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ON NONLINEAR FINITE DIFFERENCE INEQUALITIES

IN TWO INDEPENDENT VARIABLES

B. G. PACHPATTE

Abstract. The aim of the present paper is to establish some new �nite di�erence inequalities

involving functions of two independent variables which provide explicit bounds on unknown

functions. The inequalities given here can be used as tools in the qualitative theory of certain

partial �nite di�erence equations.

1. Introduction

In many cases when studying the behavior of solutions of certain classes of �nite

di�erence equations we need some speci�c type of �nite di�erence inequalities. In [1-6],

the authors have investigated some new �nite di�erence inequalities which are motivated

and inspired from the study of certain classes of �nite di�erence equations. In the

present paper, we establish some new �nite di�erence inequalities involving functions of

two independent variables, which can be used as ready and powerful tools in the analysis

of certain classes of partial �nite di�erence and sum-di�erence equations.

2. Statement of Results

In what follows, R denotes the set of real numbers andR+ = [0;1); R1 = [1;1); N0 =

f0; 1; 2; � � �g are the given subsets of R. We use the usual conventions that empty sums

and products are taken to be 0 and 1 respectively and assume that all the sums and

products involved throughtout the discussion exist on the respective domains of their

de�nitions.

Our main results are given in the following theorems.

Theorem 1. Let u(m;n), f(m;n) be real-valued nonnegative functions de�ned for

m, n 2 N0 and c � 0 be a constant.
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(a1) If

u2(m;n) � c+

m�1X
s=0

1X
t=n+1

f(s; t)u(s; t); (2.1)

for m, n 2 N0, then

u(m;n) �
p
c+

1

2

m�1X
s=0

1X
t=n+1

f(s; t); (2.2)

for m, n 2 N0.

(a2) Let W be a real-valued continuous, nondecreasing function de�ned on R+. Take,

W > 0 on (0;1), and W (0) = 0. If

u2(m;n) � c+

m�1X
s=0

1X
t=n+1

f(s; t)u(s; t)W (u(s; t)); (2.3)

for m, n 2 N0, then for 0 � m � m1, 0 � n � n1, m, m1, n, n1 2 N0,

u(m;n) � G�1[G(
p
c) +

1

2

m�1X
s=0

1X
t=n+1

f(s; t)]; (2.4)

where

G(r) =

Z
r

r0

ds

W (s)
; r > 0; r0 > 0; (2.5)

G�1 is the inverse function of G and

G(
p
c) +

1

2

m�1X
s=0

1X
t=n+1

f(s; t) 2 Dom(G�1);

for 0 � m � m1, 0 � n � n1, m, m1, n, n1 2 N0.

(a3) Let A : N2
0 �R+ ! R+ be a function which satis�es the condition

0 � A(m;n; u)�A(m;n; v) � B(m;n; v)(u� v); (2.6)

for u � v � 0, where B(m;n; v) is a real-valued nonnegative function de�ned for

m, n 2 N0, v 2 R+. If

u2(m;n) � c+

m�1X
s=0

1X
t=n+1

f(s; t)u(s; t)A(s; t; u(s; t)); (2.7)

for m, n 2 N0, then

u(m;n) �
p
c+ a(m;n)

m�1Y
s=0

[1 +

1X
t=n+1

1

2
f(s; t)B(s; t;

p
c)]; (2.8)
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for m, n 2 N0, where

a(m;n) =
1

2

m�1X
s=0

1X
t=n+1

f(s; t)A(s; t;
p
c); (2.9)

for m, n 2 N0.

Theorem 2. Let u(m;n) be a function de�ned on N2
0 into R1, f(m;n) be a function

as de�ned in Theorem 1 and c � 1 be a constant.

(b1) If

u(m;n) � c+

m�1X
s=0

1X
t=n+1

f(s; t)u(s; t) logu(s; t); (2.10)

for m, n 2 N0, then

u(m;n) � cP (m;n); (2.11)

for m, n 2 N0, where

P (m;n) =

m�1Y
s=0

[1 +

1X
t=n+1

f(s; t)]; (2.12)

for m, n 2 N0.

(b2) Let W be as de�ned in Theorem 1 (part (a2)). If

u(m;n) � c+

m�1X
s=0

1X
t=n+1

f(s; t)u(s; t)W (log u(s; t)); (2.13)

for m, n 2 No, then for 0 � m � m2, 0 � n � n2, m, m2, n, n2 2 N0,

u(m;n) � exp[G�1[G(log c) +

m�1X
s=0

1X
t=n+1

f(s; t)]]; (2.14)

where G, G�1 are as de�ned in Theorem 1 ((parat (a2)) and

G(log c) +

m�1X
s=0

1X
t=n+1

f(s; t) 2 Dom(G�1);

for 0 � m � m2, 0 � n � n2, m, m2, n, n2 2 N0.

(b3) Let A, B be the functions as de�ned in Theorem 1 (part (a3)) which satis�es the

condition (2:6). If

u(m;n) � c+

m�1X
s=0

1X
t=n+1

f(s; t)u(s; t)A(s; t; logu(s; t)); (2.15)
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for m, n 2 N0, then

u(m;n) � c exp[b(m;n)

m�1Y
s=0

[1 +

1X
t=n+1

f(s; t)B(s; t; log c)]]; (2.16)

for m, n 2 N0, where

b(m;n) =

m�1X
s=0

1X
t=n+1

f(s; t)A(s; t; log c); (2.17)

for m, n 2 N0.

3. Proof of Theorem 1

(a1) We �rst assume that c > 0 and de�ne a function z(m;n) by the right side of

(2:1), then u(m;n) �
p
z(m;n) and

[z(m+ 1; n)� z(m;n)]� [z(m+ 1; n+ 1)� z(m;n+ 1)]

= f(m;n+ 1)u(m;n+ 1)

� f(m;n+ 1)
p
z(m;n+ 1): (3.1)

By using the facts that
p
z(m;n) > 0,

p
z(m;n+ 1) �

p
z(m;n),

p
z(m;n+ 1) �p

z(m+ 1; n+ 1),
p
z(m+ 1; n+ 1) �

p
z(m+ 1; n), we observe that

[
p
z(m+ 1; n)�

p
z(m;n)]� [

p
z(m+ 1; n+ 1)�

p
z(m;n+ 1)]

=
[z(m+ 1; n)� z(m;n)]p
z(m+ 1; n) +

p
z(m;n)

� [z(m+ 1; n+ 1)� z(m;n+ 1)]p
z(m+ 1; n+ 1) +

p
z(m;n+ 1)

� [z(m+ 1; n)� z(m;n)]p
z(m+ 1; n+ 1) +

p
z(m;n+ 1)

� [z(m+ 1; n+ 1)� z(m;n+ 1)]p
z(m+ 1; n+ 1) +

p
z(m;n+ 1)

=
[z(m+ 1; n)� z(m;n)]� [z(m+ 1; n+ 1)� z(m;n+ 1)]p

z(m+ 1; n+ 1) +
p
z(m;n+ 1)

� [z(m+ 1; n)� z(m;n)]� [z(m+ 1; n+ 1)� z(m;n+ 1)]p
z(m;n+ 1) +

p
z(m;n+ 1)

� 1

2
f(m;n+ 1): (3.2)

Here we have used (3:1) to get (3:2). Now keeping m �xed in (3:2), set n = t and sum

over t = n, n+ 1; � � � ; q � 1 (q � n+ 1 is arbitrary in N0) to obtain

[
p
z(m+ 1; n)�

p
z(m;n)]� [

p
z(m+ 1; q)�

p
z(m; q)] � 1

2

qX
t=n+1

f(m; t): (3.3)
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Noting that lim
q!1

p
z(m+ 1; q) = lim

q!1

p
z(m; q) =

p
c, and by letting q ! 1 in (3:3)

we get p
z(m+ 1; n)�

p
z(m;n) � 1

2

1X
t=n+1

f(m; t): (3.4)

Keeping n �xed in (3:4), set m = s and sum over s = 0; 1; 2; � � � ;m� 1, and use the fact

that z(0; n) = c, to obtain

p
z(m;n) �

p
c+

1

2

m�1X
s=0

1X
t=n+1

f(s; t): (3.5)

The desired inequality in (2:2) follows by using the fact that u(m;n) �
p
z(m;n). If

c � 0, we carry out the above procedure with c + � instead of c, where � > 0 is an

arbitrary small constant, and subsequently pass to the limit as �! 0 to obtain (2:2).

(a2) Let c > 0 and de�ne a function z(m;n) by the right side of (2:3). Then, by following

the same arguments as in the proof of (a1) upto (3:2) with suitable changes we get

[
p
z(m+ 1; n)�

p
z(m;n)]� [

p
z(m+ 1; n+ 1)�

p
z(m;n+ 1)]

� 1

2
f(m;n+ 1)W (

p
z(m;n+ 1)): (3.6)

From (3.6) and using the fact that W (
p
z(m;n+ 1)) �W (

p
z(m;n)) we observe that

[
p
z(m+ 1; n)�

p
z(m;n)]

W (
p
z(m;n))

� [
p
z(m+ 1; n+ 1)�

p
z(m;n+ 1)

W (
p
z(m;n+ 1))

� 1

2
f(m;n+ 1): (3.7)

Keeping m �xed in (3:7), set n = t and sum over t = n, n + 1; � � � ; q � 1 (q � n + 1 is

arbitrary in N0) to obtain the estimate

[
p
z(m+ 1; n)�

p
z(m;n)]

W (
p
z(m;n))

� [
p
z(m+ 1; q)�

p
z(m; q)

W (
p
z(m; q))

� 1

2

qX
t=n+1

f(m; t): (3.8)

Noting that lim
q!1

p
z(m+ 1; q) = lim

q!1

p
z(m; q) =

p
c and by letting q !1 in (3.8) we

get

[
p
z(m+ 1; n)�

p
z(m;n)]

W (
p
z(m;n))

� 1

2

1X
t=n+1

f(m; t): (3.9)

From (2.5) and (3.9) we have

G(
p
z(m+ 1; n))�G(

p
z(m;n)) =

Z p
z(m+1;n)

p
z(m;n)

ds

W (s)
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� [
p
z(m+ 1; n)�

p
z(m;n)]

W (
p
z(m;n))

� 1

2

1X
t=n+1

f(m; t): (3.10)

Now Keeping n �xed in (3.10), set m = s and sum both sides over s = 0; 1; 2; � � � ;m� 1

and use the fact that z(0; n) = c to obtain

G(
p
z(m;n)) � G(

p
c) +

1

2

m�1X
s=0

1X
t=n+1

f(s; t): (3.11)

The required inequality in (2.4) follows from (3.11) and u(m;n) �
p
z(m;n). The

case c � 0 can be completed as mentioned in the proof of part (a1). The subdomain

0 � m � m1, 0 � n � n1 is obvious.

(a3) Let c > 0 and de�ne a function z(m;n) by the right side of (2.7). Then u(m;n) �p
z(m;n) and by following the proof of (a1) upto (3.2) with suitable changes we get

[
p
z(m+ 1; n)�

p
z(m;n)]� [

p
z(m+ 1; n+ 1)�

p
z(m;n+ 1)]

� 1

2
f(m;n+ 1)A(m;n+ 1;

p
z(m;n+ 1)): (3.12)

Further by following the arguments as in the proof of (a1) below (3.2) upto (3.5) with

suitable changes we get

p
z(m;n) �

p
c+

1

2

m�1X
s=0

1X
t=n+1

f(s; t)A(s; t;
p
z(s; t)): (3.13)

De�ne a function v(m;n) by

v(m;n) =
1

2

m�1X
s=0

1X
t=n+1

f(s; t)A(s; t;
p
z(s; t)): (3.14)

From (3.14) and (2.6) we observe that

v(m;n) � 1

2

m�1X
s=0

1X
t=n+1

f(s; t)[A(s; t;
p
c+ v(s; t)) �A(s; t;

p
c)]

+
1

2

m�1X
s=0

1X
t=n+1

f(s; t)A(s; t;
p
c)

� a(m;n) +
1

2

m�1X
s=0

1X
t=n+1

f(s; t)B(s; t;
p
c)v(s; t); (3.15)
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where a(m;n) is de�ned by (2.9). Clearly a(m;n) is nondecreasing in m and nonincreas-

ing in n. An application of Theorem 1 part (a2) given in [5] to (3.15) yields

v(m;n) � a(m;n)

m�1Y
s=0

[1 +

1X
t=n+1

1

2
f(s; t)B(s; t;

p
c)]: (3.16)

The required inequality in (2.8) follows by using the fact that u(m;n) �
p
z(m;n) and

(3.13). The proof of the case when c � 0 can be completed as mentioned in the proof of

(a1).

4. Proof of Theorem 2

(b1) De�ne a function z(m;n) by the right side of (2.10), then u(m;n) � z(m;n) and

[z(m+ 1; n)� z(m;n)]� [z(m+ 1; n+ 1)� z(m;n+ 1)]

= f(m;n+ 1)u(m;n+ 1) logu(m;n+ 1)

� f(m;n+ 1)z(m;n+ 1) log z(m;n+ 1): (4.1)

From the de�nition of z(m;n) we see that z(m;n+ 1) � z(m;n) for m, n 2 N0. Using

this fact, from (4.1) we observe that

[z(m+ 1; n)� z(m;n)]

z(m;n)
� [z(m+ 1; n+ 1)� z(m;n+ 1)]

z(m;n+ 1)

� f(m;n+ 1) log z(m;n+ 1): (4.2)

Keeping m �xed in (4.2), set n = t and sum over t = n, n + 1; � � � ; q � 1 (q � n + 1 is

arbitrary in N0) to obtain the estimate

[z(m+ 1; n)� z(m;n)]

z(m;n)
� [z(m+ 1; q)� z(m; q)]

z(m; q)

�
qX

t=n+1

f(m; t) log z(m; t): (4.3)

Noting that lim
q!1

z(m+ 1; q) = lim
q!1

z(m; q) = c and by letting q !1 in (4.3) we get

z(m+ 1; n) � [1 +

1X
t=n+1

f(m; t) log z(m; t)]z(m;n): (4.4)

Now keeping n �xed in (4.4) and settingm = s and then substituting s = 0; 1; 2; � � � ;m�1
successively and using the fact that z(0; n) = c, we obtain the estimate

z(m;n) � c

m�1Y
s=0

[1 +

1X
t=n+1

f(s; t) log z(s; t)]

� c exp(

m�1X
s=0

1X
t=n+1

f(s; t) log z(s; t)): (4.5)
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From (4.5) we observe that

log z(m;n) � log c+

m�1X
s=0

1X
t=n+1

f(s; t) log z(s; t): (4.6)

From (4.6) and following the same arguments as above with suitable changes we obtain

the estimate

log z(m;n) � log c[

m�1Y
s=0

[1 +

1X
t=n+1

f(s; t)]]

= log cP (m;n); (4.7)

where P (m;n) is de�ned by (2.12). From (4.7) we observe that

z(m;n) � cP (m;n): (4.8)

Using (4.8) in u(m;n) � z(m;n) we get the required inequality in (2.11).

The details of the proofs of (b2) (b3) can be completed by closely looking at the proofs

of (a2), (a3) and (b1), see, also [3,4,5]. We omit the details.

5. An Application

In this section we present an immediate application of Theorem 2 part (b1) to obtain

an explicit bound on solution of the following sum-di�erence equation

u(m;n) = e(m;n) +

m�1X
s=0

1X
t=n+1

h(s; t)u(s; t) log ju(s; t)j; (5.1)

where u(m;n), e(m;n), h(m;n) are real-valued functions de�ned for m, n 2 N0 and

je(m;n)j � c, where c � 0 is a constant. Let u(m;n) be a solution of (5.1) de�ned for

m, n 2 N0. From (5.1) we observe that

1 + ju(m;n)j � 1 + c+

m�1X
s=0

1X
t=n+1

jh(s; t)j(1 + ju(s; t)j) log(1 + ju(s; t)j): (5.2)

Now a suitable application of Theorem 2, part (b1) to (5.2) yields

ju(m;n)j � [(1 + c)Q(m;n) � 1] (5.3)

where

Q(m;n) =

m�1Y
s=0

[1 +

1X
t=n+1

jh(s; t)j]; (5.4)
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for m, n 2 N0. The inequality (5.3) obtains the bound on the solution u(m;n) of (5.1)

in terms of the known functions.

We note that the inequality given in Theorem 1, part (a1) can be used to obtain

bound on solution of the following sum-di�erence equation

u2(m;n) = e(m;n) +

m�1X
s=0

1X
t=n+1

F (s; t; u(s; t)); (5.5)

under some suitable conditions on the functions involved in (5.5). Various other appli-

cations of the inequalities given here will be reported elsewhere.
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