

# A CERTAIN NUMBER OF ZEROS OF $f^n f^{(k)} - a$ AND ITS NORMALITY

CHENG XIONG SUN

**Abstract**. In this paper, we study functions of the form  $F = f^n f^{(k)} - a$  for integers k, n and non-zero constant a. First, if all the zeros of f have multiplicity at least k, then F has at least a certain number of zeros. As an expected consequence given the Bloch Principle, families of such functions which have less than this number of zeros are normal.

# 1. Introduction and main results

We shall use the usual notations and classical results of Nevanlinna's theory in [1] such as  $T(r, f), N(r, f), \overline{N}(r, f), m(r, f)$ . we denote by  $\overline{N}_{k}(r, \frac{1}{f})$  the reduced counting function of those zeros of f which have multiplicities less than or equal to k, where k is a positive integer.

Let  $D \subset \mathbb{C}$  be a domain, and let  $\mathscr{F}$  be a family of meromorphic functions defined in D. Then  $\mathscr{F}$  is said to be normal in D, if for every sequence  $f_n \in \mathscr{F}$  there exists a subsequence  $f_{n_k}$  converges spherically locally uniformly to a meromorphic function or  $\infty$ .

The Bloch principle [2] states that every condition which reduces a meromorphic function in  $\mathbb{C}$  to be a constant forces a families of meromorphic functions in *D* to be normal. The Bloch principle is not true in general, but many authors proved normality criterion for families of meromorphic functions about Picard type theorem.

W. K. Hayman [3] proved the following theorem.

**Theorem A.** Let  $n \ge 3$  be an integer. Let f be a transcendental meromorphic function, then  $f^n f'$  assumes all finite values, except possibly zero, infinitely often.

Hayman [4] conjectured that Theorem A might be true for n = 2 and n = 1. E. Mues [5] settled the conjecture for n = 2 and the case n = 1 was proved by W.Bergweiler and A. Eremenko [6] and by H. H. Chen and M. L. Fang [7].

In 1999, Pang and Zalcman [8] considered the general order derivative of a holomorphic function, and they proved the following result.

<sup>2010</sup> Mathematics Subject Classification. Primary 30D35; Secondary 30D45.

Key words and phrases. Meromorphic functions, value distribution, normal family, zero number.

#### CHENG XIONG SUN

**Theorem B.** Let  $k(\ge 1)$ ,  $n(\ge 1)$  be two integers. Let f be a transcendental holomorphic function, all of zeros of f have multiplicity at least k, then  $f^n f^{(k)}$  assume each nonzero finite value infinitely often.

In 2003, J. K. Langley [9] proved a stronger conclusion for n = 1, k = 2.

**Theorem C.** Let  $a \in \mathbb{C} \setminus \{0\}$ . Let f be meromorphic function of positive order  $L \le \infty$  in  $\mathbb{C}$ , and with few poles, then the zeros sequence of ff'' - a has exponent of convergence L.

In the paper, we study functions of the form  $F = f^n f^{(k)} - a$  for integers k, n and non-zero constant a.

**Theorem 1.1.** Let  $k(\ge 2)$ ,  $m(\ge 1)$ ,  $n(\ge m+1)$  be three integers, let  $a \in \mathbb{C} \setminus \{0\}$ . If f be a nonconstant meromorphic function, all of whose zeros have multiplicity at least k, then  $F = f^n f^{(k)} - a$  has at least m + 1 distinct zeros.

The normality corresponding to Theorem A was conjectured by Hayman [4] and studied by L. Yang and G. Zhang [10] (for  $n \ge 5$ ), Y. X. Gu [11] (for n = 4,3), X. C. Pang [12] (for  $n \ge 2$ ) and Chen and Fang [7] (for n = 1).

In 1999, Pang and Zalcman considered the general order derivative of a holomorphic function, and they proved the following result.

**Theorem D**([8]). Let  $a \in \mathbb{C} \setminus \{0\}$  and  $k(\geq 1)$ ,  $n(\geq 1)$  be two integers. Let  $\mathscr{F}$  be a family of holomorphic functions in a unit disc  $\Delta$  such that each  $f \in \mathscr{F}$  has only zeros of multiplicity at least k. If  $f^n f^{(k)} \neq a$  for each  $f \in \mathscr{F}$  in  $\Delta$ , then  $\mathscr{F}$  is normal in  $\Delta$ .

For the related results, see Zhang [13], Wu and Xu [14], Tan et al.[15], Meng and Hu [16], Yuan et al.[17].

As an expected consequence given the Bloch Principle, families of such functions which have less than this number of zeros are normal.

**Theorem 1.2.** Let  $a \in \mathbb{C} \setminus \{0\}$  and  $k(\geq 2), m(\geq 1), n(\geq m+1)$  be three integers. Let  $\mathscr{F}$  be a family of meromorphic functions in a domain D such that each  $f \in \mathscr{F}$  has only zeros of multiplicity at least k. If  $f^n f^{(k)} - a$  has at most m distinct zeros for each  $f \in \mathscr{F}$  in D, then  $\mathscr{F}$  is normal in D.

**Example 1.3.** Let  $\Delta = \{z : |z| < 1\}$  and  $\mathscr{F} = \{f_j(z)\}$ , where

$$f_i(z) = j z^k, z \in D, j = 1, 2, \dots$$

then,  $f^m f^{(k)} - a = j^{m+1} k! z^{km} - a$  has  $km \ge m$  distinct zeros at least, and  $f^{m+1} f^{(k)} - a = j^{m+2} k! z^{k(m+1)} - a$  has  $k(m+1) \ge m+1$  distinct zeros at least, but  $\mathscr{F}$  is not normal in  $\Delta$ . This implies that both  $n \ge m+1$  and  $f^n f^{(k)} - a$  has at most m distinct zeros in Theorem 1.2 are necessary.

## 2. Some lemmas

A quasi-differential polynomial *P* of a meromorphic function *f* is defined by  $P(z) = \sum_{i=1}^{n} \varphi_i(z)$ , where  $\varphi_i(z) = a_i(z) (f(z))^{S_{i0}} (f'(z))^{S_{i1}} \cdots (f^{(t)}(z))^{S_{it}}$ ,  $\gamma_{\varphi_i} = \sum_{j=0}^{t} S_{ij}$  denotes the degree of  $\varphi_i(z)$ , where  $S_{ij}(1 \le i \le n, 0 \le j \le t)$  are non-negative integers, and  $\alpha_i(z) \ne 0$  is a meromorphic function such that  $m(r, \alpha_i) = S(r, f)$ . The number  $\gamma_P = \max_{1 \le i \le n} \gamma_{\varphi_i}$  is called the degree of quasi-differential polynomial *P*.

**Lemma 2.4** ([18], [19] p.19). Let f be a non-constant meromorphic function and P, Q be quasidifferential polynomial in f with  $Q \neq 0$ , let n be a positive integer and  $f^n P = Q$ . If  $\gamma_Q \leq n$ , then m(r, P) = S(r, f), where  $\gamma_Q$  is the degree of Q.

**Lemma 2.5** ([1, 20, 21]). Let f be a non-constant meromorphic function in  $\mathbb{C}$  and  $k \geq 1$  be a integer, then (i)  $m(r, \frac{f^{(k)}}{f}) = S(r, f)$ , (ii)  $S(r, f^{(k)}) = S(r, f)$ .

**Lemma 2.6** ([22]). Let  $\mathscr{F}$  be a family of functions meromorphic in the unit disc  $\Delta$ , all of whose zeros have multiplicity at least k. Then if  $\mathscr{F}$  is not normal in any neighbourhood of  $z_0 \in \Delta$ , there exist, for each  $\alpha$ ,  $0 \leq \alpha < k$ ,(i)points  $z_n, z_n \to z_0, z_0 \in \Delta$ ;(ii)functions  $f_n \in \mathscr{F}$ ; and (iii)positive numbers  $\rho_n \to 0^+$ , such that  $g_n(\xi) = \rho_n^{-\alpha} f_n(z_n + \rho_n \xi) \to g(\xi)$  spherically uniformly on compact subsets of  $\mathbb{C}$ , where g is a non-constant meromorphic function, all of whose zeros have multiplicity at least k.

## 3. Proof of Theorem 1.1

Proof. Set

$$F = f^n f^{(k)} - a. (3.1)$$

By (3.1) we have

$$T(r,F) = O(T(r,f)).$$
 (3.2)

Rewriting (3.1) as  $F - f^n f^{(k)} = -a$ , which leads to

$$(-a)\frac{F'}{F} = f^{n}\left[-\frac{F'}{F}f^{(k)} + n\frac{f'}{f}f^{(k)} + f^{(k+1)}\right],$$

then

$$f^n\phi = (-a)\frac{F'}{F},\tag{3.3}$$

where

$$\phi = -\frac{F'}{F}f^{(k)} + n\frac{f'}{f}f^{(k)} + f^{(k+1)}.$$
(3.4)

We shall show that  $\phi \neq 0$ . Otherwise we have  $\phi \equiv 0$ , then  $F \equiv c$ , where *c* is a constant. So  $f^n f^{(k)} \equiv a + c$ .

#### CHENG XIONG SUN

If a + c = 0, then  $f^n f^{(k)} \equiv 0$ . Since *f* has only zeros of multiplicity at least *k*, we obtain  $f \equiv$  constant, which is a contradiction.

If  $a + c \neq 0$ , noting  $f^n f^{(k)} \equiv a + c$ , and f has only zeros of multiplicity at least k, we get  $f \neq 0$ , which means that  $\frac{1}{f^n} (\equiv \frac{f^{(k)}}{a+c})$  must be an entire function. Thus, we have

$$\begin{split} nT(r,f) &= T(r,\frac{f^{(k)}}{a+c}) \leq T(r,f^{(k)}) + O(1) \\ &\leq N(r,f^{(k)}) + m(r,f^{(k)}) + O(1) \\ &\leq N(r,f) + k\overline{N}(r,f) + m(r,f) + S(r,f) \\ &\leq T(r,f) + S(r,f), \end{split}$$

this is  $(n-1)T(r, f) \le S(r, f)$ . Since  $n \ge m+1$ , we conclude that T(r, f) = S(r, f), which is a contradiction. So  $\phi \ne 0$ .

By Lemma 2.2, in view of (3.2) and by Lemma 2.1 applied to (3.3), we have  $m(r,\phi) = S(r, f)$ .

From (3.2), (3.3) and Nevanlinna's first fundamental theorem, we get

$$nm(r, f) \le m(r, \frac{F'}{F}) + m(r, \frac{1}{\phi}) + S(r, f)$$
  
=  $m(r, \frac{1}{\phi}) + S(r, f)$   
=  $N(r, \phi) + m(r, \phi) - N(r, \frac{1}{\phi}) + S(r, f)$   
=  $N(r, \phi) - N(r, \frac{1}{\phi}) + S(r, f).$ 

On the other hand, we have

$$\begin{split} N(r,\phi) &\leq \overline{N}_{k)}(r,\frac{1}{f}) + \overline{N}(r,\frac{1}{F}) + S(r,f) \\ N(r,\frac{1}{\phi}) &\geq nN(r,f) - \overline{N}(r,f). \end{split}$$

This implies

$$nT(r,f) \le \overline{N}_{k}(r,\frac{1}{f}) + \overline{N}(r,\frac{1}{F}) + \overline{N}(r,f) + S(r,f).$$
(3.5)

Noting that f has only zeros with multiplicity at least k, thus we obtain

$$\overline{N}_{k}(r,\frac{1}{f}) \leq \frac{1}{k}N(r,\frac{1}{f}) \leq \frac{1}{k}T(r,f) + S(r,f).$$

$$(3.6)$$

From (3.5) and (3.6) we have  $(n - 1 - \frac{1}{k})T(r, f) \le \overline{N}(r, \frac{1}{F}) + S(r, f)$ .

Suppose  $f^n f^{(k)} - a$  has  $l \le m$  distinct zeros, then we get

$$(n-1-\frac{1}{k})T(r,f) \le llogr + S(r,f).$$

Considering  $n \ge m + 1$ , it follows that

$$T(r, f) \le \frac{kl}{km - 1} \log r + S(r, f) \le \frac{km}{km - 1} \log r + S(r, f).$$
(3.7)

140

Thus, we deduce that *f* is a non-constant rational function satisfying  $deg f \le 2$  for k = 2, m = 1, and  $deg f \le 1$  for km > 2. Next, we consider two cases.

**Case 1.**  $deg f \le 1$  for km > 2, k > 2.

**Sub-case 1.1.** If  $f \neq 0$ , then write  $f = \frac{1}{Az+C}$ ,  $A \neq 0$ .

Obviously,  $f^n f^{(k)} - a = \frac{(-1)^k k! A^k - a(Az+C)^{n+k+1}}{(Az+C)^{n+k+1}}$  has m+2+k distinct zeros at least, a contradiction.

**Sub-case 1.2.** If *f* has at least one zero, noting that *f* has only zeros with multiplicity at least k > 2, we can get deg f > 1, which is a contradiction since  $deg f \le 1$ .

**Case 2.**  $deg f \le 2$  for k = 2, m = 1.

**Sub-case 2.1.** If *f* ≠ 0, from (3.7) we have  $(n - 1)T(r, f) \le m \log r + S(r, f)$ , this is  $T(r, f) \le \log r + S(r, f)$ .

Hence *f* is a non-constant rational function satisfying  $deg f \le 1$ , then  $f = \frac{A}{Bz+C}$ ,  $A, B \ne 0$ . we obtain  $f^n f^{(2)} - a = \frac{2A^{n+1}B^2}{(Bz+C)^{n+3}} - a$  has n+3 distinct zeros at least, a contradiction.

**Sub-case 2.2.** If *f* has at least one zero, since *f* has only zeros with multiplicity at least k = 2, then we get  $f = \frac{(z-z_0)^2}{Az^2 + Bz + C}$ .

**Sub-case 2.2.1.** *A* = 0.

**Sub-case 2.2.1.1.** B = 0. Then  $f = D(z - z_0)^2$ ,  $D \neq 0$ , it follows that  $f^n f^{(2)} - a = 2D^{n+1}(z - z_0)^{2n} - a$  has  $2n \ge 4$  distinct zeros at least, a contradiction.

**Sub-case 2.2.1.2.**  $B \neq 0$ . Then  $f = \frac{(z-z_0)^2}{Bz+C}$ . Obviously,  $\overline{N}(r, \frac{1}{f}) \leq \frac{1}{2}T(r, f) + O(1)$ ,  $\overline{N}(r, f) = \log r$ , and  $T(r, f) = 2\log r + O(1)$ .

On the other hand, from (3.5), we get  $(n - \frac{1}{2})T(r, f) \le 2\log r + S(r, f)$ . Since  $n \ge m + 1 = 2$ , then

$$T(r,f) \le \frac{4}{3}\log r + S(r,f),$$

we also get a contradiction.

**Sub-case 2.2.2.** *A* ≠ 0.

**Sub-case 2.2.2.1.** If  $Az^2 + Bz + C = A(z - z_1)^2$ , then  $f = \frac{(z - z_0)^2}{A(z - z_1)^2}$ ,  $z_0 \neq z_1$ .

From (3.7) and  $n \ge m + 1$ , we have

$$T(r,f) \le \frac{2}{n} \log r + S(r,f).$$

This shows that  $deg f \le 1$ , which contradicts the fact deg f = 2.

**Sub-case 2.2.2.** If  $Az^2 + Bz + C = A(z - z_1)(z - z_2), z_1 \neq z_2$ , then

$$f = \frac{1}{A}(1 + \frac{A_1}{z - z_1} + \frac{A_2}{z - z_2}),$$

where  $A_1 = \frac{(z_0 - z_1)^2}{z_1 - z_2}$ ,  $A_2 = -\frac{(z_0 - z_2)^2}{z_1 - z_2}$ . It follows that

$$f^{n}f^{(2)} - a = \frac{Q(z)}{A^{n+1}(z-z_{1})^{n+3}(z-z_{2})^{n+3}},$$

where  $Q(z) = 2[A_1(z-z_2)^3 + A_2(z-z_1)^3](z-z_0) - aA^{n+1}(z-z_1)^{n+3}(z-z_2)^{n+3}$ 

Obviously,  $f^n f^{(2)} - a$  has one zero at least.

Suppose that  $f^n f^{(2)} - a$  has only one zero, say  $z_0^*$ , where  $z_0^* \neq z_1, z_2$ . Then we get  $Q(z) = -aA^{n+1}(z-z_0^*)^{2n+6}$ .

Set  $Z = z - z_0^*$ , we can obtain  $(Z + z_0^* - z_1)^{n+3}(Z + z_0^* - z_2)^{n+3} = Z^{2n+6}$ . Therefore  $z_0^* = z_1 = z_2$ , which is a contradiction. Thus we deduce that  $f^n f^{(2)} - a$  has 2 = m+1 distinct zeros at least, a contradiction. This proves Theorem 1.1.

## 4. Proof of Theorem 1.2

**Proof.** Suppose that  $\mathscr{F}$  is not normal at  $z_0 \in D$ . Let  $\alpha = \frac{k}{n+1}$ . Then by Lemma 2.3, there exists a sequence of complex numbers  $z_j \to z_0$ , a sequence of functions  $f_j \in \mathscr{F}$  and a sequence of positive numbers  $\rho_n \to 0^+$  such that

$$g_j(\xi) = \rho_j^{-\frac{k}{n+1}} f_j(z_j + \rho_j \xi)$$

converges locally uniformly with respect to the spherical metric to a nonconstant meromorphic functions  $g(\xi)$  in  $\mathbb{C}$ . Also the order of g does not exceed two and by Hurwitz's theorem g has no zero of multiplicity less than k.

If  $g^n(\xi)g^{(k)}(\xi) - a \equiv 0$ , noting  $n \ge m + 1$ , and  $g(\xi)$  has only zeros of multiplicity at least k ,then  $g(\xi)$  has no poles, and thus  $g(\xi)$  is entire function. So, we have

$$\begin{split} nT(r,g) &= T(r,\frac{g^{(k)}}{a}) \le T(r,g^{(k)}) + O(1) \\ &\le N(r,g^{(k)}) + m(r,g^{(k)}) + O(1) \\ &\le N(r,g) + k\overline{N}(r,g) + m(r,g) + S(r,g) \\ &\le T(r,g) + S(r,g), \end{split}$$

this implies  $(n-1)T(r,g) \le S(r,g)$ . Since  $n \ge m+1$ , this is T(r,g) = S(r,g), which is a contradiction. So  $g^n(\xi)g^{(k)}(\xi) - a \ne 0$ .

Next, we shall show that  $g^n(\xi)g^{(k)}(\xi) - a$  has at most *m* distinct zeros. Suppose that  $g^n(\xi)g^{(k)}(\xi) - a$  has m + 1 distinct zeros  $\xi_i$  ( $i = 1, 2, \dots, m + 1$ ).

Since on every compact subset of  $\mathbb{C}$  which contains no poles of g, we get

$$g_{j}^{n}(\xi)g_{j}^{(k)}(\xi) - a = \rho_{j}^{-\frac{nk}{n+1}}\left\{f_{j}^{n}(z_{j} + \rho_{j}\xi)f_{j}^{(k)}(z_{j} + \rho_{j}\xi)\right\} - a \to g^{n}(\xi)g^{(k)}(\xi) - a,$$

also locally uniformly with respect to the spherical metric.

By Hurwitz's theorem, there exist points  $\xi_{i,i} \rightarrow \xi_i$ ,  $i = 1, 2, \dots, m+1$  such that

$$f_{j}^{n}(z_{j}+\rho_{j}\xi_{j,i})f_{j}^{(k)}(z_{j}+\rho_{j}\xi_{j,i})=a.$$

Since  $f_j^n(\xi)f_j^{(k)}(\xi) - a$  has at most *m* distinct zeros and  $z_j + \rho_j\xi_{j,i} \rightarrow z_0$ , it follows that  $z_j + \rho_j\xi_{j,i_0} = z_j + \rho_j\xi_{j,l_0}$  for some  $i_0$  and  $l_0$ . Thus  $\xi_{j,i_0} = \xi_{j,l_0}$  and hence  $\xi_{i_0} = \xi_{l_0}$ . This is a contradiction.

However, by Theorem 1.1, there do not exist non-constant meromorphic functions that have the above properties

Therefore,  $\mathcal{F}$  is normal in D and hence Theorem 1.2 is proved.

 $\Box$ 

## Acknowledgement

The author is very grateful to the referee for the valuable suggestions and comments.

## References

- [1] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [2] L. Zalcman, Normal families: New perspectives, Bull. Amer. Math. Soc. 35(1998), 215–230.
- [3] W. K. Hayman, Picard values of meromorphic functions and thire derivatives, Ann. of Math., 70(1959), 9–12.
- [4] W. K. Hayman, Research Problems of Function Theory, Athlone Press of Univ of London, London, 1967.
- [5] E. Mues, Über ein problem von Hayman, Math. Z., 164(1979), 239–259.
- [6] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana, 11 (2) (1995), 355–373.
- [7] H. H. Chen and M. L. Fang, On the value distribution of  $f^n f'$ , Sci. China Ser, A 38 (1995), 789–798.
- [8] X. C. Pang and L. Zalcman, On theorems of Hayman and Clunie, New Zealand J. Math., 28(1999), 71–75.
- [9] J. K. Langley, *The zeros of f f*<sup>"</sup> *b*, Result. Math., **44**(2003), 130–140.
- [10] L. Yang and G. Zhang, *Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples*, Un nouveau critère et quelques applications, Sci. Sinica Ser, A 14 (1965), 1258–1271.
- [11] Y. X. Gu, On normal families of meromorphic functions, Sci. Sinica Ser, A4 (1978), 373–384.
- [12] X. C. Pang, Bloch's principle and normal criterion, Sci. Sinica Ser, A11 (1988), 1153–1159.
- [13] Q. C. Zhang, Some normality criteria of meromorphic functions, Comp. Var. Ellip. Equat, 53(1) (2008), 791-795.
- [14] X. Z. Wu and Y. Xu, Normal families of meromorphic functions and shared values, Monatsh. Math., 165 (2012), 569–578.
- [15] T. V. Tan and N. V. Thin and V. V. Truong, On the normality criteria of Montel and Bergweiler-Langley, J. Math. Anal. Appl., 448(2017), 319–325.
- [16] D. W. Meng and P. C. Hu, Normality criteria of meromorphic functions sharing a holomorphic function, Ball. Malays. Math. Sci., 38(2015), 1331–1347.

### CHENG XIONG SUN

- [17] W. J. Yuan and J. J. Wei and J. M. Lin, A note on normal families of meromorphic functions concerning shared values, Discrete Dynamics in Nature and Society, Volume 2011, Article ID 463287, 10 pages, doi:10.1155/2011/463287.
- [18] W. Doeringer, Exceptional values of differential polynamials, Pacific J. Math., 98(1982), 55–62.
- [19] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin, 1993.
- [20] J. Schiff, Nomal Families, Springer, 1993.
- [21] L. Yang, Values of Distribution Theory, Springer, 1993.
- [22] X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc., 32 (2000), 325–331.

Xuanwei No.9 Senior High School, Yunnan, People's Republic of China.

E-mail: aatram@aliyun.com