MANNHEIM B-CURVE COUPLES IN MINKOWSKI 3-SPACE

KAZIM İLARSLAN, ALI UÇUM, EMILIJA NEŠOVIĆ AND NIHAL KILIÇ ASLAN

Abstract

In this paper, we define null Cartan Mannheim and pseudo null Mannheim curves in Minkowski 3 -space according to their Bishop frames. We obtain the necessary and the sufficient conditions for pseudo null curves to be Mannheim B-curves in terms of their Bishop curvatures. We prove that there are no null Cartan curves in Minkowski 3 -space which are Mannheim B-curves, by considering the cases when their Mannheim B-mate curves are spacelike, timelike, null Cartan and pseudo null curves. Finally, we give some examples of pseudo null Mannheim B-curve pairs.

1. Introduction

The Bishop frame or relatively parallel adapted frame $\left\{T, N_{1}, N_{2}\right\}$ of a regular curve in Euclidean 3-space is introduced by R.L. Bishop in [1]. It contains the tangential vector field T and two relatively normal vector fields N_{1} and N_{2} whose derivatives N_{1}^{\prime} and N_{2}^{\prime} with respect to the arc-length parameter s of the curve are collinear with the tangential vector field T. The Bishop frame is also known as the frame with minimal rotation property, since N_{1}^{\prime} and N_{2}^{\prime} make minimal rotations in the planes N_{1}^{\perp} and N_{2}^{\perp} respectively. A new version of the Bishop frame, type-2 Bishop frame in \mathbb{E}^{3}, is introduced in [18]. In Minkowski space-time \mathbb{E}_{1}^{4} and Euclidean space \mathbb{E}^{4}, the Bishop frame is studied in [6] and [8]. In Minkowski 3 -space \mathbb{E}_{1}^{3}, the Bishop frame (parallel frame) of the timelike curve and the spacelike curve with non-null principal normal is obtained in [16]. Recently, the Bishop frames of pseudo null curves and null Cartan curves in \mathbb{E}_{1}^{3} are derived in [11] and the Bishop frame of a null Cartan curve in \mathbb{E}_{1}^{4} is introduced in [12].

It is well known that in the Euclidean space \mathbb{E}^{3}, there are many associated curves (Bertrand mates, Mannheim mates, spherical images, evolutes, the principal-direction curves, etc.) whose Frenet's frame vectors satisfy some extra conditions. Mannheim curves in \mathbb{E}^{3} are defined by the property that their principal normal lines coincide with the binormal lines of their mate

[^0]curves at the corresponding points [5, 13]. Mannheim curves and their partner curves in 3dimensional space forms are studied in [3]. In the Euclidean 4 -space and Minkowski spacetime \mathbb{E}_{1}^{4}, the notion of Mannheim curves is generalized in [7, 10, 14]. It is proved in [9] that the only pseudo null Mannheim curves according to Frenet frame in Minkowski 3-space are the pseudo null circles whose mate curves are pseudo null straight lines. It is also proved in [9] that there are no null Cartan curves in Minkowski 3-space which are Mannheim curves according to their Cartan frame.

In this paper, we define null Cartan Mannheim and pseudo null Mannheim curves according to their Bishop frames in Minkowski 3-space. We call them null Cartan Mannheim Bcurves and pseudo null Mannheim B-curves. We obtain the necessary and the sufficient conditions for pseudo null curves to be Mannheim B-curves in terms of their Bishop curvatures. In the related examples, we show that there are infinity many pairs of pseudo null Mannhem B-curves. We prove that mate curves of pseudo null Mannheim B-curves can not be spacelike, timelike, or null Cartan curves. We also prove that there are no null Cartan curves which are Mannheim B-curves, by considering the cases when their mate curves are the spacelike, the timelike, the null Cartan and the pseudo null curves.

2. Preliminaries

Minkowski space \mathbb{E}_{1}^{3} is the real vector space \mathbb{E}^{3} equipped with the standard indefinite flat metric $\langle\cdot, \cdot\rangle$ given by

$$
\langle x, y\rangle=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3},
$$

for any two vectors $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ in \mathbb{E}_{1}^{3}. Since $\langle\cdot, \cdot\rangle$ is an indefinite metric, an arbitrary vector $x \in \mathbb{E}_{1}^{3}$ can have one of three causal characters: it can be a spacelike, a timelike, or a null (lightlike), if $\langle x, x\rangle>0,\langle x, x\rangle<0$, or $\langle x, x\rangle=0$ and $x \neq 0$ respectively. In particular, the vector $x=0$ is said to be spacelike. The norm (length) of vector $x \in \mathbb{E}_{1}^{3}$ is given by $\|x\|=\sqrt{|\langle x, x\rangle|}$. If $\|x\|=1$, the vector x is called a unit. An arbitrary curve $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ can be the spacelike, the timelike or the null (lightlike), if all of its velocity vectors α^{\prime} are the spacelike, the timelike or the null ([15]).

A spacelike curve $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ is called a pseudo null curve, if its principal normal vector field N and binormal vector filed B are null vector fields satisfying the condition $\langle N, B\rangle=1$. The Frenet formulae of a non-geodesic pseudo null curve α have the form ([17])

$$
\left[\begin{array}{c}
T^{\prime} \tag{2.1}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
0 & \tau & 0 \\
-\kappa & 0 & -\tau
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right],
$$

where the curvature $\kappa(s)=1$ and the torsion $\tau(s)$ is an arbitrary function in arc-length parameter s of α.

A curve $\beta: I \rightarrow \mathbb{E}_{1}^{3}$ is called a null curve, if its tangent vector $\beta^{\prime}=T$ is a null vector. A null curve β is called a null Cartan curve, if it is parameterized by the pseudo-arc function s defined by ([2])

$$
\begin{equation*}
s(t)=\int_{0}^{t} \sqrt{\left\|\beta^{\prime \prime}(u)\right\|} d u \tag{2.2}
\end{equation*}
$$

There exists a unique Cartan frame $\{T, N, B\}$ along a non-geodesic null Cartan curve β satisfying the Cartan equations ([4])

$$
\left[\begin{array}{c}
T^{\prime} \tag{2.3}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\tau & 0 & \kappa \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right],
$$

where the curvature $\kappa(s)=1$ and the torsion $\tau(s)$ is an arbitrary function in pseudo-arc parameter s.

The Frenet equations of a timelike curve, or a spacelike curve with non-null principal normal in \mathbb{E}_{1}^{3} according to Bishop frame (parallel transport frame) $\left\{T_{1}, N_{1}, N_{2}\right\}$ have the form ([16])

$$
\left[\begin{array}{c}
T_{1}^{\prime} \tag{2.4}\\
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -\epsilon_{1} k_{1}-\epsilon_{2} k_{2} \\
\epsilon_{0} k_{1} & 0 & 0 \\
\epsilon_{0} k_{2} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
T_{1} \\
N_{1} \\
N_{2}
\end{array}\right],
$$

where T_{1}, N_{1}, N_{2} are mutually orthogonal vectors satisfying the conditions $\left\langle T_{1}, T_{1}\right\rangle=\epsilon_{0}$, $\left\langle N_{1}, N_{1}\right\rangle=\epsilon_{1},\left\langle N_{2}, N_{2}\right\rangle=\epsilon_{2}$ and $\epsilon_{0}, \epsilon_{1}, \epsilon_{2} \in\{-1,1\}$. In particular, it holds $\epsilon_{0} \epsilon_{1} \epsilon_{2}=-1$. The functions $k_{1}(s)$ and $k_{2}(s)$ are called the first and the second Bishop curvature of the curve, respectively.

The Bishop frames of pseudo null and null Cartan curves are obtained in [11]. If $\left\{T_{1}, N_{1}\right.$, $\left.N_{2}\right\}$ is the Bishop frame of a pseudo null curve, then it satisfies the conditions

$$
\begin{array}{lrl}
\left\langle T_{1}, T_{1}\right\rangle=1, & \left\langle N_{1}, N_{1}\right\rangle=\left\langle N_{2}, N_{2}\right\rangle=0, \tag{2.5}\\
\left\langle T_{1}, N_{1}\right\rangle=\left\langle T_{1}, N_{2}\right\rangle=0, & \left\langle N_{1}, N_{2}\right\rangle=1 .
\end{array}
$$

Analogously, if $\left\{T_{1}, N_{1}, N_{2}\right\}$ is the Bishop frame of null Cartan curve, then it satisfies the conditions ([11])

$$
\begin{array}{lrl}
\left\langle T_{1}, T_{1}\right\rangle=\left\langle N_{2}, N_{2}\right\rangle=0, & \left\langle N_{1}, N_{1}\right\rangle=1, \tag{2.6}\\
\left\langle T_{1}, N_{2}\right\rangle=-1, & \left\langle T_{1}, N_{1}\right\rangle=\left\langle N_{1}, N_{2}\right\rangle=0 .
\end{array}
$$

Also, the next two theorems are proved in [11].
Theorem 1. Let α be a pseudo null curve in \mathbb{E}_{1}^{3} parameterized by arc-length parameter s with the curvature $\kappa(s)=1$ and the torsion $\tau(s)$. Then the Bishop frame $\left\{T_{1}, N_{1}, N_{2}\right\}$ and the Frenet frame $\{T, N, B\}$ of α are related by:
(i)

$$
\left[\begin{array}{c}
T_{1} \tag{2.7}\\
N_{1} \\
N_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{k_{2}} & 0 \\
0 & 0 & k_{2}
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

and the Frenet equations of α according to the Bishop frame read

$$
\left[\begin{array}{c}
T_{1}^{\prime} \tag{2.8}\\
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{2} & k_{1} \\
-k_{1} & 0 & 0 \\
-k_{2} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
T_{1} \\
N_{1} \\
N_{2}
\end{array}\right]
$$

where $k_{1}(s)=0$ and $k_{2}(s)=c_{0} e^{\int \tau(s) d s}, c_{0} \in \mathbb{R}_{0}^{+}$are the first and the second Bishop curvature; (ii)

$$
\left[\begin{array}{c}
T_{1} \tag{2.9}\\
N_{1} \\
N_{2}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -k_{1} \\
0 & -\frac{1}{k_{1}} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

and the Frenet equations of α according to the Bishop frame read

$$
\left[\begin{array}{c}
T_{1}^{\prime} \tag{2.10}\\
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{2} & k_{1} \\
-k_{1} & 0 & 0 \\
-k_{2} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
T_{1} \\
N_{1} \\
N_{2}
\end{array}\right]
$$

where $k_{1}(s)=c_{0} e^{\int \tau(s) d s}, c_{0} \in \mathbb{R}_{0}^{-}$and $k_{2}(s)=0$ are the first and the second Bishop curvature.
Theorem 2. Let α be a null Cartan curve in \mathbb{E}_{1}^{3} parametrized by pseudo-arc s with the curvature $\kappa(s)=1$ and the torsion $\tau(s)$. Then the Bishop frame $\left\{T_{1}, N_{1}, N_{2}\right\}$ and the Cartan frame $\{T, N, B\}$ of α are related by:

$$
\left[\begin{array}{c}
T_{1} \tag{2.11}\\
N_{1} \\
N_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-k_{2} & 1 & 0 \\
\frac{k_{2}^{2}}{2} & -k_{2} & 1
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

and the Cartan equations of α according to the Bishop frame read

$$
\left[\begin{array}{c}
T_{1}^{\prime} \tag{2.12}\\
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
k_{2} & k_{1} & 0 \\
0 & 0 & k_{1} \\
0 & 0 & -k_{2}
\end{array}\right]\left[\begin{array}{c}
T_{1} \\
N_{1} \\
N_{2}
\end{array}\right]
$$

where the first Bishop curvature $k_{1}(s)=1$ and and the second Bishop curvature satisfies Riccati differential equation $k_{2}^{\prime}(s)=-\frac{1}{2} k_{2}^{2}(s)-\tau(s)$.

3. Null Cartan and pseudo null Mannheim B-curves

In this section we define null Cartan Mannheim and pseudo null Mannheim curves according to their Bishop frames in Minkowski 3-space and call them Mannheim B-curves. We obtain the necessary and sufficient conditions for pseudo null curves to be Mannheim Bcurves and provide the related examples. We prove that mate curves of pseudo null Mannheim B-curves can not be spacelike, timelike or null Cartan curves. We also prove that there are no null Cartan curves which are Mannheim B-curves, by considering the cases when their Mannheim B-mate curves are the spacelike, timelike, null Cartan and pseudo null curves.

Definition 1. Let β be a pseudo null curve or a null Cartan curve in \mathbb{E}_{1}^{3} with the Bishop frame $\left\{T_{1}, N_{1}, N_{2}\right\}$ and β^{\star} an arbitrary curve with the Bishop frame $\left\{T_{1}^{\star}, N_{1}^{\star}, N_{2}^{\star}\right\}$. If the Bishop vector N_{1} is collinear with the Bishop vector N_{2}^{\star} at the corresponding points of the curves β and β^{\star}, then β is called the Mannheim B-curve, β^{\star} is called Mannheim B-mate curve of β and (β, β^{\star}) curve couple is called Mannheim B-pair.

In the first theorem, we give the necessary and the sufficient conditions for pseudo null curve couple (β, β^{\star}) to be Mannheim B-pair of curves with non-zero Bishop curvatures κ_{2} and κ_{1}^{\star}.

Theorem 3. Let β and β^{\star} be two pseudo null curves in \mathbb{E}_{1}^{3} parameterized by arc-length parameters s and s^{\star} respectively with the Bishop curvatures $\kappa_{1}=\kappa_{2}^{\star}=0, \kappa_{2}$ and κ_{1}^{\star}. Then $\left(\beta, \beta^{\star}\right)$ curve couple is a Mannheim B-pair if and only if

$$
\kappa_{2}+\lambda^{\prime \prime}=c \kappa_{1}^{\star}
$$

where $\lambda \neq 0$ is an arbitrary differentiable function and $c \in \mathbb{R}_{0}$.
Proof. Assume that $\left(\beta, \beta^{\star}\right)$ is Mannheim B-pair of curves. Then we can write the curve β^{\star} as

$$
\begin{equation*}
\beta^{\star}\left(s^{\star}\right)=\beta^{\star}(f(s))=\beta(s)+\lambda(s) N_{1}(s), \tag{3.1}
\end{equation*}
$$

where $\lambda(s) \neq 0$ is some differentiable function. Differentiating (3.1) with respect to s, we find

$$
T^{\star} f^{\prime}=T+\lambda^{\prime} N_{1}+\lambda N_{1}^{\prime}
$$

By using (2.7), (2.8) and (2.9), the previous relation becomes

$$
\begin{equation*}
-T_{1}^{\star} f^{\prime}=T_{1}+\lambda^{\prime} N_{1} \tag{3.2}
\end{equation*}
$$

By taking the scalar product of (3.2) with $-T_{1}^{\star} f^{\prime}$ and using (2.5), we obtain

$$
\begin{equation*}
\left\langle T_{1}^{\star} f^{\prime}, T_{1}^{\star} f^{\prime}\right\rangle=f^{\prime 2}=1 \tag{3.3}
\end{equation*}
$$

Let us take $f^{\prime}=1$. Then we have

$$
\begin{equation*}
T_{1}^{\star}=-T_{1}-\lambda^{\prime} N_{1} . \tag{3.4}
\end{equation*}
$$

Differentiating (3.4) with respect to s and using (2.8) and (2.10), we get

$$
\begin{equation*}
\kappa_{1}^{\star} N_{2}^{\star}=-\left(\kappa_{2}+\lambda^{\prime \prime}\right) N_{1} \tag{3.5}
\end{equation*}
$$

which implies

$$
N_{2}^{\star}=-\frac{\kappa_{2}+\lambda^{\prime \prime}}{\kappa_{1}^{\star}} N_{1} .
$$

Differentiating the last equation with respect to s and using (2.8) and (2.10), we find

$$
\kappa_{2}+\lambda^{\prime \prime}=c \kappa_{1}^{\star}
$$

where $c \in \mathbb{R}_{0}$.
Conversely, assume that $\kappa_{2}+\lambda^{\prime \prime}=c \kappa_{1}^{\star}$, where $\lambda \neq 0$ is an arbitrary differentiable function and $c \in \mathbb{R}_{0}$. Define the curve β^{\star} by

$$
\begin{equation*}
\beta^{\star}(s)=\beta(s)+\lambda(s) N_{1}(s) . \tag{3.6}
\end{equation*}
$$

Differentiating (3.6) with respect to s and using (2.7) and (2.8), we find

$$
\begin{equation*}
\frac{d \beta^{\star}}{d s}=T_{1}+\lambda^{\prime} N_{1} \tag{3.7}
\end{equation*}
$$

which together with relation (2.5) leads to

$$
\left\langle\frac{d \beta^{\star}}{d s}, \frac{d \beta^{\star}}{d s}\right\rangle=1 .
$$

Therefore, the curve β^{\star} is parameterized by arc-length parameter s. Then from (2.9) and (3.7) we have

$$
\begin{equation*}
T^{\star}=-T_{1}^{\star}=T_{1}+\lambda^{\prime} N_{1} . \tag{3.8}
\end{equation*}
$$

Differentiating (3.8) with respect to s and using (2.8) and (2.10), we obtain

$$
\begin{equation*}
-\frac{d T_{1}^{\star}}{d s}=-\kappa_{1}^{\star} N_{2}^{\star}=\left(\kappa_{2}+\lambda^{\prime \prime}\right) N_{1} . \tag{3.9}
\end{equation*}
$$

By using the assumption, we get

$$
N_{2}^{\star}=-\frac{\kappa_{2}+\lambda^{\prime \prime}}{\kappa_{1}^{\star}}=-c N_{1} .
$$

Hence (β, β^{\star}) is Mannheim B-pair of curves.

Example 1. Let us consider a pseudo null curve β in \mathbb{E}_{1}^{3} with parameter equation

$$
\beta(s)=\left(\frac{s^{3}}{3}+\frac{s^{2}}{2}, \frac{s^{3}}{3}+\frac{s^{2}}{2}, s\right)
$$

and the Frenet frame

$$
\begin{aligned}
T(s) & =\left(s^{2}+s, s^{2}+s, 1\right), \\
N(s) & =(2 s+1)(1,1,0) \\
B(s) & =\left(-\frac{\left(s^{2}+s\right)^{2}+1}{2(2 s+1)}, \frac{1-\left(s^{2}+s\right)^{2}}{2(2 s+1)},-\frac{s^{2}+s}{2 s+1}\right) .
\end{aligned}
$$

A straightforward calculation shows that Frenet curvatures of $\beta \operatorname{read} \kappa(s)=1, \tau(s)=\frac{2}{2 s+1}$. According to statement (i) of Theorem 1, the Bishop curvatures of β are given by $\kappa_{1}(s)=0$ and $\kappa_{2}(s)=c_{0}(2 s+1), c_{0} \in \mathbb{R}_{0}^{+}$. In particular, the Bishop frame of β has the form

$$
\begin{aligned}
& T_{1}(s)=\left(s^{2}+s, s^{2}+s, 1\right) \\
& N_{1}(s)=\frac{1}{c_{0}}(1,1,0) \\
& N_{2}(s)=c_{0}\left(-\frac{\left(s^{2}+s\right)^{2}+1}{2}, \frac{1-\left(s^{2}+s\right)^{2}}{2},-s^{2}-s\right) .
\end{aligned}
$$

Let us take $\lambda(s)=-\frac{c_{0} s^{3}}{3}$. Define the curve β^{\star} by

$$
\beta^{\star}(s)=\beta(s)+\lambda(s) N_{1}(s)=\left(\frac{s^{2}}{2}, \frac{s^{2}}{2}, s\right) .
$$

Therefore, β^{\star} is pseudo null circle with Frenet curvatures $\kappa^{\star}(s)=1, \tau^{\star}(s)=0$. By using statement (ii) of Theorem 1 , the Bishop curvatures of β^{\star} are given by

$$
\kappa_{1}^{\star}(s)=c_{1}, \quad \kappa_{2}^{\star}(s)=0,
$$

and the Bishop frame of β^{\star} reads

$$
\begin{aligned}
& T_{1}^{\star}(s)=-(s, s, 1), \\
& N_{1}^{\star}(s)=-c_{1}\left(\frac{-1-s^{2}}{2}, \frac{1-s^{2}}{2},-s\right), \\
& N_{2}^{\star}(s)=-\frac{1}{c_{1}}(1,1,0),
\end{aligned}
$$

where $c_{1} \in \mathbb{R}_{0}^{-}$. Since N_{1} and N_{2}^{\star} are collinear, (β, β^{\star}) is Mannheim B-pair of curves (Figure 1). It can be easily verified that the equation $\kappa_{2}+\lambda^{\prime \prime}=\frac{c_{0}}{c_{1}} \kappa_{1}^{\star}$ holds.

Figure 1: Mannheim B-pair of curves $\left(\beta, \beta^{\star}\right)$.

In the next theorem, we give the necessary and the sufficient conditions for pseudo null curve couple (β, β^{\star}) to be Mannheim B-pair of curves with non-zero Bishop curvatures κ_{1} and κ_{2}^{\star}.

Theorem 4. Let β and β^{\star} be two pseudo null curves in \mathbb{E}_{1}^{3} parameterized by arc-length parameters s and s^{\star} respectively with the Bishop curvatures $\kappa_{1}, \kappa_{2}^{\star}$ and $\kappa_{2}=\kappa_{1}^{\star}=0$. Then $\left(\beta, \beta^{\star}\right)$ curve couple is a Mannheim B-pair if and only if

$$
\begin{equation*}
\kappa_{2}^{\star}=-\frac{\kappa_{1}\left(\lambda^{\prime}\right)^{2}}{c\left(1+\lambda \kappa_{1}\right)^{3}} \tag{3.10}
\end{equation*}
$$

where c is a non-zero real number and $\lambda(s)$ is differentiable function satisfying differential equation

$$
\begin{equation*}
\lambda^{\prime}(s) \int \kappa_{1}(s) d s+2\left(1+\lambda(s) \kappa_{1}(s)\right)=0 \tag{3.11}
\end{equation*}
$$

Proof. Assume that $\left(\beta, \beta^{\star}\right)$ is Mannheim B-pair of curves. Then we can write the curve β^{\star} as

$$
\begin{equation*}
\beta^{\star}\left(s^{\star}\right)=\beta^{\star}(f(s))=\beta(s)+\lambda(s) N_{1}(s), \tag{3.12}
\end{equation*}
$$

where $\lambda(s)$ is some differentiable function. Differentiating (3.12) with respect to s and using (2.7), (2.8) and (2.9), we get

$$
\begin{equation*}
T_{1}^{\star} f^{\prime}=\left(-1-\lambda \kappa_{1}\right) T_{1}+\lambda^{\prime} N_{1} . \tag{3.13}
\end{equation*}
$$

By taking the scalar product of (3.13) with $T_{1}^{\star} f^{\prime}$ and using (2.5), we obtain

$$
\begin{equation*}
f^{\prime 2}=\left(1+\lambda \kappa_{1}\right)^{2} . \tag{3.14}
\end{equation*}
$$

Let us take $f^{\prime}=1+\lambda \kappa_{1}$. Then $1+\lambda \kappa_{1} \neq 0$. Putting $a=\lambda^{\prime} / f^{\prime}$ in (3.13), we find

$$
\begin{equation*}
T_{1}^{\star}=-T_{1}+a N_{1} . \tag{3.15}
\end{equation*}
$$

Differentiating (3.15) with respect to s and using (2.8) and (2.10), we obtain

$$
\begin{equation*}
\kappa_{2}^{\star} f^{\prime} N_{1}^{\star}=-a \kappa_{1} T_{1}+a^{\prime} N_{1}-\kappa_{1} N_{2} . \tag{3.16}
\end{equation*}
$$

Since N_{1}^{\star} is a null vector, relations (2.5) and (3.16) imply

$$
-2 a^{\prime} \kappa_{1}+a^{2} \kappa_{1}^{2}=0
$$

Integrating the previous equation, we obtain

$$
a(s)=-\frac{2}{\int \kappa_{1}(s) d s} .
$$

Substituting $a=\lambda^{\prime} / f^{\prime}$ in the last equation, it follows that λ satisfies differential equation (3.11).

By taking the scalar product of (3.16) with $N_{1}=\mu N_{2}^{\star}$, where $\mu(s) \neq 0$ is some differentiable function and using (2.5), we find

$$
\begin{equation*}
\mu \kappa_{2}^{\star} f^{\prime}=-\kappa_{1} . \tag{3.17}
\end{equation*}
$$

Substituting (3.17) in (3.16), we get

$$
\begin{equation*}
N_{1}^{\star}=a \mu T_{1}-\frac{\mu a^{\prime}}{\kappa_{1}} N_{1}+\mu N_{2} \tag{3.18}
\end{equation*}
$$

Differentiating (3.18) with respect to s and using (2.8) and (2.10), we find

$$
\left(a \mu^{\prime}+2 \mu a^{\prime}\right) T_{1}-\left(\frac{\mu a^{\prime}}{\kappa_{1}}\right)^{\prime} N_{1}+\left(\mu^{\prime}+a \mu \kappa_{1}\right) N_{2}=0
$$

which implies that

$$
\begin{equation*}
a \mu^{\prime}+2 \mu a^{\prime}=0, \quad \frac{\mu a^{\prime}}{\kappa_{1}}=\text { constant }, \quad \mu^{\prime}+a \mu \kappa_{1}=0 . \tag{3.19}
\end{equation*}
$$

From the first equation of (3.19) we find

$$
\begin{equation*}
\mu=\frac{c}{a^{2}}, \tag{3.20}
\end{equation*}
$$

where $c \in \mathbb{R} \backslash\{0\}$. The other two equations of (3.19) hold automatically. Substituting relations $f^{\prime}=1+\lambda \kappa_{1}$ and (3.20) in (3.17), we get that Bishop curvature κ_{2}^{\star} satisfies (3.10).

Conversely, assume relation (3.10) holds and that λ satisfies differential equation (3.11). Define a curve β^{\star} by

$$
\begin{equation*}
\beta^{\star}\left(s^{\star}\right)=\beta^{\star}(f(s))=\beta(s)+\lambda N_{1}(s) . \tag{3.21}
\end{equation*}
$$

Differentiating (3.21) with respect to s and using (2.7), (2.8) and (2.9), we obtain

$$
\begin{equation*}
T_{1}^{\star} f^{\prime}=\left(-1-\lambda \kappa_{1}\right) T_{1}+\lambda^{\prime} N_{1} . \tag{3.22}
\end{equation*}
$$

By taking the scalar product of (3.22) with $T_{1}^{\star} f^{\prime}$ and using (2.5), we find $f^{\prime 2}=\left(1+\lambda \kappa_{1}\right)^{2}$. Thus we may take $f^{\prime}=1+\lambda \kappa_{1}$. Then from (3.22) we have

$$
\begin{equation*}
T_{1}^{\star}=-T_{1}+a N_{1} \tag{3.23}
\end{equation*}
$$

where $a=\lambda^{\prime} / f^{\prime}$. Differentiating (3.23) with respect to s and using (2.8) and (2.10), we find

$$
\begin{equation*}
\kappa_{2}^{\star} f^{\prime} N_{1}^{\star}=-a \kappa_{1} T_{1}+a^{\prime} N_{1}-\kappa_{1} N_{2} . \tag{3.24}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
N_{1}^{\star}=-\frac{c}{a} T_{1}+\frac{c a^{\prime}}{a^{2} \kappa_{1}} N_{1}+\frac{c}{a^{2}} N_{2} . \tag{3.25}
\end{equation*}
$$

By using the conditions $\left\langle N_{2}^{\star}, N_{2}^{\star}\right\rangle=\left\langle N_{2}^{\star}, T_{1}^{\star}\right\rangle=0,\left\langle N_{1}^{\star}, N_{2}^{\star}\right\rangle=1$ and relations (3.23) and (3.25), we find

$$
N_{2}^{\star}=\frac{a^{2}}{c} N_{1}=\frac{1}{\mu} N_{1} .
$$

Hence (β, β^{\star}) is Mannheim B-pair of curves.
Example 2. Consider a unit speed pseudo null curve in \mathbb{E}_{1}^{3} with parameter equation

$$
\beta(s)=\left(s^{3}, s^{3}, s\right) .
$$

The Frenet frame of β reads

$$
\begin{aligned}
T(s) & =\left(3 s^{2}, 3 s^{2}, 1\right), \\
N(s) & =6 s(1,1,0) \\
B(s) & =\left(-\frac{9 s^{4}+1}{12 s}, \frac{1-9 s^{4}}{12 s},-\frac{s}{2}\right),
\end{aligned}
$$

and the Frenet curvatures of β are given by $\kappa(s)=1, \tau(s)=\frac{1}{s}$. According to statement (ii) of Theorem 1, the Bishop curvatures of β read

$$
\kappa_{1}(s)=c_{0} s, \quad \kappa_{2}(s)=0, \quad c_{0} \in \mathbb{R}_{0}^{-} .
$$

Hence the Bishop frame of β has the form

$$
\begin{aligned}
T_{1}(s) & =-\left(3 s^{2}, 3 s^{2}, 1\right), \\
N_{1}(s) & =c_{0}\left(\frac{1+9 s^{4}}{12}, \frac{9 s^{4}-1}{12}, \frac{s^{2}}{2}\right),
\end{aligned}
$$

$$
N_{2}(s)=-\frac{6}{c_{0}}(1,1,0) .
$$

Substituting $\kappa_{1}(s)=c_{0} s$ in (3.11), we get

$$
\lambda(s)=-\frac{4}{3 c_{0} s} .
$$

Let us define pseudo null curve β^{\star} by

$$
\beta^{\star}(s)=\beta(s)+\lambda(s) N_{1}(s) .
$$

Then β^{\star} has parameter equation

$$
\beta^{\star}(s)=\left(-\frac{1}{9 s}, \frac{1}{9 s}, \frac{s}{3}\right) .
$$

In particular, the arc-length parameter of β^{*} is given by $s^{\star}=\frac{s}{3}$. Therefore, the Frenet frame of β^{\star} reads

$$
\begin{aligned}
& T^{\star}(s)=\left(\frac{1}{27 s^{\star 2}},-\frac{1}{27 s^{\star 2}}, 1\right), \\
& N^{\star}(s)=\left(-\frac{2}{27 s^{\star 3}}, \frac{2}{27 s^{\star 3}}, 0\right), \\
& B^{\star}(s)=\left(\frac{27}{4} s^{\star 3}+\frac{1}{108 s^{\star}}, \frac{27}{4} s^{\star 3}-\frac{1}{108 s^{\star}}, \frac{s^{\star}}{2}\right),
\end{aligned}
$$

and Frenet curvatures of β^{\star} have the form $\kappa^{\star}(s)=1, \tau^{\star}(s)=-\frac{3}{s^{\star}}$. Hence statement (i) of Theorem 1 implies that the Bishop curvatures of β^{\star} read

$$
\kappa_{1}^{\star}(s)=0, \quad \kappa_{2}^{\star}(s)=\frac{c_{1}}{s^{\star 3}}, \quad c_{1} \in \mathbb{R}_{0}^{+} .
$$

Also, according to statement (i) of Theorem 1, the Bishop frame of β^{\star} reads

$$
\begin{aligned}
& T_{1}^{\star}(s)=T^{\star} \\
& N_{1}^{\star}(s)=\frac{s^{\star 3}}{c_{1}}\left(-\frac{2}{27 s^{\star 3}}, \frac{2}{27 s^{\star 3}}, 0\right), \\
& N_{2}^{\star}(s)=\frac{c_{1}}{s^{\star 3}}\left(\frac{27}{4} s^{\star 3}+\frac{1}{108 s^{\star}}, \frac{27}{4} s^{\star 3}-\frac{1}{108 s^{\star}}, \frac{s^{\star}}{2}\right) .
\end{aligned}
$$

It can be easily verified that

$$
N_{1}=\frac{9 c_{0} s^{\star 4}}{c_{1}} N_{2}^{\star}
$$

Consequently, (β, β^{\star}) is Mannheim B-pair of curves (Figure 2).
Moreover, it can be easily checked that the equation (3.10) is satisfied.

Figure 2: Mannheim B-pair of curves $\left(\beta, \beta^{\star}\right)$.

Remark 1. Note that to any pseudo null curve in \mathbb{E}_{1}^{3} with Bishop curvatures $k_{1} \neq 0$ and $k_{2}=$ 0 , we may assign function λ as the solution of differential equation (3.11). The function λ determines Mannheim mate B-curve $\beta^{\star}=\beta+\lambda N_{1}$ of β. This means that there are infinity many pseudo null Mannheim B-curve couples.

The next theorem can be proved analogously, so we omit its proof.
Theorem 5. There are no Mannheim B-pair of curves $\left(\beta, \beta^{\star}\right)$ in \mathbb{E}_{1}^{3}, where β and β^{\star} are pseudo null curves with Bishop curvatures $\kappa_{1}=\kappa_{1}^{\star}$ and $\kappa_{2}=\kappa_{2}^{\star}$.

Theorem 6. There are no Mannheim B-pair of curves $\left(\beta, \beta^{\star}\right)$ in \mathbb{E}_{1}^{3}, where β is a pseudo null curve and β^{\star} is a null Cartan curve.

Proof. Let β be a pseudo null Mannheim B-curve parametrized by arc-length s with the Bishop curvatures κ_{1} and κ_{2} and Bishop frame $\left\{T_{1}, N_{1}, N_{2}\right\}$. Assume that there exists Mannheim B-pair of curves $\left(\beta, \beta^{\star}\right)$, where β^{\star} is a null Cartan curve with Bishop frame $\left\{T_{1}^{\star}, N_{1}^{\star}, N_{2}^{\star}\right\}$. Then we can write the curve β^{\star} as

$$
\begin{equation*}
\beta^{\star}\left(s^{\star}\right)=\beta^{\star}(f(s))=\beta(s)+\lambda(s) N_{1}(s), \tag{3.26}
\end{equation*}
$$

where $\lambda(s)$ is some differentiable function. Now we may distinguish two possibilities: $(i) \kappa_{1}=$ $0, \kappa_{2} \neq 0$ and $(i i) \kappa_{1} \neq 0, \kappa_{2}=0$.
(i) If $\kappa_{1}=0$ and $\kappa_{2} \neq 0$, differentiating (3.26) with respect to s and using (2.7), (2.8) and (2.11), we get

$$
\begin{equation*}
T_{1}^{\star} f^{\prime}=T_{1}+\lambda^{\prime} N_{1} . \tag{3.27}
\end{equation*}
$$

By taking the scalar product of (3.27) with $T_{1}^{\star} f^{\prime}$ and using (2.5) and (2.6), we obtain a contradiction.
(ii) If $\kappa_{1} \neq 0$ and $\kappa_{2}=0$, differentiating (3.26) with respect to s and using (2.9), (2.10) and (2.11), we obtain

$$
\begin{equation*}
T_{1}^{\star} f^{\prime}=\left(-1-\lambda \kappa_{1}\right) T_{1}+\lambda^{\prime} N_{1} \tag{3.28}
\end{equation*}
$$

By taking the scalar product of (3.28) with $N_{1}=\mu N_{2}^{\star}$ where $\mu(s) \neq 0$ is some differentiable function and using (2.5) and (2.6), we get $f^{\prime} \mu=0$ which is a contradiction again.

The proof of the following theorem follows from the fact that a null Bishop vector N_{1} of β can be collinear with non-null Bishop vector N_{2}^{\star} of β^{\star}.

Theorem 7. There are no Mannheim B-pair of curves $\left(\beta, \beta^{\star}\right)$ in \mathbb{E}_{1}^{3}, where β is a pseudo null curve and β^{\star} is a timelike or spacelike curve with non-null Bishop vector N_{2}^{\star}.

Theorem 8. There are no Mannheim B-pair of curves $\left(\beta, \beta^{\star}\right)$ in \mathbb{E}_{1}^{3}, where β is a null Cartan curve and β^{\star} is a timelike curve, or a spacelike curve with a non-null Bishop vector N_{2}^{\star}.

Proof. Assume that there exists Mannheim B-pair of curves (β, β^{\star}). Denote by s and s^{\star} pseudo-arc and arc-length of β and β^{\star} respectively and by $\left\{T_{1}, N_{1}, N_{2}\right\}$ and $\left\{T_{1}^{\star}, N_{1}^{\star}, N_{2}^{\star}\right\}$ their Bishop frames. It is sufficient to assume that N_{2}^{\star} is a spacelike vector. Otherwise, we easily get a contradiction. We can write the curve β as

$$
\begin{equation*}
\beta(s)=\beta\left(f\left(s^{\star}\right)\right)=\beta^{\star}\left(s^{\star}\right)+\lambda\left(s^{\star}\right) N_{2}^{\star}\left(s^{\star}\right), \tag{3.29}
\end{equation*}
$$

where $\lambda\left(s^{\star}\right)$ is some differentiable function. Differentiating the relation (3.29) with respect to s^{\star} and using relations (2.4) and (2.11), we obtain

$$
T_{1} f^{\prime}=T_{1}^{\star}+\lambda^{\prime} N_{2}^{\star}+\epsilon_{0} \lambda \kappa_{2}^{\star} T_{1}^{\star} .
$$

By taking the scalar product of the previous equation with $N_{1}=\mu N_{2}^{\star}$ where $\mu \neq 0$ is some differentiable function and using (2.6) and the conditions $\left\langle T_{1}^{\star}, N_{2}^{\star}\right\rangle=0,\left\langle N_{2}^{\star}, N_{2}^{\star}\right\rangle=1$, we get $\lambda^{\prime}=0$. Hence

$$
T_{1} f^{\prime}=\left(1+\epsilon_{0} \lambda \kappa_{2}^{\star}\right) T_{1}^{\star} .
$$

This means that a null vector T_{1} is collinear with a non-null vector T_{1}^{\star}, which is a contradiction.

The proof of the last theorem follows from the fact that a spacelike Bishop vector N_{1} of β can not be collinear with a null Bishop vector N_{2}^{\star} of β^{\star}.

Theorem 9. There are no Mannheim B-pair of curves $\left(\beta, \beta^{\star}\right)$ in \mathbb{E}_{1}^{3}, where β is null Cartan curve and β^{\star} is Cartan null or pseudo null curve.

References

[1] L.R. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly 82(3) (1975), 246-251.
[2] W. B. Bonnor, Null curves in a Minkowski space-time, Tensor, 20 (1969), 229-242.
[3] J. H. Choi, T. H. Kang and Y. H. Kim, Mannheim curves in 3-dimensional space forms, Bull. Korean Math. Soc., 50 (2013), No.4, 1099-1108.
[4] K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi Riemann Manifolds, World Scientific, Singapore, 2007.
[5] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces. Dover Edition. Dover Publication, New York, 1960.
[6] M. Erdoğdu, Parallel frame of non-lightlike curves in Minkowski space-time, Int. J. Geom. Methods Mod. Phys., 12 (2015), 16 pages.
[7] S. Ersoy, M. Tosun and H. Matsuda, Generalized Mannheim curves in Minkowski space-time E E_{1}^{4}, Hokkaido Math. J., 41 (2012), No.3, 441-461.
[8] F. Gökçelik, Z. Bozkurt, I. Gök, F. N. Ekmekçi and Y. Yayl, Parallel transport frame in 4-dimensional Euclidean space \mathbb{E}^{4}, Caspian J. Math. Sci., 3 (2014), 91-103.
[9] M. Grbović, K. Ilarslan and E. Nešović, On null and pseudo null Mannheim curves in Minkowski 3-space, J. Geom., 105 (2014), 177-183.
[10] M. Grbović, K. Ilarslan and E. Nešović, On generalized null Mannhem curves in Minkowski space-time, Publ. Inst. Math. (Belgrade), 99 (2016), No.113, 77-98.
[11] M. Grbović and E. Nešović, On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space, J. Math. Anal. Appl., 461 (2018), 219-233.
[12] K. Ilarslan and E. Nešović, On Bishop frame of a null Cartan curve in Minkowski space-time, Int. J. Geom. Meth. Mod. Phys., 15 (2018), No.8, 1850142 (16 pages).
[13] H. Liu and F. Wang, Mannheim partner curves in 3-space, J. Geom., 88, (2008), 120-126.
[14] H. Matsuda and S. Yorozu, On generalized Mannheim curves in Euclidean 4-space, Nihonkai Math. J., 20 (2009), 33-56.
[15] B. O'Neill, Semi Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983
[16] M. Özdemir and A. A. Ergin, Parallel frame of non-lightlike curves, Missouri J. Math. Sci., 20 (2008), No.2, 127-137.
[17] J. Warave, Curves and surfaces in Minkowski space, Ph.D. Thesis, Leuven University, 1995.
[18] S. Yılmaz and M. Turgut, A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., 371 (2010), 764-776.

Department of Mathematics,Faculty of Sciences and Arts, Kırıkkale University, Kırıkkale-Turkey.
E-mail: kilarslan@yahoo.com
Department of Mathematics,Faculty of Sciences and Arts, Kırıkkale University, Kırıkkale-Turkey.
E-mail: aliucum05@gmail.com
Department of Mathematics and Informatics, Faculty of Science, University of Kragujevac, Kragujevac-Serbia.
E-mail: nesovickg@sbb.rs
Department of Mathematics,Faculty of Sciences and Arts, Kırıkkale University, Kırıkkale-Turkey.
E-mail: nhlklc71@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 53C50, 53C40.
 Key words and phrases. Bishop frame, Mannheim curve, null Cartan curve, pseudo-null curve, Minkowski space.
 Corresponding author: Kazım İlarslan.

