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EXISTENCE OF SOLUTIONS OF

FUNCTIONAL STOCHASTIC DIFFERENTIAL INCLUSIONS

P. BALASUBRAMANIAM

Abstract. In this paper, we prove the existence of solutions for functional stochastic di�erential

inclusion via a �xed point analysis approach.

1. Introduction

Random di�erential and integral inclusions play an important role in characterizing

many social, physical, biological and engineering problems. Theory of problems con-

cerning di�erential and integral inclusions in deterministic cases may be found in several

papers and monographs (see for example [4], [6]). A generalization of di�erential in-

clusions to 'stochastic di�erential inclusions' called multivalued stochastic di�erential

equations is obtained by replacing the term g(t) in the di�erential inclusions

x
0(t) 2 �Ax(t) + f(t; x(t)) + g(t); x(0) = x0

by a matrix G times the generalized derivative of the Brownian motion in which A is a

multivalued map, f is a Lipchitz continuous map and g is a locally integrable function.

In this case it is convenient to write, analogously to stochastic di�erential equations as

follows:

dx(t) 2 �Ax(t)dt+ f(t; x(t))dt +G(t)dB(t); x(0) = x0 (1)

For G(t) = G(t; x(t)), Kree [8] and Pettersson [9, 10] showed the existence of a soultion

of (1) in two di�erent ways. The former used a �xed point argument and the latter

approximation techniques.

Recently by the Banach �xed point theorem, Ahmed [1,2] obtained the existence

of nonlinear stochastic di�erential inclusions in in�nite dimensional spaces. The most

important problems examined up to now is one concerning the existence of solutions

of di�erential inclusions, with the basic tools used in solving this problem were mostly

the method of approximations or the Banach �xed point principle. In this paper, the
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existence of solutions of the following functional stochastic di�erenital inclusions have

been studied via integral inclusions

dx(t) 2 f(t; xt)dt+G(t; xt)dB(t); a.e t 2 I = [0; T ]

(2)
x(t) = �(t); t 2 [�r; 0];

where xt : [�r; 0] ! R
n is continuous such that xt(�) = x(t + �), belongs to the set of

all continuous functions de�ned on [�r; 0] and taking values in R
n this space is denoted

by Cr = C([�r; 0]; Rn), f is an Rn-valued continuous linear function, G is the set-valued

map, fB(t)gt�0 is a certain R
m-valued Brownian motion or Wiener process and �(t) is

a suitable initial random variable independent of B(t). First, we convert the functional

stochastic di�erential inclusion (2) into an integral inclusion, then we use Kakutani's

�xed point theroem [5] to prove the existence of solutions of the integral inclusion which

is the solution of di�erential inclusion. The considered system is an abstract formulation

of many stochastic partial di�erential equations. In the �nal section, a physical example

is worked out to illustrate the results for the system without delays.

2. Preliminaries

Throughout this paper I and J be the intervals [0; T ] and [�r; T ] respectively and '

denotes di�erentiation with respect to t. Let (
;z;P) be a complete probability space

with a right continuous and complete �ltration fzt; t 2 Ig satisfying zt � z. Let

L
2(
;z;P;Rn) be the space of all square integrable random variables with values in Rn,

that are measurable with respect to fztg. Let Br = M2(J;R
n) and B = M2(I; R

n)

respectively denote the classes of Rn-valued stochastic processes f�(t) : t 2 Jg and

f�(t) : t 2 Ig which are zt-adapted and have �nite second moments, that is,

jj�jj = sup
t

(Ej�(t)j2)1=2 <1;

here E stands for integration with respect to the probability measure P. It is easy to

verify that Br and B, furnished with the norm topology as de�ned above, are Banach

spaces. In order to ensure the existence of solutions of the di�erential inclusion (2), we

shall make the following hypotheses:

(i) fB(t)gt�0 is an m dimensional fztg adapted Brownian motion,

(ii) The functions f : I � Cr ! R
n are continuous and linear,

(iii) the set-valued map G : I�Cr ! 2L(R
m;Rn)

=', the space of nonempty subsets of the

space of linear operators from R
m to Rn, is convex such that for any (t0; �0) 2 I�B,

G(t0; �0) =
\
�>0

cl [ fG(t0; �) : Ej�� �0j
2
� �g

this is, G is upper semicontinuous in the sense of Kuratowski with respect to the

variable �. Note that, as the intersection of closed sets, each G(t0; �0) is closed,
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(iv) For the class of all random processes f�(t); t � 0g taking values from the space

L(Rm
; R

n) there exists a Borel set A � L(Rm
; R

n), a constant M > 0 with

event f�(t) 2 Ag 2 zt for all s � t < 1 and for each " > 0, a function

�" 2 L
2(I; L(Rm

; R
n)), �"(t) > 0, such that for given x 2 L

2(J;Rn) and selec-

tion v(t) 2 G(t; xt) there exists a selection �(t) 2 A with

Z T

0

jj�(t)jj2dt �M
2
; jv(t)j2 � �

2
" (t) + "�

2(t):

Let g : I �Cr be continuous and C = C(J;Rn). The variation of parameters formula for

the initial value problem (IVP)

dx(t) = f(t; xt)dt+ g(t; xt)dB(t); a:e t 2 I

x(t) = �(t); t 2 [�r; 0]

is given by [7]

xt = Z(t; �)�(�) +

Z t

�

Z(t; s)X0g(s; xs)dB;

where the operator Z(t; �) : C ! C is given by

Z(t; �)� = xt(�; �); � � t � T

such that Z(�; �) = I , Z(t; �)Z(�; s) = Z(t; s) is a solution of the homogeneous equation

x
0(t) = f(t; xt)

and X0 is de�ned by

X0(�) =

�
0; �r � � � 0

In; � = 0

where In is the identity matrix. Further we assume that

(v) Z is a bounded linear operator with bound N , continuous as follows:

For t1, t2 2 I and � > 0, there exists an " > 0 such that

jZ(t1; s)� Z(t2; s)j < " for jt1 � t2j < �;

where � is independent of s.

Now we can write the equivalent form of the di�erential inclusion (2) as the integral

inclusion

x(t) 2 Z(t; 0)�(0) +

Z t

0

Z(t; s)X0G(s; xs)dB; t 2 I

(3)
x(t) = �(t) � r � t � 0

So in order to prove the existence of solutions of the di�erential inclusion (2), we have

to prove the existence theorem for the integral inclusion (3). We prove this existence
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theorem by using the following Bohnenblust-Karlin extension of Kakutani's �xed point

theorem.

3. Existence Results

Theorem 3.1.(Bohnenblust-Karlin see [5]) Let Y be a nonempty, closed convex subset

of a Banach space X. If � : Y ! 2Y is such that

a) �(v) is nonempty and convex for each v 2 Y ,

b) the graph of �, G(�) � Y � Y is closed,

c) [f�(v); v 2 Y g is contained in a sequentially compact set C � X, then the set-valued

map � has a �xed point, that is, there exists a v0 2 Y such that v0 2 �(v0).

Since our interest is to study the existence of the solutions of the di�erential inclusion

(2), we will need to give a precise de�nition of the term solution.

De�nition 3.1. A solution of the di�erential inclusion (2) is a function x, de�ned

on J with x0(�) = �(�), �r � � � 0 and x(t)=I 2 C(I; Rn), and such that there exists

v 2 L
2(I; L(Rm

; R
n)) satisfying the inclusion v(t) 2 G(t; xt) almost everywhere on I and

for which

x(t) = Z(t; 0)�(0) +

Z t

0

Z(t; s)X0v(s)dB; 0 � t � T

Now we may recast the initial value problem as a problem for a �xed point of a set-

valued mapping as follows; we introduce two set-valued mappings whose domain D � Br

is de�ned by

D = fx 2 Br : x(t) = �(t) for t 2 [�r; 0] and x(t) 2 C(I; Rn) for t 2 Ig:

Clearly, D is a closed convex set in Br. We de�ne the set-valued maps � : D !

L
2(I; L(Rm

; R
n)) and 	 : D ! 2D respectively by

�(x) = fv 2 L
2(I; L(Rm

; R
n)); v(t) 2 G(t; xt) a.e. t on Ig (4)

and

	(x) = fz 2 D : z(t) = Z(t; 0)�(0) +

Z t

0

Z(t; s)X0v(s)dB; v 2 �(x); z = � on [�r; 0]g

(5)

Remark 3.1. Suppose that x0 2 D is a �xed point of the mapping 	 de�ned by

the relation (5), that is, suppose x0 2 	(x0). Then x0 2 D is a solution of the integral

inclusion on (3).

Theorem 3.2.[3] Under the hypotheses (iii), for each x 2 D, �(x) is not empty and

the set 	(D) de�ned by the relation (5) is an equi-absolutely integrable set and is weakly

compact in B.
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Now we prove the relative compactness of the set 	(D) and the convexity of 	(x).

Theorem 3.3. Under the hypotheses (iv) and (v), for each x 2 D, 	(x) is not empty

and the set 	(D) de�ned by the relation (5) is a relatively sequentially compact subset of

B.

Proof. First we prove that 	(x) is not empty, for all x 2 D. If we are given x 2 D,

then from Theorem 3.2, �(x) is not empty. We choose v 2 �(x) and de�ne

y(t) = Z(t; 0)�(0) +

Z t

0

Z(t; s)X0v(s)dB; 0 � t � T:

Let " > 0, be given and suppose that �1 < "=24N2
M

2.

Now for any t1, t2 2 I ,

Ejy(t1)� y(t2)j
2
� 2jZ(t1; 0)� Z(t2; 0)j

2
Ej�(0)j2

+2

Z t1

0

jZ(t1; s)� Z(t2; s)j
2
jX0j

2
Ejv(s)j2ds

+2

Z t2

t1

jZ(t2; s)jjX0j
2
Ejv(s)j2ds

� 2jZ(t1; 0)� Z(t2; 0)j
2
Ej�(0)j2

+2

Z t1

0

jZ(t1; s)� Z(t2; s)j
2
jX0j

2
E[�2�1(s) + �1�

2(s)]ds

+2

Z t2

t1

jZ(t2; s)jjX0j
2
E[�2�1(s) + �1�

2(s)]ds

jjy(t1)� y(t2)jj
2
� 2jZ(t1; 0)� Z(t2; 0)j

2
jj�(0)jj2

+2

Z t1

0

jZ(t1; s)� Z(t2; s)j
2
jj��1(s)jj

2
ds+ 4N2

�1

Z T

0

jj�(s)jj2ds

+2

Z t2

t1

jZ(t2; s)j
2
jj��1(s)jj

2
ds+ 2N2

�1

Z T

0

jj�(s)jj2ds

� 2jZ(t1; 0)� Z(t2; 0)j
2
jj�(0)jj2

+2

Z t1

0

jZ(t1; s)� Z(t2; s)j
2
jj��1(s)jj

2
ds+ 6�1N

2
M

2

+2N2

Z t2

t1

jj��1 (s)jj
2
ds

� I1 + I2 + "=4 + I3:

Now from the hypothesis (v), there exists a �2 > 0 such that

jZ(t1; 0)� Z(t2; 0)j
2
< "=8jj�(0)jj2 if jt1 � t2j < �2

that is, I1 < "=4 if jt1 � t2j < �2.
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Also since Z is bounded and ��1 2 L
2(I; L(Rm

; R
n)) then by using the Lebesque

dominated convergence theorem, for a su�ciently small �3 > 0, I2 < "=4 if jt1� t2j < �3.

Moreover, since ��1 is integrable, we may conclude that there is a �4 > 0 such that if

jt1 � t2j < �4, then Z t2

t1

jj��1(s)jj
2
ds < "=8N2and therefore I3 < "=4:

Therefore jjy(t1)� y(t2)jj
2 � "=4 + "=4 + "=4 + "=4 = ".

Hence the elements of 	(D) restricted to the interval I form an equicontinuous family.

Now choose � < minf�2; �3; �4g. Then the piecewise continuous function z de�ned by

z(t) =

(
�(t) �r � t � 0

y(t) 0 � t � T

lies in D. Hence 	(x) is not empty.

To prove the theorem, it remains to show that 	(D) is equibounded. For a given

t0 2 I ,

Ejy(t0)j
2
� 2jZ(t0; 0)j

2
Ej�(0)j2 +

Z t0

0

jZ(t0; s)j
2
jX0j

2
Ejv(s)j2ds:

Taking " = 1, in the hypothesis (iv), we have

jjy(t0)jj
2
� 2N jj�(0)jj2 +2N(M2+K

2) <1; since

Z T

0

jj�1(t)jj
2
dt = K

2
<1 (see [2]):

Therefore 	(D) is equibounded. Then by the Arzela-Ascoli theorem, any sequence fzkg

in 	(D) restricted to I has a uniformly convergent subsequence. Hence the set 	(D) is

relatively sequentially compact in B.

Theorem 3.4. For each x 2 D, the set 	(x) de�ned by the relation (5) is convex.

Proof. Let y1, y2 2 	(x). Then there exists v1(t), v2(t) 2 G(t; xt) such that

yi(t) = Z(t; 0)�(0) +

Z t

0

Z(t; s)X0vi(s)ds; i = 1; 2:

And so for 0 < � < 1, we have

�y1(t) + (1� �)y2(t) =

Z t

0

Z(t; s)X0[�v1(s) + (1� �)v2(s)]ds:

Since G(t; xt) is convex, �v1(t) + (1� �)v2(t) 2 G(t; xt) a.e in I . Therefore

�y1(t) + (1� �)y2(t) 2 	(x): Hence 	(x)is convex:

Next we will prove that the graph of 	, G(	) is closed. For that we use the following

closure theorem.
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Theorem 3.5. (see [2]). Consider the set-valued mapping G : I � Cr ! 2L
2(Rn;Rm)

and assume that G satis�es the hypothesis (iii) with respect to �. Let v, vk, x and xk

be functions measurable on I, x, xk bounded and let v, vk 2 L
2(I; L(Rn

; R
n)). Then

if vk(t) 2 G(t; xkt) a.e. in I and vk ! v weakly in L
2(I; L(Rn

; R
n)) while xk ! x

uniformly on I, then v(t) 2 G(t; xt) a.e. in I.

Theorem 3.6. Under the hypotheses (iii), (iv) and (v) the map 	 : D ! 2D has a

closed graph, that is f(x; y) 2 D �D : y 2 	(x)g is closed.

Proof. Let (xk ; yk) be a sequence of functions, yk 2 	(xk), which converges to a

limit point (x; y) of G(	). Thus xk ! x and yk ! y uniformly on I . We have to prove

that y 2 	(x).

By de�nition of 	 there exists a sequence fvkg with vk 2 �(xk) such that

yk(t) = Z(t; 0)�(0) +

Z t

0

Z(t; s)X0vk(s)ds:

Without loss of generality, we may assume that vk ! v weakly in L
2(I; L(Rn

; R
m)) and

from Theorem 3.5, v(s) 2 G(s; xs).

To prove y 2 	(x) we wish to show that y satis�es the equation

y(t) = Z(t; 0)�(0) +

Z t

0

Z(t; s)X0v(s)ds

which, for convenience, we will write symbolically as

y � v = 0 (6)

Recognizing that (yk; vk) satisfying the above relation, we may write

jy � vj
2
� 2jy � vkj

2 + 2jvk � vj
2
:

It is enough to show that the relation (6) holds pointwise.

Let us �x t0 2 I . Since fykg uniformly converges to y, we have that jy(t0)�yk(t0)j
2
< "=4.

Also since Z is bounded in (L2(I; Rn))0 and fvkg weakly converges in L
2(I; L(Rn

; R
m)),

jvk(t0)� v(t0)j
2
< "=4. Therefore given " > 0,

jy(t)� Z(t; 0)�(0) +

Z t

0

Z(t; s)X0b(s)dsj
2
< "=2 + "=2 = ":

Hence y 2 	(x) and therefore (x; y) 2 G(	), that is the graph of 	 is closed and the

proof is complete.

So far we have veri�ed that all of the hypotheses of Theorem 3.1 are satis�ed. We

may thus consider the following existence theorem.

Theorem 3.7. Under the hypotheses (iii)-(v) the set-valued map 	 : D ! 2D has a

�xed point in D; consequently, the integral inclusion (3) has a solution in D.



32 P. BALASUBRAMANIAM

Since the existence of solution to the integral inclusion (3) is equivalent to the exis-

tence of solution to the di�erential inclusion (2), we state our main theorem.

Theorem 3.8. Under the hypotheses (ii)-(iv), the di�erential inclusion (2) has a

solution.

4. Example

Example 4.1. (Coulomb damping)

An equation for describing a mechanical system with both linear viscous damping

and friction forces is as follows:

mx
00 + �x

0 + kx = r�2(x
0)B0(t); m; r; �; k > 0 (7)

where B
0(�) is an excitation force, here assumed to be white Gaussian noise; further

�2(x
0) 2 Gx

0 for the maximal monotone set-valued map G on R de�ned by

G(z) =

�
sign z; if z 6= 0

[�1; 1]; if z = 0:

For simplicity we assume the mass m is equal to 1. As customary, we rewrite the second

degree equation (7) into a �rst degree system: for u = (u1; u2) in R
2 and y 2 rGu2 let

f(t; u) =

�
u2

�ku1 � �u2

�
: v =

�
0

y

�
:

Then with � = (x; x0), the second order equation (7) may be reformulated into a multival-

ued stochastic di�erential equation of the form (2). Let f and G satisfy the hypotheses

(ii) and (iii). Then an application of Theorem 3.8, there exists a solution for the quation

(7) in D � B.
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