_{\gamma}(A))$ by Theorem 2.5(c) and so $si_{\gamma}(sc_{\gamma}(A)) \subset sc_{\gamma}(A) \cap c_{\gamma}i_{\gamma}c_{\gamma}(A)$. Again, $si_{\gamma}(sc_{\gamma}(A)) = sc_{\gamma}(A) \cap c_{\gamma}i_{\gamma}(sc_{\gamma}(A)) = sc_{\gamma}(A) \cap c_{\gamma}i_{\gamma}(A \cup i_{\gamma}c_{\gamma}(A)) \supset sc_{\gamma}(A) \cap c_{\gamma}i_{\gamma}i_{\gamma}c_{\gamma}(A) = sc_{\gamma}(A) \cap c_{\gamma}i_{\gamma}c_{\gamma}(A)$ and so (a) follows.

(b) Since every γ -closed set is γ -semiclosed, $sc_{\gamma}(A) \cap c_{\gamma}i_{\gamma}c_{\gamma}(A)$ is γ -semiclosed and so $si_{\gamma}(sc_{\gamma}(A))$ is γ -semiclosed. Therefore, (b) follows.

(c)By (a), $A \cup si_{\gamma}(sc_{\gamma}(A)) = A \cup (sc_{\gamma}(A) \cap c_{\gamma}i_{\gamma}c_{\gamma}(A)) = (A \cup sc_{\gamma}(A)) \cap (A \cup c_{\gamma}i_{\gamma}c_{\gamma}(A)) \supset sc_{\gamma}(A) \cap (A \cup i_{\gamma}c_{\gamma}(A)) = sc_{\gamma}(A) \cap sc_{\gamma}(A) = sc_{\gamma}(A) \text{ and so } A \cup si_{\gamma}(sc_{\gamma}(A)) \supset sc_{\gamma}(A).$ The reverse direction is clear.

(d), (e) and (f) can be similarly proved.

Example 1.6 of [3] says that the intersection of two γ -semiopen sets in a space need not be γ -semiopen. The following Theorem 2.10 says that if any one of the sets is open and $\gamma \in \Gamma_3$, then the intersection is a γ -semiopen set.

Theorem 2.10. Let (X, τ) be any space and $\gamma \in \Gamma_3$. If A is open and B is γ -semiopen, then $A \cap B$ is γ -semiopen.

Proof. Since *B* is γ -semiopen, there exists a γ -open set *G* such that $G \subset B \subset c_{\gamma}(G)$ and so $A \cap G \subset A \cap B \subset A \cap c_{\gamma}(G)$. By Proposition 2.2 of [1], $A \cap G$ is γ -open and so $A \cap G = i_{\gamma}(A \cap G)$. By Lemma 1.2, $c_{\gamma} \in \Gamma_3$ and so $A \cap c_{\gamma}(G) \subset c_{\gamma}(A \cap G)$. Therefore, $A \cap B \subset A \cap c_{\gamma}(G) \subset c_{\gamma}(A \cap G) = c_{\gamma}i_{\gamma}(A \cap G) \subset c_{\gamma}i_{\gamma}(A \cap B)$. By Theorem 2.4, $A \cap B$ is γ -semiopen.

If *A* is any nonempty semiopen set in a space *X*, then $i(A) \neq \emptyset$ [4, Lemma 1.1]. Similar property will not hold for γ -semiopen sets. The following Example 2.11 gives a γ -semiopen set *G* for which $i_{\gamma}(G) = \emptyset$. Theorem 2.12 shows that every open set is a γ -semiopen set, if $\gamma \in \Gamma_3$.

Example 2.11. [1, Example 1.12] Let \mathbb{R} be the set of all real numbers with the usual topology. If γ is defined by $\gamma(A) = \{0\}$ if $0 \in A$, $\gamma(A) = \emptyset$ if $0 \notin A$, then $\gamma \in \Gamma_{023-}$ and \emptyset and $\{0\}$ are the only γ -open sets. If $G = \mathbb{Q} - \{0\}$, where \mathbb{Q} is the set of all rational numbers, then $i_{\gamma}(G) = \emptyset$ but $c_{\gamma}i_{\gamma}(G) = \mathbb{R} - \{0\}$ implies that G is γ -semiopen. This also shows that a γ -semiopen set need not be open.

Theorem 2.12. Let X be a space and $\gamma \in \Gamma_3$. Then every open set G is a γ -semiopen set.

Proof. Now $G = G \cap X \subset G \cap c_{\gamma} i_{\gamma}(X)$, since *X* is γ -semiopen. Therefore, $G \subset G \cap c_{\gamma} i_{\gamma}(X) \subset c_{\gamma} i_{\gamma}(G \cap X) = c_{\gamma} i_{\gamma}(G)$, by Lemma 1.2, which implies that *G* is γ -semiopen.

Theorem 2.13. If X is a space and $\gamma \in \Gamma_3$, then $si_{\gamma} \in \Gamma_3$ and $sc_{\gamma} \in \Gamma_3$.

Proof. Let *G* be an open set and *A* be any subset of *X*. Then $G \cap si_{\gamma}(A)$ is a γ -semiopen set by Theorem 2.10 and $G \cap si_{\gamma}(A) \subset G \cap A$. Since $si_{\gamma}(G \cap A)$ is the largest γ -semiopen set contained in $G \cap A$, we have $G \cap si_{\gamma}(A) \subset si_{\gamma}(G \cap A)$ and so $si_{\gamma} \in \Gamma_3$. Again, $si_{\gamma} \in \Gamma_3 \Rightarrow (si_{\gamma})^* \in \Gamma_3 \Rightarrow sc_{\gamma} \in \Gamma_3$.

Corollary 2.14. If X is a space, $\gamma \in \Gamma_3$ and G is open, then the following hold.

- (a) For every subset A of X, $sc_{\gamma}(G \cap A) = sc_{\gamma}(G \cap sc_{\gamma}(A))$.
- (b) If $sc_{\gamma}(A) = X$, then $sc_{\gamma}(G \cap A) = sc_{\gamma}(G)$.

Proof. (a) Since $sc_{\gamma} \in \Gamma_3$, by Theorem 2.13, $G \cap sc_{\gamma}(A) \subset sc_{\gamma}(G \cap A)$ and so $sc_{\gamma}(G \cap sc_{\gamma}(A)) \subset sc_{\gamma}(G \cap A)$. But $G \cap A \subset G \cap sc_{\gamma}(A) \Rightarrow sc_{\gamma}(G \cap A) \subset sc_{\gamma}(G \cap sc_{\gamma}(A))$. Therefore, $sc_{\gamma}(G \cap A) = sc_{\gamma}(G \cap sc_{\gamma}(A))$.

(b) The proof follows from (a).

References

[1] Á. Császár, Generalized Open Sets, Acta. Math. Hungar. 75(1997), 65-87.

[2] Á. Császár, On the γ -interior and γ -closure of a set, Acta. Math. Hungar. **80**(1998), 89–93.

[3] A. Güldürdek and O. B. Özbakir, $On \gamma$ -semiopen sets, Acta. Math. Hungar. **109**(2005), 347–355.

[4] D. Sivaraj, Semihomeomorphisms, Acta. Math. Hungar. 48(1986), 139–145.

Department of Mathematics, Kamaraj College, Thoothukudi, Tamil Nadu, India.

E-mail: ttn_sivagami@yahoo.co.in

Department of Computer Applications, D. J. Academy for Managerial Excellence, Coimbatore - 641 032, Tamil Nadu, India.

E-mail: ttn_sivaraj@yahoo.co.in

308