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ON y-SEMIOPEN SETS

P. SIVAGAMI AND D. SIVARAJ

Abstract. Characterizations of y-semiopen sets, y-semiclosed sets, y-semiclosure and y-semiinterior are given.

Properties of y-semiopen sets and y-semiclosed sets are also discussed.

1. Introduction and Preliminaries

In 2005, Giildiirdek and Ozbakir [3], introduced and studied y-semiopen sets. In this pa-
per, we further extend the study of y-semiopen sets. Let X be any nonempty set. We denote
by I, the collection of all mappings y: 9 (X) — @(X) such that A c B implies y(A) c y(B). As
defined in [1], we mention here the following subcollections of T'.

Fo={yelly(@)=¢}

I ={yel|y(X)=X},

I'; = {yeT |y%(A) = y(A) for every subset A of X},
I'_={yel|y(A) c A for every subset A of X} and
I'y={yel'| Acy(A) for every subset A of X}.

A subset A of X is said to be y — open [1] if A< y(A). B is said to be y — closed [1] if its
complement is y-open. The smallest y-closed set containing A is called the y — closure of A
[1] and is denoted by ¢y (A). The largest y-open set contained in A is called the y —interior
of A [1] and is denoted by i, (A). If y1,y2 € I, then we will denote y1 oy, by y1y2. Fory €T,
define y* : p(X) — p(X) by y*(4) = X —y(X — A) [1] for every subset A of X. By a space
X, we always mean a topological space (X, 1) with no separation properties assumed. The
closure and interior of any subset A of X are denoted by c(A) and i(A) respectively. Moreover,
I'3={yel'|Gny(A) cy(Gn A) for every subset Ac X and G € t}. If I is a collection of some
of the symbols 0,2,3,—,+ and 1, then I'; = {y e T' | y € ['; for every i € I}. The following lemmas
will be useful in the sequel.

Lemma 1.1. Ify €T, then iy € I'p2- [1, Proposition 1.3], iy € I'y if and only ify € 'y and
¢y €124 [1, Proposition 1.9].

Lemma 1.2. Ify € T3, then iy € I's [1, Proposition 2.4], ¢y € I'3 [1, Proposition 2.6] and
cyly €' [1, Proposition 2.1].
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Lemma 1.3. Ify €T, theny* €T, (y*)* =, (iy)* = ¢y and (¢y)* = iy [1, Proposition 1.7].

Lemma 1.4. Ify; andy, €T, then () y1y2 €T, (i) y1,72 €T = v1y2€T, forn=0,1,+,—
and (y1y2)* = (y1)* (y2)* [1, Proposition 1.11].

2. y-semiopen Sets

Let X be any nonempty set and y € I'. A subset A of X is said to be y — semiopen [3]
if there exists a y-open set G such that G ¢ A < ¢y(G). In [3], it is established that X is y-
semiopen, arbitrary union of y-semiopen sets is y-semiopen, every y-open set is y-semiopen
and the intersection of two y-semiopen sets need not be a y-semiopen set. The complement
of a y-semiopen set is called a y — semiclosed set [3]. The intersection of all y-semiclosed
sets containing A is called the y — semiclosure [3] of A and is denoted by scy (A). Itis easy to
verify the following.

Theorem 2.1. Let A be a subset of X andy € I'. Then the following hold.
(@) scy(A) is the smallesty-semiclosed set containing A.
(b) A isy-semiclosed if and only if A = scy(A).
(c) xe€scy(A) if and only if for everyy -semiopen set G containing x, GNA# @.
(d) scy € To12+ (s¢y € T, since X is y-semiopen [3, Proposition 1.2] and so @ isy-semiclosed.
scy €'y, since @ isy-open [1] and so is y-semiopen [3, Proposition 1.3] which implies that
X isy-semiclosed).

The union of all y-semiopen sets contained in A is called the y — semiinterior [3] of A
and is denoted by siy (A). It is easy to verify the following.

Theorem 2.2. Let A be a subset of X andy € I'. Then the following hold.
(@) siy(A) is the largesty-semiopen set contained in A.
(b) A isy-semiopen if and only if A= siy(A).
(c) x€siy(A) ifand only if there is a'y-semiopen set G containing x such that G c A.
(d) Sl'y €lo12-.

The following Theorem 2.3 gives the relation between sc, and siy.

Theorem 2.3. If X is any nonempty set andy € T', then the following hold.
(@) (siy)* = scy.
(b) (s¢p)* = siy.
(©) siy(X—A)=X-scy(A) for every subset A of X.
(d) scy(X—A) =X - siy(A) forevery subset A of X.

Proof. (a) Let A be a subset of X. Then (siy)*(A) = X — siy (X — A). Since si, (X — A) is
the largest y-semiopen set contained in X — A, X — si) (X — A) is the smallest y-semiclosed set
containing A and so X — si, (X — A) = sc, (A). Hence (siy)" = sc,.

(b) By Lemma 1.3 and (a), (scy)* = ((siy)*)* = siy. This proves (b).
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(c) If Ais a subset of X, (siy)* (A) = X — siy (X — A) and so by (b), scy(A) = X - siy, (X — A) which
implies that siy (X — A) = X — scy (A) for every subset A of X.
(d) The proof is similar to the proof of (c).

The following Theorem 2.4 and Theorem 2.5(a) give characterizations of y-semiopen sets
in terms of y-interior and y-closure operators. Theorem 2.5(b), (c) and (d) give properties
of y-semiinterior and y-semiclosure operators. In Theorem 2.6, we prove that the closure of
every y-semiopen set is a y-semiopen set.

Theorem 2.4. Let A be a subset of X andy e T'. Then the following are equivalent.
(@) Aisy-semiopen.
(b) Accyiy(A).
(©) ¢y(A) =cyiy(A).

Proof. (a)=(b). Suppose A is y-semiopen. Then there exists a y-open set G such that
G < Ac¢y(G). Since G is y-open, G = iy(G) and so A < ¢y iy (G). Since ¢y iy € ', by Lemma 1.4
and G c A, it follows that A c ¢y iy (A) which proves (b).
(b)=(c). Since ¢y € I' and iy (A) < A, we have ¢yiy(A) < ¢y (A). By hypothesis and Lemma 1.1,
cy(A) c cyeyiy(A) = cyiy(A). Therefore, cy(A) = cyiy(A).
(c)=(a). Since i) (A) is a y-open set such that iy (A) ¢ A< ¢y i (A), Ais y-semiopen.

Theorem 2.5. Let A be a subset of X andy € I'. Then the following hold.
(@) Aisy-semiopen ifand onlyif A is cyiy-open if and only if A= ic, i (A).
(b) siy= icyiy and scy = Ceyiy-
(© siy(A) = Ancyiy(A).
(d) scy(A) = Auiycy(A).

Proof. The proof of (a) follows from Theorem 2.4(a) and (b).
(b) If x € siy(A), then there exists a y-semiopen set B such that x € B < A. By (a), Bis a
cyiy—open set and so x € icin(A). Hence siy(A) icyiy (A). Similarly, we can prove that
icyiy (A) < siy(A). Therefore, siy = icyiy. Again, sc, = (siy)*, by Theorem 2.3(a) and so sc, =
(icyl-y)* = Ceyiy by Lemma 1.3.
(c) Since iy (iy(A)) = iy (A) and iy (A) < iycy(A) for every subset A of X, by Theorem 1.3 of [2],
we have icy,-y (A) = Ancyiy(A) and so, by (b), siy(A) = Ancyiy(A).
(d) Since i¢,;, (A) = Ancyiy(A), by Theorem 3.1 of [2], cc, i, (A) = AU(cyiy)* (A) = AU(cy) " (iy)* (A)
AU iycy(A), by Lemmas 1.3 and 1.4. By (b), scy (A) = AU iycy(A).

Theorem 2.6. If y €I', Ac B < ¢y(A) and A is'y-semiopen, then B isy-semiopen. In partic-
ular, they-closure of every y-semiopen set is ay -semiopen set.

Proof. Since A is y-semiopen, by Theorem 2.4(c), ¢, (A) = ¢yiy(A) and so ¢y (A) < ¢y iy (B).
Since B ¢y (A), B < ¢y iy (B) and so by Theorem 2.4, B is y-semiopen.

The following Theorem 2.7 gives characterizations of y-semiclosed sets.

Theorem 2.7. Let A be a subset of X andy € I'. Then the following are equivalent.
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(@) Aisy-semiclosed.

(b) iycy(A)c A,

(© iycy(A) = iy(A).

(d) There exists ay-closed set F such thatiy(F)c AcF.

Proof. (a)=(b). A is y-semiclosed = X — A is y-semiopen = X - A c cyiy(X — A), by
Theorem 2.4(b). By Lemma 1.3, it follows that Cyiy(X—A) =X —iycy(A) and so iycy(A) € A
(D)=(c). iycy(A) € A= iycy(A) < iy(A) and so iycy(A) = iy (A).

(©)=(d). If F = ¢, (A), then F is a y-closed set such that iy (F) = iycy(A) = iy, (A) € A< F, which
proves (d).

(d)=(a). If there exists a y-closed set F such thatiy(F)c Ac F,then X—-Fc X-Ac X—i,(F) =
¢y (X - F). Since X — F is y-open, X — Ais y-semiopen and so A is y-semiclosed.

We say that Ais cy—denseif ¢y (A) = X. The following Theorem 2.8 characterizes ¢y —dense
subsets.

Theorem 2.8. If X is any nonempty set, A is a subset of X andy €T, then the following are
equivalent.
(@ ¢y (A)=X.
(b) scy(A)=X.
(c) IfB isanyy-semiclosed subset of X such that Ac B, then B = X.
(d) Every nonemptyy-semiopen set has a nonempty intersection with A.
(e) siy(X-A)=¢.

Proof. (a)=(b). Suppose x ¢ scy(A). Then there exists a y-semiopen set G containing x
such that GN A = @. Since G is a nonempty y-semiopen set, there is a nonempty y-open set
H such that H < G and so Hn A = ¢ which implies that ¢y (A) # X, a contradiction. Hence
scy(A) = X.

(b)=(c). If B is any y-semiclosed set such that A < B, then X = sc,(A) < s¢,(B) = B and so
B=X.

(c)=(d). If G is any nonempty y-semiopen set such that GN A= ¢@,then Ac X-Gand X -G
is y-semiclosed. By hypothesis, X — G = Xand so G = @, a contradiction. Therefore, GN A # @.
(d)=(e). Suppose siy(X — A) # @. Then siy (X — A) is a nonempty y-semiopen set such that
siy(X — A)n A= @, a contradiction. Therefore, siy (X - A) = @.

(e)=(a). siy(X—A) =@ = X—siy(X—A) = X = scy(A) = X. By Theorem 2.5(a), scy(B) < ¢y (B)
for every subset B of X. Therefore, scy(A) = X implies that ¢, (A) = X.

Theorem 2.9. If X is any nonempty set, A is a subset of X and y € T, then the following
hold.
(@) siy(scy(A)) = scy(A) Ncyiyey(A).
(b) scy(siy(scy(A)) = siy(scy(A)).
() AUsiy(scy(A)) = scy(A).
(d) scy(siy(A) = siy(A)Uiycyiy(A).
(e) siy(scy(siy(A)) = scy(siy(A).
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() Anscy(siy(A) = siy(A).

Proof. (a)siy(scy(A)) = scy(A)Ncyiy(scy(A)) by Theorem 2.5(c) and so siy(scy(A)) < scy (A)N
cyiycy(A). Again, siy(scy(A)) = sy (A) Neyiy(scy(A)) = scy(A) Ncyiy (AU iycy(A) D sep (A) N
Cylyiycy(A) = scy (A) N cyiycy(A) and so (a) follows.

(b) Since every y-closed set is y-semiclosed, scy (A)Ncy iycy(A) is y-semiclosed and so siy (scy (A))
is y-semiclosed. Therefore, (b) follows.

(c)By (a), AU siy(scy(A)) = AU (scy(A) Neyiycy(A)) = (AU scy (A)) N (AU ¢piycy(A)) D scy(A) N
(AUiycy(A)) = scy(A) N scy(A) = scy(A) and so AU siy(scy(A)) D scy(A). The reverse direction

is clear.

(d), (e) and (f) can be similarly proved.

Example 1.6 of [3] says that the intersection of two y-semiopen sets in a space need not be
v-semiopen. The following Theorem 2.10 says that if any one of the sets is open and y € I's,
then the intersection is a y-semiopen set.

Theorem 2.10. Let (X, ) be any space and y € I's. If A is open and B is y-semiopen, then
AN B isy-semiopen.

Proof. Since B is y-semiopen, there exists a y-open set G such that G B < ¢,(G) and so
ANGc AnBc Ancy(G). By Proposition 2.2 of [1], An G is y-open and so ANG = iy (ANG).
By Lemma 1.2, ¢, € I'3 and so AN ¢y (G) < ¢, (AN G). Therefore, AN B < Ancy(G) € ¢y (ANG) =
cyiy (AN G) < ¢yiy(An B). By Theorem 2.4, An B is y-semiopen.

If A is any nonempty semiopen set in a space X, then i(A) # @ [4, Lemma 1.1]. Similar
property will not hold for y-semiopen sets. The following Example 2.11 gives a y-semiopen
set G for which i,(G) = @. Theorem 2.12 shows that every open set is a y-semiopen set, if
Y € F3.

Example 2.11. [1, Example 1.12] Let R be the set of all real numbers with the usual topol-
ogy. If y is defined by y(A) = {0} if 0 € A, y(A) = @ if 0 ¢ A, then y € T'g23— and @ and {0} are the
only y-open sets. If G = Q — {0}, where Q is the set of all rational numbers, then i, (G) = @ but
¢yliy(G) = R—{0} implies that G is y-semiopen. This also shows that a y-semiopen set need
not be open.

Theorem 2.12. Let X be a space and y € I's. Then every open set G is a’y -semiopen set.

Proof. Now G =GN X < GN¢yiy(X), since X is y-semiopen. Therefore, G GN¢yiy(X) ©
¢yiy(GN X) = ¢yiy(G), by Lemma 1.2, which implies that G is y-semiopen.

Theorem 2.13. If X is a space andy € T'3, then siy € I's and scy € I's.

Proof. Let G be an open set and A be any subset of X. Then Gn iy (A) is a y-semiopen
set by Theorem 2.10 and G N siy(A) € Gn A. Since siy(G N A) is the largest y-semiopen set
contained in G N A, we have G n siy(A) < siy(Gn A) and so siy € I's. Again, siy €I'3 = (siy)* €
3= sc €T,

Corollary 2.14. If X is a space, y € I's and G is open, then the following hold.
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(a) Forevery subset A of X, scy (G A) = s, (GN scy(A)).
() Ifscy(A) = X, then scy, (GN A) = scy (G).

Proof. (a) Since sc, € I's, by Theorem 2.13, Gnscy (A) < scy (GN A) and so scy (GNsey(A)) ©
scy(GN A). But GN A c Gnscy(A) = scy (GNn A) < s¢y (G scy(A)). Therefore, scy (GN A) =
scy(GNiscy(A).

(b) The proof follows from (a).
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