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COMPLEX-PARAMETER INTEGRAL ITERATIONS OF

CARATHEODORY MAPS

KUNLE OLADEJI BABALOLA AND MASHOOD SIDIQ

Abstract. Recent studies in the class of Bazilevič maps as a whole has compelled the de-

velopment, in this work, of certain complex-parameter integral iterations of Caratheodory

maps. The iterations are employed in a similar manner as in [1] to study a certain sub-

family of those Bazilevič maps.

1. Background

Recently, Babalola in [2] devised a new approach to the study, as a whole, of the well

known schlicht Bazilevič maps defined as

f (z)=

{
α

1+β2

∫z

0
[p(t )− iβ]t

−

(
1+

iαβ

1+β2

)

g (t )

(
α

1+β2

)

d t

} 1+iβ

α

(1.1)

in the sense that the parameter β is no longer assumed zero. In the representation (1.1), z

lies in the unit disk E = {z : |z| < 1}, f (z) is a regular function of the form f (z) = z +a2z2 +·· ·

normalized by f (0) = 0 and f ′(0) = 1 whose class is designated A. The subclass of A that

contains schlicht maps only is denoted by S. The map g ∈ S is starlike (that is Re zg ′(z)/g (z) >

0). The map p(z)= 1+c1z+·· · is Caratheodory (that is p(0) = 1 and Re p(z)> 0) and its family

is denoted by P . The parameters α and β are real with α> 0 and all powers meaning principal

determinations only.

The method of analysis employed by Babalola in [2] involved the modification of the nor-

malization of the Caratheodory maps as h(z) = p(z)+ iµ/η= 1+ iµ/η+ c1z +·· · where µ and

η are real with η > 0, λ = η+ iµ and p ∈ P ; and denoted the class of h(z) by Pλ, which for

convenience we shall replace by Hλ in this paper. He thus defined a new class B (λ, g ) of maps

satisfying

z
(

f (z)λ
)′

ηziµg (z)η
∈ Hλ. (1.2)
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The new definition therefore includes the Bazilevič maps as the case λ=α/(1+ iβ).

Using the Salagean derivative Dn defined as

Dn f (z)= D(Dn−1 f (z)) = z[Dn−1 f (z)]′

with D0 f (z) = f (z) [7], Babalola in [3] further generalized (1.2) as Bn(λ, g ) consisting of maps

f (z) which satisfy

Dn f (z)λ

ηλn−1ziµg (z)η
∈ Hλ (1.3)

and then chose g (z) = z for which he obtained a number of properties of Bn(λ) ≡Bn(λ, z).

In the present paper, we shall study (1.3) also for g (z) = z and h(z) = p(z)+ iµ/η with

Re p(z) > γ, 0 ≤ γ < 1 and Hλ(γ) is designated the class of such functions. Hence for some

h ∈ Hλ(γ), we have

Dn f (z)λ

ηλn−1zλ
= 1+ i

µ

η
+ (1−γ)

∞∑

k=1

ck zk (1.4)

so that

Dn f (z)λ =λn zλ
+ (1−γ)

∞∑

k=1

ηλn−1ck zλ+k .

Applying the Salagean integral, In , also defined in [7] as

In = I (In−1 f (z)) =

∫z

0
[(In−1 f (t ))/t ]d t

with I0 f (z) = f (z), and with some computation, we obtain

λ f (z)λ

ηzλ
− i

µ

η
= 1+ (1−γ)

∞∑

k=1

(
λ

λ+k

)n

ck zk .

The right-hand side of the above equation is

pλ,n(z) =
λ

zλ

∫z

0
tλ−1pλ,n−1(t )d t , (1.5)

with pλ,0(z) = p(z) is a Caratheodory map of order γ, and it is the justification for our study.

We call pλ,n(z) the complex-parameter n-th integral iterations of p ∈ P(γ), and its class is

designated by Pλ,n(γ). Throughout this paper, the word ‘iterations’ shall imply the phrase

‘n-th complex-parameter integral iterations’.
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2. The iterations of P(γ)

First, we observe that the new iterations of Caratheodory maps of order γ agrees in struc-

ture with the iterations in [1] and fortunately the complex parameter λ has the desired pos-

itive real part. Therefore since p0(z) = p ∈ P(γ), then the iterations pλ,n(z) is analytic and

pλ,n(0) = 1. It follows from (1.5) that if p ∈ P(γ), then

pλ,n(z) = 1+
∞∑

k=1

cn,k zk where cn,k = (1−γ)

(
λ

λ+k

)n

ck (2.1)

and therefore

|cn,k | ≤ 2(1−γ)

∣∣∣∣
λ

λ+k

∣∣∣∣
n

.

With p0(z) = L0(z) = [1+(1−2γ)z]/(1−z), then the iterations, Lλ,n(z), of the Moebius map

is given as

Lλ,n(z) =
λ

zλ

∫z

0
tλ−1Lλ,n−1(t )d t = 1+2(1−γ)

∞∑

k=1

(
λ

λ+k

)n

zk .

The iterations Lλ,n(z) plays a central role with respect to the extremal problem.

As noted in [1], we remark that for complex parameters λ and ν both having positive real

parts, if we denote pλ,n(z) by χ(λ)
n (p(z)), then for any p ∈ P(γ) and m,n ∈ N0, we have

χ(ν)
m (χ(λ)

n (p(z))) = χ(λ)
n (χ(ν)

m (p(z)))

and for λ= v , it yields

χ(λ)
n (χ(ν)

m (p(z))) =χ(ν)
m (χ(λ)

n (p(z))) = χ(λ)
n+m(p(z)).

We note here that the case µ = 0, η > 0 and γ = 0 yields Pη,n(0) ≡ Pn , the iterated integral

transforms of Caratheodory maps defined in [1].

Next, we characterize the new iterations, pλ,n(z). The proofs follow mutatis mutandis as

in [1]. However we again give the proofs for completeness and clarity of this paper, noting

that Re λ> 0 where appropriate.

Theorem 1. Let γ 6= 1 be a non negative real number. Then for n ∈ N

Re pλ,n−1(z) > γ implies Re pλ,n(z) > γ, for 0 ≤γ< 1

and

Re pλ,n−1(z) < γ implies Re pλ,n(z) < γ, for γ> 1.



292 KUNLE OLADEJI BABALOLA AND MASHOOD SIDIQ

Proof. On differentiation of (1.5), we have

λ zλ−1 pλ,n(z)+ zλ p ′
λ,n(z) =λ zλ−1pn−1(z)

which yields

pλ,n(z)+
z p ′

λ,n
(z)

λ
= pn−1(z). (2.2)

It follows by the proof of Theorem 3.1 in [1] that

Re

(
pλ,n(z)+

z p ′
λ,n

(z)

λ

)
= Re pn−1(z) > γ.

This implies that Re pλ,n(z) > γ for 0 ≤ γ< 1 and

Re

(
pλ,n(z)+

z p ′
λ,n

(z)

λ

)
= Re pn−1(z) <γ.

This implies that Re pλ,n(z) < γ for γ> 1. ���

Corollary 1.

Pλ,n(γ) ⊂P(γ), n ∈ N .

Proof. Since p0(z)= p(z) ∈ P(γ), then Re p(z)> γ. Hence by Theorem 1, we have, Re pλ,1(z) >

γ. Also p1(z) ∈ P(γ), thus Re pλ,2(z) > γ and so on for all n ∈ N . Therefore Pλ,n(γ) ⊂ P(γ). ���

Theorem 2.

Pλ,n+1(γ) ⊂Pλ,n(γ), n ∈ N .

Proof. Let pλ,n+1 ∈ Pλ,n+1(γ), hence, there exist p ∈ P(γ) such that

pλ,n+1(z) = χ(λ)
n+1(p(z))

as earlier noted, then pλ,n+1(z) = χ(λ)
n (χ(λ)

1 (p(z))) and using Corollary 1, we have χ(λ)
1 (p(z)) ∈

P(γ). Hence pλ,n+1 is the nt h integral transform of a function in P(γ), that is, pλ,n+1 belongs

to Pλ,n . Therefore Pλ,n+1(γ) ⊂ Pλ,n(γ). ���

Corollary 2. Let p ∈ P(γ) and Re λ+c > 0. Then

q(z) = 1+ (1−γ)(λ+c)
∞∑

k=1

ck

λ+c +k
zk , z ∈ E

is also in P(γ).
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Proof. Let q(z)∈ Pλ+c ,1(γ), then we have

q(z) = pλ+c ,1(z) =
λ+c

zλ+c

∫z

0
tλ+c−1p0(t )d t .

Hence

q(z) = 1+ (1−γ)(λ+c)
∞∑

k=1

ck

λ+c +k
zk

is also in P(γ). ���

In the next result we shall proof the surbordination pλ,n ≺ Lλ,n using the technique of

Briot-Bouquet differential subordination. A function p ∈ P is said to satisfy the Briot-Bouquet

differential subordination if

p(z)+
zp ′(z)

ηp(z)+γ
≺ h(z), z ∈ E (2.3)

where η and γ are complex constants and h(z) a complex function satisfying h(0) = 1, and

Re(ηh(z)+γ) > 0 in E . It is well known that if p ∈ P satisfies the Briot-Bouquet differential

subordination, then p(z)≺ h(z) [5].

A univalent function q(z) is said to be a dominant of (2.3) if p(z) ≺ q(z) for all p(z) satis-

fying (2.3). If q̃(z) is a dominant of (2.3) and q̃(z) ≺ q(z) for all dominants q(z) of (2.3), then

q̃(z) is said to be the best dominant of (2.3).

Theorem 3. pλ,n ≺ Lλ,n .

From (2.2) we have

pλ,1(z)+
z p ′

λ,1
(z)

λ
= p(z).

Now since p ∈ P , then p ≺ L0(z) = (1+ (1−2γ)z)/(1− z) so that

pλ,1(z)+
z p ′

λ,1
(z)

λ
≺ L0(z).

However the differential equation

q(z)+
zq ′(z)

λ
= L0(z)

has univalent solution

qγ(z) =
λ

zλ

∫z

0
tλ−1L0(t )d t = Lλ,1(z)

which, by the principle of the Briot-Bouquet differential subordination, is the best dominant.

Similarly, from (2.2),

pλ,2(z)+
z p ′

λ,2
(z)

λ
≺ Lλ,1(z),
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while the differential equation

q(z)+
zq ′(z)

λ
= Lλ,1(z)

also has univalent solution

qγ(z) =
λ

zλ

∫z

0
tλ−1Lλ,1(t )d t = Lλ,2(z)

which again, by the principle of the Briot-Bouquet differential subordination, is the best dom-

inant. Continuing, we have that

pλ,n(z)+
z p ′

λ,n
(z)

λ
≺ Lλ,n−1(z),

with the differential equation

q(z)+
zq ′(z)

λ
= Lλ,n−1(z)

having univalent solution

qγ(z) =
λ

zλ

∫z

0
tλ−1Lλ,n−1(t )d t = Lλ,n(z).

This implies that pλ,n ≺ Lλ,n which completes the proof.

Theorem 4. Pλ,n(γ) is a convex set.

Proof. Let pλ,n(γ), qλ,n(γ) ∈ Pλ,n(γ). Then for non negative real numbers τ1 and τ2 with τ1 +

τ2 = 1, we have

τ1pλ,n(z)+τ2qλ,n(z)=
λ

zλ

∫z

0
tλ−1

[
τ1pn−1 +τ2qn−1

]
(t )d t

with τ1pλ,0(z)+τ2qλ,0(z) = p(z)∈ P(γ).

Now for n = 1, it yields

τ1pλ,1(z)+τ2qλ,1(z) = 1+ (1−γ)
∞∑

k=1

λ

λ+k
ck zk

∈ Pλ,n(γ).

Suppose, it is true for n = v −1, thus

τ1pλ,v−1(z)+τ2qλ,v−1(z) = 1+ (1−γ)
∞∑

k=1

(
λ

λ+k

)v−1

ck zk
∈ Pλ,n(γ).

Now for n = v

τ1pλ,v (z)+τ2qλ,v (z) =
λ

zλ

∫z

0
tλ−1

[
1+ (1−γ)

∞∑

k=1

(
λ

λ+k

)v−1

ck t k

]
d t

= 1+ (1−γ)
∞∑

k=1

(
λ

λ+k

)v

ck zk
∈ Pλ,n(γ).
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Therefore, Pλ,n(γ) is a convex set. ���

The lower bound in the next theorem is not the best possible. We provide the proof of our

estimate and follow that with our expectation.

Theorem 5. Let pλ,n ∈ Pλ,n(γ). Then

|pλ,n(z)| ≤ 1+2(1−γ)
∞∑

k=1

∣∣∣∣
λ

λ+k

∣∣∣∣
n

r k , |z| = r

and

Re pλ,n(z) ≥ 1−2(1−γ)
∞∑

k=1

∣∣∣∣
λ

λ+k

∣∣∣∣
n

r k , |z| = r.

Proof. For the lower bound, then from (2.1), we have

|pλ,n(z)−1| ≤ 2(1−γ)
∞∑

k=1

∣∣∣∣
λ

λ+k

∣∣∣∣
n

r k .

Hence

Re
(
pλ,n(z)−1

)
≥−2(1−γ)

∞∑

k=1

∣∣∣∣
λ

λ+k

∣∣∣∣
n

r k

so that

Re pλ,n(z)≥ 1−2(1−γ)
∞∑

k=1

∣∣∣∣
λ

λ+k

∣∣∣∣
n

r k .

���

Conjecture: Let pλ,n ∈ Pλ,n(γ). Then

Re pλ,n(z) ≥ 1+2(1−γ)
∞∑

k=1

∣∣∣∣
λ

λ+k

∣∣∣∣
n

(−r )k , |z| = r.

3. Some applications of Pλ,n(γ)

Here we present several different applications of the iterations pλ,n of Caratheodory maps

to the study of a new subclass Bλ
n (γ) of Bazilevič maps. We begin with

Definition 3.1. A regular map f ∈ A belongs to the class Bλ
n (γ) if and only if

Dn f (z)λ

ηλn−1zλ
∈ Pλ(γ)

where all parameters have their usual definitions.
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Remark 1. (i) If γ= 0, we recovers the class Bn(λ) studied in [3].

(ii) If µ= 0, we then deduce the class B
η
n(γ) which is equivalent to class T

η
n (γ) studied in [1, 6]

with change in notation as a matter of convenience. (iii) For all f ∈ Bλ
n (γ), Equations (1.4)

and (1.5) hold for some p ∈ Pλ(γ). Hence we have the following relation between Pλ,n(γ) and

Bλ
n (γ) which will be used in our characterization of the class Bλ

n (γ):

Lemma 1. Let f ∈ A, then the following are equivalent:

(i) f ∈ Bλ
n (γ),

(ii)
Dn f (z)λ

ηλn−1zλ ∈ Pλ(γ),

(iii)
λ f (z)λ

ηzλ − i
µ
η
∈ Pλ,n(γ).

Proof. If f ∈ A, then by Definition 3.1 it is clear that (i)⇔(ii). Now (ii) is true ⇔ there exist

h ∈ P(γ) such that

Dn f (z)λ

ηλn−1zλ
= h(z)= p(z)+

iµ

η
= 1+

iµ

η
+ (γ)

∞∑

k=1

ck zk

for some p ∈ P(γ), so that

Dn f (z)λ =λn zλ
+ (1−γ)

∞∑

k=1

ηλn−1ck zλ+k . (3.1)

Applying on (3.1) the integral operator, In , defined by Salagean (1983) as

In f (z) = I (In−1 f (z)) =

∫z

0

In−1 f (t )

t
d t

with I0 f (z) = f (z) and with some computation we have

λ f (z)λ

ηzλ
= 1+ i

µ

η
+ (1−γ)

∞∑

k=1

(
λ

λ+k

)n

ck zk .

Therefore
λ f (z)λ

ηzλ
− i

µ

η
= 1+ (1−γ)

∞∑

k=1

(
λ

λ+k

)n

ck zk
∈ Pλ,n(γ).

This proves the Lemma. ���

Now we discuss properties of the class Bλ
n (γ).

Theorem 6.

Bλ
n+1(γ) ⊂Bλ

n (γ).
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Proof. Let f ∈ Bλ
n+1(γ). Then by Lemma 1 we have

λ f (z)λ

ηzλ
− i

µ

η
= 1+ (1−γ)

∞∑

k=1

(
λ

λ+k

)n+1

ck zk

which implies

λ f (z)λ

ηzλ
− i

µ

η
∈ Pλ,n+1(γ).

Then by Theorem 2

λ f (z)λ

ηzλ
− i

µ

η
∈ Pλ,n(γ).

Hence by Lemma 1 again, f ∈ Bλ
n (γ). ���

Corollary 3. For n ≥ 1, Bλ
n (γ) consists of schlicht maps only.

Proof. For n ≥ 1, by Theorem 7 and Remark 3 we have Bλ
n+1(γ) ⊂ Bλ

n (γ) and Bλ
n (γ) ⊂ Bn(λ),

which is known to consist only of schlicht maps for n ≥ 1 (see Corollary 1 in [1]). Therefore

the assertion follows. ���

Theorem 7. Let f ∈ Bλ
n (γ). Then the integral

F (z)λ =
λ+c

zc

∫z

0
t c−1 f (t )λd t (3.2)

is also in Bλ
n (γ).

Proof. From (3.2) we have

λF (z)λ

ηzλ
− i

µ

η
=

λ+c

zλ+c

∫z

0
tλ+c−1

(
λ f (t )λ

ηtλ
− i

µ

η

)
d t .

Now suppose f ∈ Bλ
n (γ) and let v =λ+c be a complex number, then we have

λF (z)λ

ηzλ
− i

µ

η
=

u

zu

∫z

0
t u−1

(
λ f (t )λ

ηtλ
− i

µ

η

)
d t .

Hence, we have

F (z)λ

ηzλ
− i

µ

η
=χ(v)

1 (χ(λ)
n (p(z))) =χ(λ)

n (χ(v)
1 (p(z))).

With Corollary 1, χ(v)
1 (p(z)) ∈ P(γ), thus χ(λ)

n (χ(v)
1 (p(z))) ∈ Pλ,n(γ), which implies that λF (z)λ

ηzλ −

i
µ
η ∈ Pλ,n(γ). Therefore by Lemma 1, F ∈ Bλ

n (γ). ���
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Theorem 8. Let f ∈ Bλ
n (γ) and define

MT (n,λ∗,γ,r )= 1+2(1−γ)
∞∑

k=1

λ∗
k r k

and

mT (n,λ∗,γ,r )= 1−2(1−γ)
∞∑

k=1

λ∗
k r k

where λ∗ = η|λ|n−1/|λ+k |n . Then

mT (n,λ∗,γ,r )≤

∣∣∣∣∣

(
f (z)

z

)λ∣∣∣∣∣≤ MT (n,λ∗,γ,r ).

The inequality on the right side is sharp while the one on the left is not.

Proof. Taking pλ,n(z) =
λ f (z)λ

ηzλ − i
µ
η in Theorem 6, we have

λ f (z)λ

ηzλ
− i

µ

η
= 1+ (1−γ)

∞∑

k=1

(
λ

λ+k

)n

ck zk .

Then (
f (z)

z

)λ
= 1+ (1−γ)ηλn−1

∞∑

k=1

ck

(λ+k)n
zk .

Using triangle inequality, then we have

∣∣∣∣∣

(
f (z)

z

)λ∣∣∣∣∣≤ 1+2(1−γ)η|λ|n−1
∞∑

k=1

r k

|λ+k |n

≤ 1+2(1−γ)
∞∑

k=1

λ∗
k r k .

For lower bound, we have

Re

(
f (z)λ

zλ
−1

)
≥−2(1−γ)η|λ|n−1

∞∑

k=1

r k

|λ+k |n
.

Hence

Re

(
f (z)

z

)λ
≥ 1−2(1−γ)

∞∑

k=1

λ∗
k r k

which concludes the proof. ���

Theorem 9. Let f ∈ Bλ
n (γ) and define

M∗
T (n,λ∗∗,γ,r )= 1+2(1−γ)

∞∑

k=1

λ∗∗
k r k

and
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m∗
T (n,λ∗∗,γ,r ) = 1−2(1−γ)

∞∑

k=1

λ∗∗
k r k

where λ∗∗ = η|λ|n−2/|λ+k |n−1. Then

m∗
T (n,λ∗∗,γ,r ) ≤

∣∣∣∣∣
f (z)λ−1 f ′(z)

zλ−1

∣∣∣∣∣≤ M∗
T (n,λ∗∗,γ,r ).

The inequality on the right side is sharp while the one on the left side is not.

Proof. Since f ∈ Bλ
n (γ), then by Lemma 1 there exist pλ,n ∈ Pλ,n(γ) such that

λ f (z)λ

ηzλ
− i

µ

η
= pλ,n(z).

Then we differentiate to get

λ f (z)λ−1 f ′(z)

ηzλ−1
− i

µ

η
= pλ,n(z)+

zp ′
λ,n

(z)

λ
. (3.3)

Hence from (1.5) we have

pλ,n(z)+
zp ′

λ,n
(z)

λ
= pλ,n−1(z). (3.4)

Now substitute (3.4) in (3.3), then (3.3) now becomes

λ f (z)λ−1 f ′(z)

ηzλ−1
− i

µ

η
= pλ,n−1(z).

with

pλ,n−1(z) = 1+ (1−γ)
∞∑

k=1

(
λ

λ+k

)n−1

ck zk .

Hence by triangular inequality, we have
∣∣∣∣∣

f (z)λ−1 f ′(z)

zλ−1

∣∣∣∣∣≤ 1+2(1−γ)η|λ|n−2
∞∑

k=1

r k

|λ+k |n−1

≤ 1+2(1−γ)
∞∑

k=1

λ∗∗
k r k .

This bound is sharp. For the lower bound, we have

λ f (z)λ−1 f ′(z)

ηzλ−1
− i

µ

η
−1 = (1−γ)

∞∑

k=1

(
λ

λ+k

)n−1

ck zk .

Re

(
f (z)λ−1 f ′(z)

zλ−1
−

iµ

η
−1

)
≥−2(1−γ)η|λ|n−2

∞∑

k=1

r k

|λ+k |n−1

≥−2(1−γ)
∞∑

k=1

λ∗∗
k r k .
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Therefore

Re

(
f (z)λ−1 f ′(z)

zλ−1

)
≥ 1−2(1−γ)

∞∑

k=1

λ∗∗
k r k .

The bound is not the best possible. ���

Theorem 10. The set of points
λ f (z)λ

ηzλ −
iµ
η for each f ∈ Bλ

n (γ), z ∈ E is convex.

Proof. Since for each f ∈ Bλ
n (γ), the point

λ f (z)λ

ηzλ −
iµ
η ∈ Pλ,n(γ), then by Theorem 5, the result

follows. ���

4. Consequences

We state here the analogues of Theorems 8 to 11 for class B (α,β) ≡ B (α,β, z) of Bazilevic

maps. This is achieved by setting λ= α/(1+ iβ) so that η= α/(1+β2), µ =−αβ/(1+β2); and

taking n = 1 and γ= 0 in the theorems, we have respectively:

Corollary 4. Let f ∈ B (α,β). Then the function F (z) defined by

F (z)
α

1+iβ =
α+c(1+ iβ)

(1+ iβ)zc

∫z

0
t c−1 f (t )

α
1+iβ d t

is also in B (α,β).

Corollary 5. Let f ∈ B (α,β) and define

MT (α,β,r ) = 1+2
∞∑

k=1

α
√

(1+β2)[(α+k)2 +β2k2]
r k

and

mT (α,β,r ) = 1−2
∞∑

k=1

α
√

(1+β2)[(α+k)2 +β2k2]
r k .

Then mT (α,β,r ) ≤

∣∣∣∣
(

f (z)
z

) α
1+iβ

∣∣∣∣≤ MT (α,β,r ). The inequality on the right side is sharp while the

one on the left is not.

Corollary 6. Let f ∈ B (α,β) and define

M∗
T (α,β,r ) = 1+2

∞∑

k=1

r k

√
1+β2

and

m∗
T (α,β,r ) = 1−2

∞∑

k=1

r k

√
1+β2

.

Then m∗
T (α,β,r ) ≤

∣∣∣∣
(

f (z)
z

) α−1−iβ

1+iβ
f ′(z)

∣∣∣∣ ≤ M∗
T (α,β,r ). The right hand side inequality is sharp

while the one on the left is not.

Corollary 7. The set of points (1− iβ)
(

f (z)
z

) α
1+iβ

+ iβ for each f ∈ B (α,β), z ∈ E is convex.
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