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A CERTAIN NUMBER OF ZEROS OF fnf (k)
−a AND

ITS NORMALITY

CHENG XIONG SUN

Abstract. In this paper, we study functions of the form F = f n f (k)−a for integers k,n and

non-zero constant a. First, if all the zeros of f have multiplicity at least k, then F has at

least a certain number of zeros. As an expected consequence given the Bloch Principle,

families of such functions which have less than this number of zeros are normal.

1. Introduction and main results

We shall use the usual notations and classical results of Nevanlinna’s theory in [1] such as

T (r, f ), N (r, f ), N (r, f ),m(r, f ). we denote by N k)(r, 1
f ) the reduced counting function of those

zeros of f which have multiplicities less than or equal to k , where k is a positive integer.

Let D ⊂ C be a domain, and let F be a family of meromorphic functions defined in D.

Then F is said to be normal in D, if for every sequence fn ∈F there exists a subsequence fnk

converges spherically locally uniformly to a meromorphic function or ∞.

The Bloch principle [2] states that every condition which reduces a meromorphic func-

tion in C to be a constant forces a families of meromorphic functions in D to be normal. The

Bloch principle is not true in general, but many authors proved normality criterion for fami-

lies of meromorphic functions about Picard type theorem.

W. K. Hayman [3] proved the following theorem.

Theorem A. Let n ≥ 3 be an integer. Let f be a transcendental meromorphic function, then

f n f ′ assumes all finite values, except possibly zero, infinitely often.

Hayman [4] conjectured that Theorem A might be true for n = 2 and n = 1. E. Mues

[5] settled the conjecture for n = 2 and the case n = 1 was proved by W.Bergweiler and A.

Eremenko [6] and by H. H. Chen and M. L. Fang [7].

In 1999, Pang and Zalcman [8] considered the general order derivative of a holomorphic

function, and they proved the following result.
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Theorem B. Let k(≥ 1),n(≥ 1) be two integers. Let f be a transcendental holomorphic func-

tion, all of zeros of f have multiplicity at least k, then f n f (k) assume each nonzero finite value

infinitely often.

In 2003, J. K. Langley [9] proved a stronger conclusion for n = 1, k = 2.

Theorem C. Let a ∈ C \ {0}. Let f be meromorphic function of positive order L ≤∞ in C, and

with few poles, then the zeros sequence of f f
′′

−a has exponent of convergence L.

In the paper, we study functions of the form F = f n f (k)−a for integers k ,n and non-zero

constant a.

Theorem 1.1. Let k(≥ 2),m(≥ 1),n(≥ m + 1) be three integers, let a ∈ C \ {0}. If f be a non-

constant meromorphic function, all of whose zeros have multiplicity at least k, then F = f n f (k)−

a has at least m +1 distinct zeros.

The normality corresponding to Theorem A was conjectured by Hayman [4] and studied

by L. Yang and G. Zhang [10] (for n ≥ 5), Y. X. Gu [11] (for n = 4,3), X. C. Pang [12] (for n ≥ 2)

and Chen and Fang [7] (for n = 1).

In 1999, Pang and Zalcman considered the general order derivative of a holomorphic

function, and they proved the following result.

Theorem D([8]). Let a ∈ C \ {0} and k(≥ 1),n(≥ 1) be two integers. Let F be a family of holo-

morphic functions in a unit disc ∆ such that each f ∈F has only zeros of multiplicity at least

k. If f n f (k) 6= a for each f ∈F in ∆, then F is normal in ∆.

For the related results, see Zhang [13], Wu and Xu [14], Tan et al.[15], Meng and Hu [16],

Yuan et al.[17].

As an expected consequence given the Bloch Principle, families of such functions which

have less than this number of zeros are normal.

Theorem 1.2. Let a ∈C\ {0} and k(≥ 2),m(≥ 1),n(≥ m +1) be three integers. Let F be a family

of meromorphic functions in a domain D such that each f ∈F has only zeros of multiplicity at

least k. If f n f (k) −a has at most m distinct zeros for each f ∈F in D, then F is normal in D.

Example 1.3. Let ∆= {z : |z| < 1} and F =
{

f j (z)
}

, where

f j (z) = j zk , z ∈ D , j = 1,2, . . . .

then, f m f (k) − a = j m+1k !zkm − a has km ≥ m distinct zeros at least, and f m+1 f (k) − a =

j m+2k !zk(m+1)−a has k(m +1) ≥ m +1 distinct zeros at least, but F is not normal in ∆. This

implies that both n ≥ m +1 and f n f (k) − a has at most m distinct zeros in Theorem 1.2 are

necessary.
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2. Some lemmas

A quasi-differential polynomial P of a meromorphic function f is defined by P(z) =
∑n

i=1ϕi (z),

where ϕi (z) = ai (z)
(

f (z)
)Si 0

(

f ′ (z)
)Si 1

· · ·
(

f (t ) (z)
)Si t , γϕi =

∑t
j=0 Si j denotes the degree of

ϕi (z), where Si j (1 ≤ i ≤ n,0 ≤ j ≤ t ) are non-negative integers, and αi (z) 6≡ 0 is a meromor-

phic function such that m(r,αi ) = S(r, f ). The number γP = max
1≤i≤n

γϕi is called the degree of

quasi-differential polynomial P .

Lemma 2.4 ([18], [19] p.19). Let f be a non-constant meromorphic function and P, Q be quasi-

differential polynomial in f with Q 6≡ 0, let n be a positive integer and f nP =Q. If γQ ≤ n, then

m(r,P) = S(r, f ), where γQ is the degree of Q.

Lemma 2.5 ([1, 20, 21]). Let f be a non-constant meromorphic function in C and k(≥ 1) be a

integer, then (i) m(r,
f (k)

f ) = S(r, f ), (ii) S(r, f (k)) = S(r, f ).

Lemma 2.6 ([22]). Let F be a family of functions meromorphic in the unit disc ∆, all of whose

zeros have multiplicity at least k. Then if F is not normal in any neighbourhood of z0 ∈∆, there

exist, for each α, 0 ≤ α < k,(i)points zn , zn → z0, z0 ∈ ∆;(ii)functions fn ∈ F ; and (iii)positive

numbers ρn → 0+, such that gn(ξ) = ρ−α
n fn(zn +ρnξ) → g (ξ) spherically uniformly on com-

pact subsets of C, where g is a non-constant meromorphic function, all of whose zeros have

multiplicity at least k.

3. Proof of Theorem 1.1

Proof. Set

F = f n f (k)
−a. (3.1)

By (3.1) we have

T (r,F )=O(T (r, f )). (3.2)

Rewriting (3.1) as F − f n f (k) =−a, which leads to

(−a)
F ′

F
= f n[−

F ′

F
f (k)

+n
f ′

f
f (k)

+ f (k+1)],

then

f nφ= (−a)
F ′

F
, (3.3)

where

φ=−
F ′

F
f (k)

+n
f ′

f
f (k)

+ f (k+1). (3.4)

We shall show that φ 6≡ 0. Otherwise we have φ ≡ 0, then F ≡ c , where c is a constant. So

f n f (k) ≡ a +c .
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If a+c = 0, then f n f (k) ≡ 0. Since f has only zeros of multiplicity at least k , we obtain f ≡

constant, which is a contradiction.

If a + c 6= 0, noting f n f (k) ≡ a + c , and f has only zeros of multiplicity at least k , we get

f 6= 0, which means that 1
f n (≡

f (k)

a+c ) must be an entire function. Thus, we have

nT (r, f ) =T (r,
f (k)

a+c ) ≤T (r, f (k))+O(1)

≤ N (r, f (k))+m(r, f (k))+O(1)

≤ N (r, f )+k N(r, f )+m(r, f )+S(r, f )

≤ T (r, f )+S(r, f ),

this is (n − 1)T (r, f ) ≤ S(r, f ). Since n ≥ m + 1, we conclude that T (r, f ) = S(r, f ), which is a

contradiction. So φ 6≡ 0.

By Lemma 2.2, in view of (3.2) and by Lemma 2.1 applied to (3.3), we have m(r,φ) =

S(r, f ).

From (3.2), (3.3) and Nevanlinna’s first fundamental theorem, we get

nm(r, f ) ≤ m(r, F ′

F )+m(r, 1
φ

)+S(r, f )

=m(r, 1
φ

)+S(r, f )

= N (r,φ)+m(r,φ)−N (r, 1
φ

)+S(r, f )

= N (r,φ)−N (r, 1
φ )+S(r, f ).

On the other hand, we have

N (r,φ)≤ N k)(r, 1
f )+N (r, 1

F )+S(r, f ),

N (r, 1
φ

)≥ nN (r, f )−N (r, f ).

This implies

nT (r, f ) ≤ N k)(r,
1

f
)+N (r,

1

F
)+N (r, f )+S(r, f ). (3.5)

Noting that f has only zeros with multiplicity at least k , thus we obtain

N k)(r,
1

f
) ≤

1

k
N (r,

1

f
) ≤

1

k
T (r, f )+S(r, f ). (3.6)

From (3.5) and (3.6) we have (n −1− 1
k )T (r, f )≤ N (r, 1

F )+S(r, f ).

Suppose f
n

f (k) −a has l ≤ m distinct zeros, then we get

(n −1−
1

k
)T (r, f ) ≤ l l og r +S(r, f ).

Considering n ≥m +1, it follows that

T (r, f ) ≤
kl

km −1
l og r +S(r, f ) ≤

km

km −1
l og r +S(r, f ). (3.7)
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Thus, we deduce that f is a non-constant rational function satisfying deg f ≤ 2 for k = 2,m =

1, and deg f ≤ 1 for km > 2. Next, we consider two cases.

Case 1. deg f ≤ 1 for km > 2,k > 2.

Sub-case 1.1. If f 6= 0, then write f =
1

Az+C , A 6= 0.

Obviously, f n f (k)−a =
(−1)k k !Ak−a(Az+C )n+k+1

(Az+C )n+k+1 has m+2+k distinct zeros at least, a contra-

diction.

Sub-case 1.2. If f has at least one zero, noting that f has only zeros with multiplicity at least

k > 2, we can get deg f > 1, which is a contradiction since deg f ≤ 1.

Case 2. deg f ≤ 2 for k = 2,m = 1.

Sub-case 2.1. If f 6= 0, from (3.7) we have (n − 1)T (r, f ) ≤ ml og r + S(r, f ), this is T (r, f ) ≤

log r +S(r, f ).

Hence f is a non-constant rational function satisfying deg f ≤ 1, then f =
A

B z+C , A,B 6= 0.

we obtain f n f (2) −a =
2An+1B 2

(B z+C )n+3 −a has n +3 distinct zeros at least, a contradiction.

Sub-case 2.2. If f has at least one zero, since f has only zeros with multiplicity at least k = 2,

then we get f =
(z−z0)2

Az2+B z+C .

Sub-case 2.2.1. A = 0.

Sub-case 2.2.1.1. B = 0. Then f = D(z − z0)2, D 6= 0, it follows that f n f (2) − a = 2Dn+1(z −

z0)2n −a has 2n ≥ 4 distinct zeros at least, a contradiction.

Sub-case 2.2.1.2. B 6= 0. Then f =
(z−z0)2

B z+C . Obviously, N (r, 1
f ) ≤ 1

2 T (r, f )+O(1), N (r, f ) = log r ,

and T (r, f ) = 2log r +O(1).

On the other hand, from (3.5), we get (n −
1
2 )T (r, f ) ≤ 2log r +S(r, f ). Since n ≥ m +1 = 2,

then

T (r, f )≤
4

3
log r +S(r, f ),

we also get a contradiction.

Sub-case 2.2.2. A 6= 0.

Sub-case 2.2.2.1. If Az2 +B z +C = A(z − z1)2, then f =
(z−z0)2

A(z−z1)2 , z0 6= z1.

From (3.7) and n ≥m +1, we have

T (r, f ) ≤
2

n
l og r +S(r, f ).

This shows that deg f ≤ 1, which contradicts the fact deg f = 2.
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Sub-case 2.2.2.2. If Az2 +B z +C = A(z − z1)(z − z2), z1 6= z2, then

f =
1

A
(1+

A1

z − z1
+

A2

z − z2
),

where A1 =
(z0−z1)2

z1−z2
, A2 =−

(z0−z2)2

z1−z2
. It follows that

f n f (2)
−a =

Q(z)

An+1(z − z1)n+3(z − z2)n+3
,

where Q(z) = 2[A1(z − z2)3 + A2(z − z1)3](z − z0)−a An+1(z − z1)n+3(z − z2)n+3

Obviously, f n f (2) −a has one zero at least.

Suppose that f n f (2) −a has only one zero, say z∗
0 , where z∗

0 6= z1, z2. Then we get Q(z) =

−a An+1(z − z∗
0 )2n+6.

Set Z = z−z∗
0 , we can obtain (Z +z∗

0 −z1)n+3(Z +z∗
0 −z2)n+3 = Z 2n+6. Therefore z∗

0 = z1 =

z2, which is a contradiction. Thus we deduce that f n f (2)−a has 2=m+1 distinct zeros at least,

a contradiction. This proves Theorem 1.1. ���

4. Proof of Theorem 1.2

Proof. Suppose that F is not normal at z0 ∈ D. Let α=
k

n+1 . Then by Lemma 2.3, there exists

a sequence of complex numbers z j → z0, a sequence of functions f j ∈ F and a sequence of

positive numbers ρn → 0+ such that

g j (ξ) = ρ
−

k
n+1

j f j (z j +ρ jξ)

converges locally uniformly with respect to the spherical metric to a nonconstant meromor-

phic functions g (ξ) in C. Also the order of g does not exceed two and by Hurwitz’s theorem g

has no zero of mulitiplicity less than k .

If g n(ξ)g (k)(ξ)−a ≡ 0, noting n ≥ m +1, and g (ξ) has only zeros of multiplicity at least k

,then g (ξ) has no poles, and thus g (ξ) is entire function. So, we have

nT (r, g )= T (r,
g (k)

a ) ≤ T (r, g (k))+O(1)

≤ N (r, g (k))+m(r, g (k))+O(1)

≤ N (r, g )+k N(r, g )+m(r, g )+S(r, g )

≤ T (r, g )+S(r, g ),

this implies (n −1)T (r, g ) ≤ S(r, g ). Since n ≥ m +1, this is T (r, g ) = S(r, g ), which is a contra-

diction. So g n(ξ)g (k)(ξ)−a 6≡ 0.

Next, we shall show that g n(ξ)g (k)(ξ) − a has at most m distinct zeros. Suppose that

g n(ξ)g (k)(ξ)−a has m +1 distinct zeros ξi (i = 1,2, · · ·,m +1).
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Since on every compact subset of C which contains no poles of g , we get

g n
j (ξ)g (k)

j (ξ)−a = ρ
−

nk
n+1

j

{

f n
j (z j +ρ jξ) f (k)

j (z j +ρ jξ)
}

−a → g n(ξ)g (k)(ξ)−a,

also locally uniformly with respect to the spherical metric.

By Hurwitz’s theorem, there exist points ξ j ,i → ξi , i = 1,2, · · ·,m +1 such that

f n
j (z j +ρ jξ j ,i ) f (k)

j (z j +ρ jξ j ,i ) = a.

Since f n
j (ξ) f (k)

j (ξ)− a has at most m distinct zeros and z j +ρ jξ j ,i → z0, it follows that

z j +ρ jξ j ,i0
= z j +ρ jξ j ,l0

for some i0 and l0. Thus ξ j ,i0
= ξ j ,l0

and hence ξi0
= ξl0

. This is a

contradiction.

However, by Theorem 1.1, there do not exist non-constant meromorphic functions that

have the above properties

Therefore, F is normal in D and hence Theorem 1.2 is proved. ���
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