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COMPLEX-PARAMETER INTEGRAL ITERATIONS OF
CARATHEODORY MAPS

KUNLE OLADEJTI BABALOLA AND MASHOOD SIDIQ

Abstract. Recent studies in the class of Bazilevi¢ maps as a whole has compelled the de-
velopment, in this work, of certain complex-parameter integral iterations of Caratheodory
maps. The iterations are employed in a similar manner as in [1] to study a certain sub-
family of those Bazilevi¢ maps.

1. Background

Recently, Babalola in [2] devised a new approach to the study, as a whole, of the well
known schlicht Bazilevi¢ maps defined as

1+if

a

f(z)={1+ﬁ2fo [p(6) - ipIt

in the sense that the parameter f is no longer assumed zero. In the representation (1.1), z

(1+%)g(t)($)dt} ! (1.1)

lies in the unit disk E = {z: |z| < 1}, f(z) is a regular function of the form f(z) = z+ ayz® +---
normalized by f(0) = 0 and f'(0) = 1 whose class is designated A. The subclass of A that
contains schlicht maps only is denoted by S. The map g € Sis starlike (that is Re zg'(z)/g(z) >
0). The map p(z) =1+c;z+--- is Caratheodory (that is p(0) = 1 and Re p(z) > 0) and its family
is denoted by P. The parameters a and  are real with a > 0 and all powers meaning principal
determinations only.

The method of analysis employed by Babalola in [2] involved the modification of the nor-
malization of the Caratheodory maps as h(z) = p(z) +iu/n=1+ip/n+c1z+--- where y and
n are real with n > 0, A = n+ iy and p € P; and denoted the class of h(z) by P, which for
convenience we shall replace by H) in this paper. He thus defined a new class B(A, g) of maps
satisfying

z2(f@")

nzifg(am < 2
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The new definition therefore includes the Bazilevic maps as the case A = a/(1+if).
Using the Salagean derivative D" defined as
D" f(2)=D(D""! f(2)) = 2ID" "' f(2))'
with D° f(z) = f(2) [7], Babalola in [3] further generalized (1.2) as B,, (A, g) consisting of maps
f (2) which satisfy

an(z)/l

_ 1.3
n/ln—lzl,ug(z)n € ( )

and then chose g(z) = z for which he obtained a number of properties of B, (1) = B, (A, 2).

In the present paper, we shall study (1.3) also for g(z) = z and h(z) = p(z) + iu/n with
Re p(z) >y, 0 <y < 1and H,(y) is designated the class of such functions. Hence for some

h € Hy(y), we have

D" f()* - Xk
———=14+i—+(1-7) ) =z (1.4)
T’/ln—lle T] kgl

so that

o0
D' f(@*=A" +(1-7) Y nA" et
k=1

Applying the Salagean integral, I, also defined in [7] as

Z
Iy = (1 f(2)) = fo (s f(0)/ dt
with Iy f(z) = f(z), and with some computation, we obtain

ﬂf(Z)A U oo( 2 )n .
o it =1+0-p Y .
nzA lTI +( }/)kZI Tk Crz

The right-hand side of the above equation is

A (%,
m'”(Z):?fo M pr o (ndt, (1.5)

with py ¢(z) = p(z) is a Caratheodory map of order y, and it is the justification for our study.
We call p, ,(z) the complex-parameter n-th integral iterations of p € P(y), and its class is
designated by P, ,(y). Throughout this paper, the word ‘iterations’ shall imply the phrase

‘n-th complex-parameter integral iterations’.
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2. The iterations of P(y)

First, we observe that the new iterations of Caratheodory maps of order y agrees in struc-
ture with the iterations in [1] and fortunately the complex parameter A has the desired pos-
itive real part. Therefore since py(z) = p € P(y), then the iterations p, ,(z) is analytic and
pa,n(0) = 1. It follows from (1.5) that if p € P(y), then

A n
pan(z) =1+ ch xz* where ¢, ;= (1- y)( ) Ck 2.1)
=1 A+k

and therefore

<2(1- a—
|Cn,k|< ( Y)’A

With py(2) = Ly(z) = [1+(1-2y)z]/(1-2), then the iterations, L, ,(z), of the Moebius map

is given as
Ly ,(2)= 1/ A= 1L;L (Hdt=1+2(1-y) Z ( A )nzk
ET A o A+k) <
The iterations L, ,(z) plays a central role with respect to the extremal problem.

As noted in [1], we remark that for complex parameters A and v both having positive real

parts, if we denote p ,(2) by)( (p(z)) then for any p € P(y) and m, n € Ny, we have
X Y (p@) = 1 () (p(2))
and for A = v, it yields
AP @) =15 P (p(2) = x5 (p(2)).

We note here that the case y =0, n > 0 and y = 0 yields P; ,(0) = P,, the iterated integral
transforms of Caratheodory maps defined in [1].

Next, we characterize the new iterations, p, ,(z). The proofs follow mutatis mutandis as
in [1]. However we again give the proofs for completeness and clarity of this paper, noting

that Re A > 0 where appropriate.

Theorem 1. Lety # 1 be a non negative real number. Then forne N

Repj n-1(z) >y implies Rep) ,(z) >y, for0O<y <1
and

Repj,n-1(2) <y impliesRe p) ,,(z) <y, fory > 1.
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Proof. On differentiation of (1.5), we have
Azt Pa,n(2) + 4 P'M(Z) =12 "' ppi(2)

which yields

z p%,n(z)

/1 = pn—l (Z)' (2~2)

p/l,n(z) +

It follows by the proof of Theorem 3.1 in [1] that

2P}

1 ) =Re py-1(2) >7y.

Re (p/l,n(z) +

This implies that Re p) ,(z) >y for0 <y <1and

2P)a(?
Re| pan(@) + ———|=Re pp-1(a) <.

This implies that Re p) ,(2) <y fory > 1. a

Corollary 1.
Pyn(y)cP(y), ne N.

Proof. Since p(z) = p(z) € P(y), then Re p(z) >y. Hence by Theorem 1, we have, Re p, ;(z) >
Y. Also p1(z) € P(y), thus Re p, 2(2) >y and so on for all n € N. Therefore Py ,(y) < P(y). 0O

Theorem 2.

Prns1(yY) € Py n(y), neN.
Proof. Let py 11 € Py ,41(y), hence, there exist p € P(y) such that

pan+1(@) =M (p(2))

(D (@]

(nM (x;"” (p(2))) and using Corollary 1, we have ;" (p(z)) €

as earlier noted, then py ,.1(2) = x
P(y). Hence p, ,+1 is the nth integral transform of a function in P(y), thatis, p, ,+1 belongs
to P, ,,. Therefore Py ,,.1(y) € Py n(y). O

Corollary 2. Letp e P(y) and Re A+ c>0. Then

00 Cr ‘
=1+(1-pQA 2 E
qz) =1+ Q1-7)( +C)k§1)t+c+kz z€

isalsoin P(y).



COMPLEX-PARAMETER INTEGRAL ITERATIONS 293

Proof. Let q(z) € Py4c,1(y), then we have

A+c [* _
q(2) = pr+e1(2) = z“cfo M po(nd.

Hence

[ee) Ck s
=1+(1-
q(z) =1+( Y)(“C)k;m(:mz

is also in P(y). Oa

In the next result we shall proof the surbordination p, , < L, , using the technique of
Briot-Bouquet differential subordination. A function p € P is said to satisfy the Briot-Bouquet
differential subordination if

!
p+ P h), zeE 2.3)
np2)+y

where 11 and y are complex constants and /h(z) a complex function satisfying h(0) = 1, and
Re(nh(z) +7y) > 01in E. It is well known that if p € P satisfies the Briot-Bouquet differential
subordination, then p(z) < h(z) [5].

A univalent function g(z) is said to be a dominant of (2.3) if p(z) < g(z) for all p(z) satis-
fying (2.3). If g(z) is a dominant of (2.3) and g(z) < g(z) for all dominants g(z) of (2.3), then
q(z) is said to be the best dominant of (2.3).

Theorem 3. p) , <L ,.

From (2.2) we have
2py, @
pr1(2) + 71 = p(2).

Now since p € P, then p < Ly(z) = (1+ (1 -2y)z)/(1 — z) so that

20, @
pa1(2) + T < Ly(2).
However the differential equation
zq'(2)
g2+ L = 1y(2)

has univalent solution
A
qy(z):—lf t"Lo(dt =1Ly (2)
zM Jo

which, by the principle of the Briot-Bouquet differential subordination, is the best dominant.

Similarly, from (2.2),
zp') ,(2)

)

pr2(2) + 1

<Ly:1(2),
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while the differential equation
z2q'(2)

q(z) + =Ly1(2)

also has univalent solution
N
qy(2) = 7[ " Ly (Dde =Ly »(2)
z* Jo

which again, by the principle of the Briot-Bouquet differential subordination, is the best dom-

inant. Continuing, we have that

z2p),,(2)
pan(z) + T <Ly n-1(2),

with the differential equation
zq'(2)

q(z)+ = L/l,n—l(z)

having univalent solution

A%
qy(2) = 7[ L e (D dE = Ly (2).
z Jo
This implies that p, ;, < Ly, which completes the proof.

Theorem 4. P, ,(y) is a convex set.

Proof. Let py,,(Y), ga,n(y) € Py, »(y). Then for non negative real numbers 7; and 7, with 77 +

To =1, we have
L
T1P/1,n(Z)+T261/1,n(Z)=? A TPt + T2 qna | (DAt

with 71pa0(2) +T2q,0(2) = p(2) € P(y).
Now for n =1, it yields

k2 e Py u(y).

=1+(1-
T1pA,1(2) +T2q2,1(2) =1+ ( Y),;/Hk

Suppose, it is true for n = v — 1, thus

(o] 2 v-1
T1PA-1(2) +T2gp,p-1(2) =1+ (1 -7) ) (—) ckz’ € Py ,(y).
i1 \A+k

Now forn=1v

£ a1 R R
t" 1+ (11— R — t“ldt
( y)k;(“k) o

A
T1 PA,U(Z) +T261/1,U(Z) = _Af
zZ"Jo

(e8]

=1+(1-p ) ) crzk € Py (y).
k=1

A+k
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Therefore, Py, n(y) is a convex set. Oa

The lower bound in the next theorem is not the best possible. We provide the proof of our
estimate and follow that with our expectation.

Theorem 5. Let p) , € Py ,(y). Then

o0 n
<1+2(1- — | K zl=
|pa,n(2)] ( y)k; T A=
and
Remn(z)zl—zu—y)f — nrk, lz|=T.
' ioIA+k
Proof. For the lower bound, then from (2.1), we have
o0 n k
Ipan@ -1 <2(1-7) ) [—| I~
8 =+ k
Hence
o0 n
Re (prn(2)—1)=-2(1-7) Y || rk
" =+ k
so that
o0 n k
R >1-2(1- — .
e pan(2) ( Y)k; rowA

Conjecture: Let p) , € Py ,(y). Then

" k
(=n%, lzl=r.

A+k

oo
Repin(2)=1+2(1-y) ).
k=1

3. Some applications of P, ,(y)

Here we present several different applications of the iterations p, , of Caratheodory maps

to the study of a new subclass B;}(y) of Bazilevi¢ maps. We begin with
Definition 3.1. A regular map f € A belongs to the class B} (y) if and only if

an(z)l

panign <A

where all parameters have their usual definitions.
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Remark 1. (i) If y = 0, we recovers the class B, (1) studied in [3].

(i) If u = 0, we then deduce the class BZ(}/) which is equivalent to class T;Z (y) studied in [1, 6]
with change in notation as a matter of convenience. (iii) For all f € B%(y), Equations (1.4)
and (1.5) hold for some p € P, (y). Hence we have the following relation between P, ,(y) and
B} (y) which will be used in our characterization of the class B}}(y):

Lemma 1. Let f € A, then the following are equivalent:

(i) feBly),

... D"f(2)*
(i) Drier € Pa(y),

oo AfRDY .
(iif) j;T‘j — il e Py,
Proof. If f € A, then by Definition 3.1 it is clear that (i)« (ii). Now (ii) is true < there exist

h € P(y) such that

D" f(2)* iu iu X,
———=h(z) = +—=1+—+
AT (2) = p(2) " " () kEZICk z

for some p € P(y), so that

D' f(2*=A"Z + (1 -7) Y nA" e MR 3.1)
k=1

Applying on (3.1) the integral operator, I,,, defined by Salagean (1983) as

I, 1f(t
If(2) = 1(I,-1f(2) :j(; %dt

with Iy f(z) = f(z) and with some computation we have

Af(2)* M m( A)" ‘
=1+i—+1- — | ckz".
nzt n ( Y)k; A+k) k
Therefore
Af@* “( A)" K
—i—=14+(1- P .
nzh lTI ( Y)kgl T k] CkF € Pyn(y)
This proves the Lemma. O

Now we discuss properties of the class B} (y).

Theorem 6.
By () € By ().
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Proof. Let f € Bﬁ +1(7). Then by Lemma 1 we have

Af(z)/l U 00( 1 )n+1 P
—i—=1+01- — Crz
nzh m ( Y)kgl Tk k

which implies

Af*
/ rami ile Prnt1(y).
nz n
Then by Theorem 2
Af@*  u
————1i—€P .
Hence by Lemma 1 again, f € B} (y). O

Corollary 3. For n=1, B}y) consists of schlicht maps only.

Proof. For n = 1, by Theorem 7 and Remark 3 we have Bﬁ anc Bﬁ(y) and Bﬁ(y) c B, (),
which is known to consist only of schlicht maps for n = 1 (see Corollary 1 in [1]). Therefore

the assertion follows. O

Theorem 7. Let f € B](y). Then the integral

F(z)} = A;Cf L rotde 3.2)
0

isalsoin B%(y).

Proof. From (3.2) we have

AF(2)* O )L+cfz -1 Af () M

Now suppose f € B}(y) and let v = A + ¢ be a complex number, then we have

ntt 1

AF(2)* z Af(t

(i) _.u:%f t”‘l( f '”)dt.
nz n z*%Jo

Hence, we have

F A
@ _ i = e = 1 " e,

nzt

With Corollary 1, )((1”) (p(2)) € P(y), thus 7((,,’1) ()((1”) (p(2))) € Py ,(y), which implies that M;(TZA)A -

i% € Py »(y). Therefore by Lemmall, F € B%(y). O
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Theorem 8. Let f € B)\(y) and define

o0
Mr(n A%y, n=1+20-p) Y ALk
k=1
and

mr(n, A%y, r)=1-2(1-7y) Y Azr"
k=1

where A* =n|A|""Y/|A+k|". Then

mr(n, A"y, r) < <Mr(n, A"y, 1).

)

The inequality on the right side is sharp while the one on the left is not.

Proof. Taking p) ,(z) = % - i% in Theorem 6, we have
Af@* S ( A ) ‘
——i—=14+01- — .
nzt n ( Y)k; A+k) FF
Then
f(Z)) n-1 k
—| =1+(1-y)nA .
( z =y Z (/1+k)”
Using triangle inequality, then we have
f(z)) iR
— | |=s1+2(1- A
( - A =ynlAl PIATYT

o0
<1+20-7) Y Aprk
k=1

For lower bound, we have

A
Re (f(z)

rk

A+ kI

ZA

) -2 -y 12

Hence A
Re (@) >1-2(1-p) Y Aprk
z k=1

which concludes the proof.

Theorem 9. Let f € B}(y) and define

My, Ay, 1) =1+2(1— y)Z/l** k
k=1
and
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mi(n, Ay, 1) =1-2(1— y)Z)L** k
k=1

where \** =n|A|"2/|A+ k|""'. Then

f@M1f(2)

g < Mz(n, A", y,1).

my(n,A*",y,r) <

The inequality on the right side is sharp while the one on the left side is not.

Proof. Since f € Bﬁ(y), then by Lemma 1 there exist p, , € P, ,(y) such that

Af@Y  p
—i—= 2).
T]Z’l n pl,n( )
Then we differentiate to get
Af@Mf(2) 2P} (2)
T—lﬁzpl,n(Z)‘F /1 . (33)
Hence from (1.5) we have
2P} ,(2)
Pan(2)+ . = pa,n-1(2). (3.4)
Now substitute (3.4) in (3.3), then (3.3) now becomes
Af@Yf(z) .
% - ZH = pa,n-1(2).
nz n
with
n—1 &
Prn-1(2) =1+ (1- Y)Z(/1+k) CrZ .
Hence by triangular inequality, we have
") _ n2 rk
- 1+2(1- A P ———
o (I=y)nlAl Lk

<1+2(1-y) Z/l** K,
k=1

This bound is sharp. For the lower bound, we have

/lf(z)/l—lf/(z) W ~ 00( 2 )n—l .
—_lﬁ_l_(l_Y)kg:lm crz".

T’Z/l—l
@@ i n-2 r*
e ] ULl W

> 2(1 ')/)Z/l** k
k=1
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Therefore .
f(Z) f/(Z) > * % k
- 1-2(1- 1
( i a-y kZl
The bound is not the best possible. a

Af(2)" (2t
Tzt

Theorem 10. The set of points - % foreach f € BM(y), z € E is convex.

Proof. Since for each f € B%(y), the point % - % € P) »(y), then by Theorem 5, the result
follows. O

4. Consequences

We state here the analogues of Theorems 8 to 11 for class B(a, 8) = B(a, 8, z) of Bazilevic
maps. This is achieved by setting A = a/(1 + i) so thatn = a/(1 + %), u = —af/(1+ B?); and
taking n =1 and y = 0 in the theorems, we have respectively:

Corollary 4. Let f € B(a, B). Then the function F(z) defined by
o a+c(l+if) [ . —a
F +if = — - T t 1) 1+ip dl’
(2) A+ip)z° Jo f
isalso in B(a, B).
Corollary 5. Let f € B(a, B) and define
oo

a k
r

Mr(a,B,r)=1+2

and

mr(a,p,r)=1 .
r@p ; VTPl 2s o]

a

Then mr(a,B, 1) < ‘(ﬁ)m < Mr(a, B,r). The inequality on the right side is sharp while the

z

one on the left is not.

Corollary 6. Let f € B(a, B) and define
k

M (a, B, r)_1+2z 7
+

and

&

my(a,B,r)=1- 22

T

1+,[32
a-1-iff

Then mi.(a,B,r) < ’(f%) TP £1(z)

while the one on the left is not.

< M3 (a,p,r). The right hand side inequality is sharp

a

Corollary 7. The set of points (1 —if3) (ﬁ) iy ip foreach f € B(a, ), z€ E is convex.

z
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