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ON COEFFICIENTS OF �-SHAPIRO SHIELDS FUNCTIONS

T. Y. PETER CHERN AND HASI WULAN

Abstract. We investigate the Taylor coe�cients of �-Shapiro Shields functions and some appli-

cations to �-Bloch functions and Bergman functions are given.

1. Introduction

Let D = fz : jzj < 1g be the unit disk in the complex plane C. A function f analytic

in D is called to be �-Shapiro Shields (� > 0) [4, p.224] if f satis�es

supf(1� jzj)�jf(z)j : z 2 Dg <1 (1.1)

The set of all �-Shapiro Shields functions is denoted by S
��. Let S��0 be the set of all

functions f analytic in D (little �-Shapiro Shields functions) such that

(1� jzj)�jf(z)j ! 0; jzj ! 1�:

A function f analytic in D is called an �-Bloch function (� > 0) [5] if f 0 2 S
��, denoted

by f 2 B
�. A function f analytic in D is called a little �-Bloch function (� > 0) if

f
0 2 S

��

0 , denoted by f 2 B
�
0 .

If a function f(z) =
P

1

n=0 anz
n belongs to a certain S

�� space, what can be said

about its Taylor coe�cients an? Ideally, one would like to �nd a condition on the an

which is both su�cient and necessary for f to be in S
��. But the general situation

is much more complicated, and no complete answer is available. In this paper, under

an argument condition (see expression (2.1)) on coe�cients, a su�cient and necessary

condition on coe�cients for functions to be �-Shapiro Shields is proved (see Theorem

2.1). An example shows that the argument condition cannot be substantially relaxed. In

Section 3 we obtain two su�cient conditions and one necessary condition on coe�cients of

�-Shapiro Shields functions, and show by examples that any one of these conditions can

not be both su�cient and necessary. However, if we consider the special case, Hadamard

gap series, a su�cient and necessary condition on coe�cients for functions to be �-

Shapiro Shields is easily obtained (see Theorem 3.4). In the last section we mention

some applications to �-Bloch functions and Bergman functions.
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2. A Su�cient and Necessary Condition on Coe�cients of �-Shapiro Shields

Functions

Theorem 2.1. Let f(z) =
P

1

n=0 anz
n
. If there is a � 2 [0; 2�) such that the

argument condition:

� � arg an � � +
�

2
(2.1)

holds for each n 2 N, then for � > 0 the following are equivalent:

(1) f 2 S
��

.

(2) For each nonnegative integer J we have

nX
k=J

k
J jakj = O(nJ+�): (2.2)

(3) There exists a nonnegative integer J such that (2:2) holds.

Proof. We �rst prove that (1) implies (2). There is no loss of generality in assuming

that � = 0. Assume f 2 S
��, we have

1X
k=0

akz
k = O((1� jzj)��)

and ���
1X
k=0

�akz
k

��� = j �f(�z)j = O((1� jzj)��):

Therefore,
1X
k=0

Re(ak)z
k = O((1� jzj)��);

where 0 � Re(ak) since 0 � argan �
�

2
, k = 0; 1; � � �. Similarly

1X
k=0

Im(ak)z
k = O((1 � jzj)��);

where 0 � Im(ak), k = 0; 1; � � �. Thus

1X
k=0

jakjz
k = O((1� jzj)��):

For each positive integer n, we choose z = 1� 1=n. Then

nX
k=0

jakj(1� 1=n)k = O(n�):
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For 0 � k � n, we have

(1� 1=n)k � (1� 1=n)n ! 1=e; n!1:

Therefore,
nX

k=0

jakj = O(n�); n!1: (2.3)

For each nonnegative integer J , and n � J , it follows from (2.3) that

nX
k=J

k
J jakj � n

J

nX
k=J

jakj = O(n�+J ):

Hence (2) holds.

(2) implies (3) is obvious.

Finally we show that (3) implies (1). We may suppose that (2.2) holds for a �xed

nonnegative integer J . Then there exists a constant C such that

nX
k=J

k
J jakj � C

�+J
n ; n 2 N: (2.4)

Here and elsewhere constants are denoted by C which is positive and may indicate

di�erent from one occurrence to the next. Since

1

(1� jzj2)�
=

1X
n=0

�(n+ �)

n!�(�)
jzj2n; � > 0;

and
�(n+�)

n!
� n

��1 as n!1 by Stirling's formula, it follows from (2.4) that

jf (J)(z)j�C

1X
n=J

n
J janjjzj

n�J

1X
n=J

jzjn�J(1�jzj)

=C(1�jzj)

1X
n=J

� nX
k=J

k
J jakj

�
jzjn�J

�C(1� jzj)

1X
n=J

n
�+J jzjn�J

�C(1� jzj)�(�+J): (2.5)

By successive integration this shows that f is �-Shapiro Shields. This completes the

proof of Theorem 2.1.

It follows from Theorem 2.1 that

Corollary 2.2. Let f(z) =
P

1

n=0 anz
n
with an � 0 and � > 0. Then the following

statements are equivalent:
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(1) f 2 S
��

.

(2) For each nonnegative integer J we have

nX
k=J

k
J
ak = O(nJ+�): (2.6)

(3) There exists a nonegative integer J such that (2:6) holds.

Corollary 2.3. Let f(z) =
P

1

n=0 anz
n
. If there exists a � 2 [0; 2�) such that the

argument condition:

� � arg an � � +
�

2

holds for each n 2 N, then for � > 0 the following are equivalent:

(1) f 2 B
�
.

(2) For each nonnegative integer J we have

nX
k=J

k
J+1jakj = O(nJ+�): (2.7)

(3) There exists a nonnegative integer J such that (2:7) holds.

The following example shows that the argument condition (2.1) can not be substan-

tially relaxed in Theorem 2.1. Let us �rst state an earlier result which is due to Hardy;

see [2].

Lemma. Let f(z) =
P

1

n=0 n
�b
e
in
a

z
n
, 0 < a < 1. If 1 � b � a=2 > 0, then f is

unbounded and

jf(z)j = O((1� jzj)�(1�b�a=2)):

Example 1. For � > 0 there exists an �-Shapiro Shields function f which does not

satisfy the condition (2.2) for any given nonnegative integer J .

Proof. For � > 0, we choose f(z) =
P

1

n=0 n
��1+ a

2 e
in
a

z
n, where 0 < a < 1. By

Lemma, jf(z)j = O((1� jzj)��), so f 2 S
��. However, for given nonnegative integer J ,

we have

1

n�+J

nX
k=J

k
J jakj =

1

n�+J

nX
k=J

k
J+��1+ a

2

=
1

n�+J

� nX
k=0

k
J+��1+ a

2 �

J�1X
k=0

k
J+��1+ a

2

�

�
1

n�+J

�
C
J+�+ a

2

n �

J�1X
k=0

k
J+��1+ a

2

�
!1; n!1:
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This example also indicates that the argument condition (2.1) cannot be substantially

relaxed in Theorem 2.1.

3. Two Su�cient Conditions and One Necessary Condition on Coe�cients

of �-Shapiro Shields Functions

Theorem 3.1. Let f(z) =
P

1

n=0 anz
n
be analytic in D and � > 0. If the coe�cient

condition (2:2) is satis�ed for some nonnegative integer J , then f 2 S
��.

The proof of Theorem 3.1 is given implicitly in the proof of Theorem 2.1 in which we

proved (3) =) (1) without the argument condition; hence the coe�cient condition (2.2)

is su�cient for a given analytic function f to be �-Shapiro Shields. However it is not

necessary; see the example 1 above.

Theorem 3.2. Let f(z) =
P

1

n=0 anz
n
be analytic in D. If � > 0 and

nX
k=1

k
q�1jakj

q = O(n�q) (3.1)

for some q, 1 � q � 1, then f 2 S
��.

Proof. By Theorem 2.1 and Theorem 3.1 we only need to consider the case 1 < q <

1. Applying Theorem 3.1 it su�ces to show that
Pn

k=1 kjakj = O(n�+1): By H�older

inequality, for 1=p+ 1=q = 1, we have

nX
k=1

kjakj �
� nX
k=1

k
p�1
�1=p� nX

k=1

k
q�1jakj

q)1=q = O(n1+�
�
:

Example 2. For � > 0 there exists a function f 2 S
��, but f does not satisfy (3.1)

for any q � 1.

Proof. We consider the function f(z) in Example 1 again. So f 2 S
��. However,

for any q � 1, we have

nX
k=1

k
q�1jakj

q =

nX
k=1

k
�q�1+q a

2 � n
�q+q a

2 6= O(n�q):

Theorem 3.3. If f(z) =
P

1

n=0 anz
n
is a function in S

��
, then we have

an = O(n�); n!1: (3.2)
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Proof. From Cauchy's formula

janj =
��� 1

2�i

Z
jzj=r

f(z)

zn
dz

���

�
C

2�

�
r
1�n

(1� r)�

�

= O

�
r
1�n

(1� r)�

�
; r ! 1�:

The minimum value of the last term occurs at r0 = 1� �

n�1
. Evaluating for this r0, we

obtain
r
1�n
0

(1� r0)�
= (1�

�

n� 1
)1�n(

n� 1

�
)� = O(n�)

as n!1, and the result follows.

Example 3. There is a function f(z) =
P

1

n=0 anz
n with (3.2), but f 62 S

��.

Proof. It is easy to check that the function f(z) =
P

1

n=0 n
�
z
n satis�es (3.2), but

nX
k=0

kak =

nX
k=0

k
�+1 � n

�+2 +O(1):

It shows by Corollary 2.2 that f is not �-Shapiro Shields.

Although (3.2) is a necessary condition not a su�cient condition for f to be �-Shapiro

Shields, in case f is a Hadamard gap series we have the following result.

Theorem 3.4. Let f(z) =
P

1

k=0 ankz
nk

be analytic in D and � > 0. If f has

Hadamard gaps, that is

nk+1=nk � � > 1; k = 0; 1; � � � ;

then f 2 S
��

if and only if f satis�es

ank = O(n�
k
); n!1: (3.3)

Proof. It su�ces to prove that if f satis�es (3.3), then f 2 S
��. For each large

positive integer m, put im = maxfj : nj � mg. Then

1

m�

X
nj�m

janj j �
C

m�

imX
j=0

n
�

j

�
C

m�

imX
j=0

�
�(j�im)

n
�

im

= O

� imX
j=0

�
�(j�im)

�
= O(1):
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Applying Theorem 2.1, f 2 S
��.

4. Notes

1. If there is a result on the coe�cients for �-Shapiro Shields functions in terms of

its Taylor coe�cients an with magnitude big oh, then there is a similar result for little

�-Shapiro Shields functions in terms of an with magnitude little oh and vice versa. In

this way we may establish some results on the coe�cients of little �-Shapiro Shields

functions.

2. All results in this paper can be applied to �-Bloch functions since f 2 B
� if and

only if f 0 2 S
�� for analytic functions f . For example, Yamashita's result [4] can be

obtained by Theorem 3.4.

3. Let Lp
a(D)(1 � p � 1) be the Bergman space [3] of all analytic functions f such

that jf jp is integrable in D. Since Lp
a(D) � S

�2=p and S
�� � L

1=�+"
a (D) for " > 0 (see

[1]), some results on the coe�cients for �-Shapiro Shields functions can be held for the

functions of Bergman space.

Acknowledgements

We would like to thank the referees for their helpful suggestions.

References

[1] E. Beller, Factorization for non-Nevanlinna classes of analytic functions, Israel J. Math.,

27 (1977), 320-330.

[2] G. H. Hardy, A theorem concerning Taylor's series, Quart. J. Math., 44 (1913), 147-160.

[3] G. Horowitz, Zeros of functions in the Bergman spaces, Duke Math. J., 41 (1974), 693-710.

[4] H. S. Shapiro and A. L. Shields, On the zeros of functions with �nite Dirichlet integral and

some related function spaces, Math. Z., 80 (1962), 217-229.

[5] S. Yamashita, Gap series and �-Bloch functions, Yokohama Math. J., 28 (1980), 31-36.

Department of Applied Mathematics, Kaohsiung Polytechnic Institute, Ta-Hsu Hsiang, Kaoh-

siung County 840 Taiwan, R.O.C.

E-mail: tychern@csa500.isu.edu.tw

Department of Mathematics, Inner Mongolia Normal University, Hohhot 010022, P. R. China.

E-mail: wulan@cc.joensuu.�


