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ON COEFFICIENTS OF a-SHAPIRO SHIELDS FUNCTIONS

T. Y. PETER CHERN AND HASI WULAN

Abstract. We investigate the Taylor coefficients of a-Shapiro Shields functions and some appli-
cations to a-Bloch functions and Bergman functions are given.

1. Introduction

Let D = {z : |z| < 1} be the unit disk in the complex plane C. A function f analytic
in D is called to be a-Shapiro Shields (o > 0) [4, p.224] if f satisfies

sup{(1 - 2)*£(2)| : 2 € D} < o0 (L1)

The set of all a-Shapiro Shields functions is denoted by S—®. Let S, * be the set of all
functions f analytic in D (little a-Shapiro Shields functions) such that

(L —=[zD)*f ()] =0, |z[ = 17

A function f analytic in D is called an a-Bloch function (a > 0) [5] if f' € S™%, denoted
by f € B®. A function f analytic in D is called a little a-Bloch function (o > 0) if
€Sy, denoted by f € BS.

If a function f(z) = 3.7, a,z" belongs to a certain S~ space, what can be said
about its Taylor coefficients a,,? Ideally, one would like to find a condition on the a,
which is both sufficient and necessary for f to be in S™%. But the general situation
is much more complicated, and no complete answer is available. In this paper, under
an argument condition (see expression (2.1)) on coefficients, a sufficient and necessary
condition on coefficients for functions to be a-Shapiro Shields is proved (see Theorem
2.1). An example shows that the argument condition cannot be substantially relaxed. In
Section 3 we obtain two sufficient conditions and one necessary condition on coefficients of
a-Shapiro Shields functions, and show by examples that any one of these conditions can
not be both sufficient and necessary. However, if we consider the special case, Hadamard
gap series, a sufficient and necessary condition on coefficients for functions to be a-
Shapiro Shields is easily obtained (see Theorem 3.4). In the last section we mention
some applications to a-Bloch functions and Bergman functions.
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2. A Sufficient and Necessary Condition on Coefficients of a-Shapiro Shields
Functions

Theorem 2.1. Let f(z) = Y 00 anz™. If there is a 6 € [0,27) such that the
argument condition:

0§argan§0+g (2.1)

holds for each n € N, then for a > 0 the following are equivalent:
(1) fesS™™

(2) For each nonnegative integer J we have
>k |ag| = O(n”*®). (2.2)
k=J

(3) There exists a nonnegative integer J such that (2.2) holds.

Proof. We first prove that (1) implies (2). There is no loss of generality in assuming
that # = 0. Assume f € S~ we have

Szt = O((1 = [2) )
k=0

and
>t = 17(2)] = 01— |2) ).
k=0

Therefore,

Y Re(ar)z* = O((1 = |2))7*),
k=0

where 0 < Re(ay) since 0 < arga,, < 5, k=0,1,---. Similarly

> Im(a)z = O((1 - |2))™),
k=0

where 0 < I'm(ag), k =0,1,---. Thus

oo

> larl=* = O((1 = [2)™).

k=0

For each positive integer n, we choose z =1 — 1/n. Then

> lakl(1 = 1/n)* = O(n®).
k=0
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For 0 < k£ < n, we have
(1—=1/n)* > (1 —1/n)" = 1/e, n — oo.

Therefore,
n

Z|ak| = 0(n"), n — oo. (2.3)

k=0

For each nonnegative integer J, and n > J, it follows from (2.3) that

n n
Z k7 |a| < n’ Z lar| = O(n**7).
k=J k=J

Hence (2) holds.

(2) implies (3) is obvious.

Finally we show that (3) implies (1). We may suppose that (2.2) holds for a fixed
nonnegative integer J. Then there exists a constant C' such that

> kag| < Cpt, neN. (2.4)
k=J

Here and elsewhere constants are denoted by C which is positive and may indicate
different from one occurrence to the next. Since

1 = T(n+\) .
= A>0,
AR ~ 2 gy 12>
and F("'H‘) ~ n ! as n — oo by Stirling’s formula, it follows from (2.4) that

f (= |<Czn"lan||2|” "ZIZI”J =12)

)Y (SR laul) o

n=J k=J

C(1—lz)) Z n "7

<C(—|z))” ““) (2.5)

By successive integration this shows that f is a-Shapiro Shields. This completes the
proof of Theorem 2.1.
It follows from Theorem 2.1 that

Corollary 2.2. Let f(z) = Y o7, anz™ with ap, > 0 and o > 0. Then the following
statements are equivalent:
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(1) fese.

(2) For each nonnegative integer J we have
n
>k ap = 0@m’). (2.6)
k=J

(3) There exists a nonegative integer J such that (2.6) holds.

Corollary 2.3. Let f(z) = Y .2 anz™. If there exists a § € [0,2m) such that the
argument condition:

anrgan§0+g

holds for each n € N, then for a > 0 the following are equivalent:
(1) f € B~
(2) For each nonnegative integer J we have

n

>k ar = 0T t). (2.7)

k=J
(3) There exists a nonnegative integer J such that (2.7) holds.

The following example shows that the argument condition (2.1) can not be substan-
tially relaxed in Theorem 2.1. Let us first state an earlier result which is due to Hardy;
see [2].

Lemma. Let f(z) = Y 7 ntem 2" 0 <a< 1 Ifl1—b—a/2 >0, then f is
unbounded and

()] = O((1 = J2)) " =0=e/2),

Example 1. For a > 0 there exists an a-Shapiro Shields function f which does not
satisfy the condition (2.2) for any given nonnegative integer J.

Proof. For a > 0, we choose f(z) = Y00 ;n® 18 2" where 0 < a < 1. By
Lemma, |f(2)] = O((1 — |2])~%), so f € S™%. However, for given nonnegative integer J,
we have

1 <« R
J _ Jta—1+2
nat+J Z k |ak| T opotd Z k 2
k k

iy =J
1 n J—1
. (Z plta-1+% _ Z kJ+oz71+%)
na
k=0 k=0

J-1
1 J a a
> a+J( n+a+2 — E k:J+°‘_1+5) — 00, N — 0.
n
k=0
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This example also indicates that the argument condition (2.1) cannot be substantially
relaxed in Theorem 2.1.

3. Two Sufficient Conditions and One Necessary Condition on Coefficients
of a-Shapiro Shields Functions

Theorem 3.1. Let f(z) =Y " a,z™ be analytic in D and o > 0. If the coefficient
condition (2.2) is satisfied for some nonnegative integer J, then f € S™%.

The proof of Theorem 3.1 is given implicitly in the proof of Theorem 2.1 in which we
proved (3) = (1) without the argument condition; hence the coefficient condition (2.2)
is sufficient for a given analytic function f to be a-Shapiro Shields. However it is not
necessary; see the example 1 above.

Theorem 3.2. Let f(z) = > 2 a,2z" be analytic in D. If @ >0 and

>k aul” = O(n*) (3.1)
k=1

for some q, 1 < q < o0, then f € S™.

Proof. By Theorem 2.1 and Theorem 3.1 we only need to consider the case 1 < g <
0o. Applying Theorem 3.1 it suffices to show that Y;_, klax| = O(n®*'). By Hélder
inequality, for 1/p+ 1/q = 1, we have

zn:]da“ < (zn:kp—l)l/l)(zn:kq—lmﬂq)l/q — O(nH_o‘).
k=1 k=1 k=1

Example 2. For a > 0 there exists a function f € S™%, but f does not satisfy (3.1)
for any ¢ > 1.

Proof. We consider the function f(z) in Example 1 again. So f € S™®. However,
for any ¢ > 1, we have

n n
qu71|ak|q _ ZkaqflJrq% ~ pOatas # 0(n*9).
k=1 k=1

Theorem 3.3. If f(z) =Y _.7 ,anz™ is a function in S™%, then we have

an, = 0(n%), n — oo. (3.2)
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Proof. From Cauchy’s formula

o =[5z [ 5

C 1-n
= %((lr— r)o‘)
1-n

:O(i(f_ r)o‘)’ r—1".

The minimum value of the last term occurs at 7o = 1 — 25. Evaluating for this ro, we
obtain

B — -yl = oe)

(1 —rp)™ n—1 a

as n — 0o, and the result follows.

Example 3. There is a function f(z) = Y.~ anz" with (3.2), but f ¢ S,

Proof. It is easy to check that the function f(z) = > 7 n®z" satisfies (3.2), but

n n
Z kap = Z kTt &t 4+ O(1).
k=0 k=0

It shows by Corollary 2.2 that f is not a-Shapiro Shields.
Although (3.2) is a necessary condition not a sufficient condition for f to be a-Shapiro
Shields, in case f is a Hadamard gap series we have the following result.

Theorem 3.4. Let f(z) = Y ;" an, 2™ be analytic in D and o > 0. If f has
Hadamard gaps, that is

Ngy1/mg > A > 1, k=0,1,---
then f € S~ if and only if f satisfies

)

an, = 0(ng), n — oo. (3.3)

Proof. It suffices to prove that if f satisfies (3.3), then f € S~%. For each large
positive integer m, put iy, = max{j : n; <m}. Then

i
1 C &
— E |an.|<—2 n%
me = mo J
n;<m Jj=0
i
C & .
< O S \atizinpa
- m« "
=0

= o(izm: )\”‘U*"m)) = 0(1).
j=0
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Applying Theorem 2.1, f € S—°.

4. Notes

1. If there is a result on the coefficients for a-Shapiro Shields functions in terms of
its Taylor coefficients a,, with magnitude big oh, then there is a similar result for little
a-Shapiro Shields functions in terms of a, with magnitude little oh and vice versa. In
this way we may establish some results on the coefficients of little a-Shapiro Shields
functions.

2. All results in this paper can be applied to a-Bloch functions since f € B* if and
only if f' € S~ for analytic functions f. For example, Yamashita’s result [4] can be
obtained by Theorem 3.4.

3. Let L2(D)(1 < p < 00) be the Bergman space [3] of all analytic functions f such
that |f|P is integrable in D. Since L2(D) C S~2/P and S~ C L}l/a"_E(D) for € > 0 (see
[1]), some results on the coefficients for a-Shapiro Shields functions can be held for the
functions of Bergman space.
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