ON AN EXTENSION OF A BILATERAL GENERATING FUNCTION INVOLVING GENERALISED BESSEL POLYNOMIALS

P. K. MAITI

Abstract. In this note we obtain an extension of the bilateral generating function involving generalised Bessel polynomials obtained by S. K. Pan from the existence of a quasi-bilinear generating relation involving the polynomial under consideration.

1. Introduction

In [1], quasi-bilateral generating function is defined as follows:

$$G(x, u, w) = \sum_{n=0}^{\infty} a_n p_n^{(\alpha)}(x) q_m^{(n)}(u) w^n$$
(1.1)

where $p_n^{(\alpha)}(x)$ and $q_m^{(n)}(u)$ are two polynomials of orders *n*, *m* and of parameters α , *n* respectively. When $q_m^{(n)}(u) \equiv p_m^{(n)}(u)$, then the above generating relation is quasi-bilinear.

In [2], Pan obtained the following theorem on bilateral generating functions involving generalised Bessel Polynomials, $Y_n^{(\alpha)}(x)$ introduced by H. L. Krall and O. Frink [3]:

Theorem 1. If

$$G(x,w) = \sum_{n=0}^{\infty} a_n Y_n^{(\alpha)}(x) w^n$$

then

$$e^{-\frac{\beta w}{(1-wx)}}(1-wx)^{\alpha-2}G(x(1-wx),wz) = \sum_{n=0}^{\infty} w^n f_n(x,z)$$

where

$$f_n(x,z) = \sum_{p=0}^n a_p \frac{\beta^{n-p}}{(n-p)!} Y_n^{(\alpha-2(n-p))}(x) z^p.$$

The object of the present paper is to obtain the following theorem as an extension of the above theorem from the concept of quasi-bilinear generating function by using one parameter continuous transformations group.

Received January 15, 2007.

2000 Mathematics Subject Classification. 33A47.

Key words and phrases. Bessel polynomial, quasi-bilateral generating function.

P. K. MAITI

Theorem 2. If

$$G(x, u, w) = \sum_{n=0}^{\infty} a_n Y_n^{(\alpha)}(x) Y_m^{(n)}(u) w^n$$

then

$$(1-w)^{-m+1}(1-wx)^{\alpha-2}\exp\left(-\frac{\beta w}{1-wx}\right)G\left(x(1-wx),\frac{u}{1-w},\frac{wv}{1-w}\right)$$
$$=\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\sum_{q=0}^{\infty}a_{n}\frac{w^{n+p+q}}{p!q!}v^{p}\beta^{p}Y_{n+p}^{(\alpha-2p)}(x)(m+n-1)_{q}Y_{m}^{(n+q)}(u).$$

2. Proof of the Theorem

In [4, 5], we see that

$$R_{1} = x^{2} y^{-2} z \frac{\partial}{\partial x} + x y^{-1} z \frac{\partial}{\partial y} + \beta y^{-2} z - 2x y^{-2} z.$$

$$R_{2} = u t \frac{\partial}{\partial u} + t^{2} \frac{\partial}{\partial t} + (m-1) t$$

such that

$$R_{1}(Y_{n}^{(\alpha)}(x)y^{\alpha}z^{n}) = \beta Y_{n+1}^{(\alpha-2)}(x)y^{\alpha-2}z^{n+1}$$

$$R_{2}(Y_{m}^{(n)}(u)t^{n}) = (m+n-1)Y_{m}^{(n+1)}(u)t^{n}$$
(2.1)
(2.2)

and

$$e^{wR_1}f(x, y, z) = \exp\left[-\frac{\beta w y^{-2} z}{1 - w x y^{-2} z}\right](1 - w x y^{-2} z)^{-2} \\ \times f\left(x(1 - w x y^{-2} z), y(1 - w x y^{-2} z), z\right)$$
(2.3)

$$e^{wR_2}f(u,t) = (1-wt)^{-m+1}f\left(\frac{u}{1-wt},\frac{t}{1-wt}\right).$$
(2.4)

Let we consider

$$G(x, u, w) = \sum_{n=0}^{\infty} a_n Y_n^{(\alpha)}(x) Y_m^{(n)}(u) w^n.$$
(2.5)

Replacing *w* by wztv and then multiplying both sides of (2.5) by y^{α} , we get

$$y^{\alpha}G(x, u, wztv) = \sum_{n=0}^{\infty} a_n (wv)^n (Y_n^{(\alpha)}(x)y^{\alpha}z^n) (Y_m^{(n)}(u)t^n).$$
(2.6)

Operating $e^{wR_1}e^{wR_2}$ on both sides of (2.6), we get

$$e^{wR_1}e^{wR_2}(y^{\alpha}G(x, u, wztv)) = e^{wR_1}e^{wR_2}\Big(\sum_{n=0}^{\infty}a_n(wv)^n(Y_n^{(\alpha)}(x)y^{\alpha}z^n)(Y_m^{(n)}(u)t^n)\Big).$$
(2.7)

2

L.H.S. of (2.7) is

$$e^{wR_{1}}e^{wR_{2}}(y^{\alpha}G(x,u,wztv))$$

$$= e^{wR_{1}}\left[(1-wt)^{-m+1}y^{\alpha}G\left(x,\frac{u}{1-wt},\frac{wztv}{1-wt}\right)\right]$$

$$= (1-wt)^{-m+1}\exp\left(-\frac{\beta wy^{-2}z}{1-wxy^{-2}z}\right)(1-wxy^{-2}z)^{-2}$$

$$\times y^{\alpha}(1-wxy^{-2}z)^{\alpha}G\left(x(1-wxy^{-2}z),\frac{u}{1-wt},\frac{wztv}{1-wt}\right).$$
(2.8)

R.H.S. of (2.7) is

$$e^{wR_{1}}e^{wR_{2}}\left(\sum_{n=0}^{\infty}a_{n}(wv)^{n}(Y_{n}^{(\alpha)}(x)y^{\alpha}z^{n})(Y_{m}^{(n)}(u)t^{n})\right)$$

$$=\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\sum_{q=0}^{\infty}a_{n}\frac{w^{n+p+q}}{p!q!}v^{n}R_{1}^{p}(Y_{n}^{(\alpha)}(x)y^{\alpha}z^{n})R_{2}^{q}(Y_{m}^{(n)}(u)t^{n})$$

$$=\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\sum_{q=0}^{\infty}a_{n}\frac{w^{n+p+q}}{p!q!}v^{n}\beta^{p}Y_{n+p}^{(\alpha-2p)}(x)y^{\alpha-2p}z^{n-2p}(m+n-1)_{q}Y_{m}^{(n+q)}(u)t^{n+q}.$$
(2.9)

Equation (2.8) and (2.9) and then putting y = z = t = 1, we get

$$(1-w)^{-m+1}(1-wx)^{\alpha-2}\exp\left(-\frac{\beta w}{1-wx}\right)G\left(x(1-wx),\frac{u}{1-w},\frac{wv}{1-w}\right)$$
$$=\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\sum_{q=0}^{\infty}a_{n}\frac{w^{n+p+q}}{p!q!}v^{n}\beta^{p}Y_{n+p}^{(\alpha-2p)}(x)(m+n-1)_{q}Y_{m}^{(n+q)}(u).$$
(2.10)

which is Theorem 2.

Particular Case:

If we put m = 0 in (2.10), we get

$$(1-w)(1-wx)^{\alpha-2} \exp\left(-\frac{\beta w}{1-wx}\right) G\left(x(1-wx), \frac{wv}{1-w}\right)$$

$$= \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_n \frac{w^{n+p+q}}{p!q!} v^n \beta^p Y_{n+p}^{(\alpha-2p)}(x)(n-1)_q$$

$$= \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} a_n \frac{w^{n+p}}{p!} v^n \beta^p Y_{n+p}^{(\alpha-2p)}(x) \sum_{q=0}^{\infty} \frac{w^q}{q!} (n-1)_q$$

$$= \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} a_n \frac{w^{n+p}}{p!} v^n \beta^p Y_{n+p}^{(\alpha-2p)}(x)(1-w)^{-n+1}$$

$$= (1-w) \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} a_n \left(\frac{v}{1-w}\right)^n \frac{w^{n+p}}{p!} \beta^p Y_{n+p}^{(\alpha-2p)}(x).$$

Therefore,

$$(1-wx)^{\alpha-2}\exp\left(-\frac{\beta w}{1-wx}\right)G\left(x(1-wx),\frac{wv}{1-w}\right)$$

P. K. MAITI

$$= \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} a_n w^{n+p} \frac{\beta^p}{p!} Y_{n+p}^{(\alpha-2p)}(x) \Big(\frac{v}{1-w}\Big)^n.$$

Replacing $\frac{v}{1-w}$ by v, we get

$$(1 - wx)^{\alpha - 2} \exp\left(-\frac{\beta w}{1 - wx}\right) G(x(1 - wx), wv)$$

= $\sum_{n=0}^{\infty} w^n \sum_{p=0}^{\infty} a_{n-p} \frac{\beta^p}{p!} Y_n^{(\alpha - 2p)}(x) v^{n-p}$
= $\sum_{n=0}^{\infty} w^n \sum_{p=0}^n a_p \frac{\beta^{n-p}}{(n-p)!} Y_n^{(\alpha - 2(n-p))}(x) v^p$
= $\sum_{n=0}^{\infty} w^n f_n(x, v),$

where

$$f_n(x,v) = \sum_{p=0}^{\infty} a_p \frac{\beta^{n-p}}{(n-p)!} Y_n^{(\alpha-2(n-p))}(x) v^p,$$

which is Theorem 1.

Acknowledgement

I am grateful to Prof. A. K. Chongchar of BESU, Howrach for his constant encouragement for carrying out research work.

References

- [1] S. K. Chatterjea and S. P. Chakraborty, A unified group-theoretic method of obtaining a more general class of generating relations from a given class of quasi-bilateral (or quasi-bilinear) generating relations involving some special functions, Pure Math. Manuscript **8**(1989), 153–162.
- [2] S. K. Pan, Application of group-theory in the study of some problems of special functions, Ph.D. Thesis, C.U. (1995).
- [3] H. L. Krall and O. Frink, An orthogonal polynomial; The Bessel Polynomials, Trans. Amer. Math. Soc. 65(1949), 100–115.
- [4] A. K. Chongdar, On generating functions of Bessel Polynomials by group-theoretic method, Boll. U.M.I. 7(1991), 163–170.
- [5] M. P. Chen and C. C. Feng, Group-theoretic origins of certain of certain generating functions of generalised Bessel polynomials, Tamkang Jour. Math. 6(1975), 87–93.

Department of Physics, Bangabasi Evening College, 19, Rajkumar Chakraborty Sarani, Kolkata, Pin - 700 009, W.B., India.