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MULTIVALUED IMPULSIVE NEUTRAL FUNCTIONAL

DIFFERENTIAL INCLUSIONS IN BANACH SPACES

M. BENCHOHRA, J. HENDERSON AND S. K. NTOUYAS

Abstract. In paper the existence of solutions for �rst and second order impulsive neutral

functional di�erential inclusions in Banach spaces is investigated. The results are obtained by

using a �xed point theorem for condensing multivalued maps due to Martelli and the semigroup

theory.

1. Introduction

The necessity of study of impulsive functional di�erential equations is caused by the

fact that they are an adequate mathematical apparatus for simulation of processes and

phenomena subject to short-time perturbations during their evolution. The perturba-

tions are performed discretely and their duration is negligible in comparison with the

total duration of the processes and phenomena. That is why they are considered to

take place \momentarily" in the form of impulses. The theory of impulsive di�erential

equations has been developing considerably, see the monographs of Bainov and Sime-

onov [1], Lakshmikantham et al [12], and Samoilenko and Perestyuk [16]where numerous

properties of their solutions are studied, and a detailed bibliography is given.

Section 3 is concerned with the existence of solutions for the �rst order initial value

problem for neutral functional di�erential inclusions with impulsive e�ects as

d

dt
[y(t)� g(t; yt)] 2 F (t; yt); t 2 J = [0; T ]; t 6= tk; k = 1; : : : ;m; (1.1)

�yjt=tk = Ik(y(t
�

k
)); k = 1; : : : ;m; (1.2)

y(t) = �(t); t 2 [�r; 0] (1.3)

where F : J � C([�r; 0]; E) �! 2E is a bounded, closed and convex valued multivalued

map, g : J�C([�r; 0]; E) �! E is a given function, � 2 C([�r; 0]; E); (0 < r <1); 0 =

t0 < t1 < : : : < tm < tm+1 = T; Ik 2 C(E;E) (k = 1; 2; : : : ;m); are bounded functions,

�yjt=tk = y(t+
k
) � y(t�

k
); y(t�

k
) and y(t+

k
) represent the left and right limits of y(t) at

t = tk, respectively and E a real Banach space with norm j � j.
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For any continuous function y de�ned on [�r; T ] � ft1; : : : ; tmg and any t 2 J , we

denote by yt the element of C([�r; 0]; E) de�ned by yt(�) = y(t + �); � 2 [�r; 0]: Here

yt(�) represents the history of the state from time t� r, up to the present time t.

In Section 4 we study second order impulsive neutral functional di�erential inclusions

of the form

d

dt
[y0(t)� g(t; yt)] 2 F (t; yt); t 2 J = [0; T ]; t 6= tk; k = 1; : : : ;m; (1.4)

�yjt=tk = Ik(y(t
�

k
)); k = 1; : : : ;m; (1.5)

�y0jt=tk = Ik(y(t
�

k
)); k = 1; : : : ;m; (1.6)

y(t) = �(t); t 2 [�r; 0]; y0(0) = � (1.7)

where f; g; Ik; Ik and � are as in problem (1.1)-(1.3), Ik 2 C(E;E) and � 2 E.

Recently an extension to functional di�erential inclusions with impulsive e�ects has

been done by Benchohra et al [3], [4]with the aid of the nonlinear alternative for multi-

valued maps and a �xed point theorem for condensing multivalued maps due to Martelli.

Other results on functional di�erential equations without impulsive e�ect can be found

in the monograph of Erbe et al [7], Hale and Verduyn Lunel [9], Henderson [10], and the

survey paper of Ntouyas [15].

This paper will be divided into four sections. In Section 2 we will recall briey some

basic de�nitions and preliminary facts which will be used throughout Sections 3 and 4.

In sections 3 and 4 we shall establish existence theorems for (1.1){(1.3) and (1.4){(1.7).

Our approach is based on a �xed point theorem for condensing multivalued maps due

to Martelli [14]. The results of the present paper extend and generalize some results in

the literature on neutral functional di�erential inclusions in the absence of the impulsive

e�ect. They are also an extension to the multivalued case of similar problems considered

by the authors [5], in the single valued case, where the Schaefer's �xed point theorem

and the semigroup theory are used.

2. Preliminaries

In this section, we introduce notations, de�nitions, and preliminary facts which are

used throughout this paper.

C([�r; 0]; E) is the Banach space of all continuous functions from [�r; 0] into E with

the norm

k�k = supfj�(�)j : �r � � � 0g:

By C(J;E) we denote the Banach space of all continuous functions from J into E with

the norm

kykJ := supfjy(t)j : t 2 Jg:

A measurable function y : J �! E is Bochner integrable if and only if jyj is Lebesgue

integrable. (For properties of the Bochner integral, see for instance, Yosida [17]).
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L1(J;E) denotes the Banach space of functions y : J �! E which are Bochner

integrable normed by

kykL1 =

Z T

0

jy(t)jdt for all y 2 L1(J;E):

Let (X; j � j) be a Banach space. A multivalued map G : X �! 2X has convex (closed)

values if G(x) is convex (closed) for all x 2 X: G is bounded on bounded sets if G(B) is

bounded in X for each bounded set B of X (i.e. supx2Bfsupfjyj : y 2 G(x)gg <1):

G is called upper semicontinuous (u.s.c.) on X if for each x0 2 X the set G(x0) is a

nonempty, closed subset of X , and if for each open set N of X containing G(x0), there

exists an open neighbourhood M of x0 such that G(M) � N: G is said to be completely

continuous if G(B) is relatively compact for every bounded subset B � X .

If the multivalued G is completely continuous with nonempty compact values, then

G is u.s.c. if and only if G has a closed graph (i.e. xn �! x
�
; yn �! y

�
; yn 2 G(xn)

imply y
�
2 G(x

�
)). G has a �xed point if there is x 2 X such that x 2 G(x):

In the following CC(E) denotes the set of all nonempty compact, convex subsets of

E. A multivalued map G : J �! CC(X) is said to be measurable if for each x 2 E

the function Y : J �! R de�ned by Y (t) = d(x;G(t)) = inffjx � zj : z 2 G(t)g is

measurable.

An upper semi-continuous multivalued map G : X �! 2X is said to be condensing

[2] if for any subset B � X with �(B) 6= 0, we have �(G(B)) < �(B), where � denotes

the Kuratowski measure of noncompacteness [2].

We remark that a completely continuous multivalued map is the easiest example of

a condensing map. For more details on multivalued maps see the books of Deimling [6],

Gorniewicz [8]and Hu and Papageorgiou[11].

De�nition 2.1. A multivalued map F : J � C([�r; 0]; E) �! 2E is said to be

L1-Carath�eodory if

(i) t 7�! F (t; u) is measurable for each u 2 C([�r; 0]; E);

(ii) u 7�! F (t; u) is upper semicontinuous for almost all t 2 J ;

(iii) For each q > 0; there exists lq 2 L
1(J;R+) such that

kF (t; u)k = supfjvj : v 2 F (t; u)g � lq(t)

for all kuk � q and for almost all t 2 J:

In order to de�ne the solution of (1,1){(1.3) we shall consider the following spaces


 = fy : [�r; T ] �! E : yk 2 C(Jk; E); k = 0; : : : ;m and there exist

y(t�
k
) and y(t+

k
); k = 1; : : : ;m with y(t�

k
) = y(tk); y(t) = �(t); 8t 2 [�r; 0]g
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which is a Banach space with the norm

kyk
 = maxfkykkJk ; k = 0; : : : ;mg;

where yk is the restriction of y to Jk = [tk; tk+1]; k = 0; : : : ;m:

We shall also consider the set


1 = fy : [�r; T ] �! E : yk 2 W
1;1(Jk; E); k = 0; : : : ;m and there exist

y(t�
k
) and y(t+

k
); k = 1; :::;m with y(t�

k
) = y(tk); y(t) = �(t); 8t 2 [�r; 0]g:

The set 
1 is a Banach space with the norm

kyk
1 = maxfkykkW 1;1(Jk;E); k = 0; : : : ;mg:

So let us start by de�ning what we mean by a solution of problem (1.1){(1.3).

De�nition 2.2. A function y 2 
 \ 
1 is said to be a solution of (1.1){(1.3) if

y(t)� g(t; yt) is absolutely continuous on J �ft1; : : : ; tmg and (1.1) to (1.3) are satis�ed.

Our main result are based on the following:

Lemma 2.3. [13].Let I be a compact real interval and X be a Banach space. Let F

be a multivalued map satisfying the Carath�eodory conditions with the set of L1-selections

SF nonempty, and let � be a linear continuous mapping from L1(I;X) to C(I;X). Then

the operator

� � SF : C(I;X) �! CC(C(I;X)); y 7�! (� � SF )(y) := �(SF;y)

is a closed graph operator in C(I;X)� C(I;X):

Lemma 2.4. [14] Let N : X �! CC(X) be a condensing map. If the set

M := fy 2 X : �y 2 N(y) for some � > 1g

is bounded, then N has a �xed point.

Let v 2 L1(J;E) and consider the IVP (2.1), (1.2), (1.3)

d

dt
[y(t)� g(t; yt)] = v(t); t 2 J; t 6= tk; k = 1; : : : ;m: (2.1)

We need the following auxiliary result. Its proof is very simple, so we omit it.

Lemma 2.5. y 2 
1 is a solution of (2:1), (1:2), (1:3) if and only if y 2 
 is a

solution of the impulsive integral equation

y(t) = �(0)� g(0; �(0)) + g(t; yt) +

Z t

0

v(s)ds +
X

0<tk<t

Ik(y(t
�

k
)) for t 2 J:
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3. First Order Impulsive NFDIs

We are now in a position to state and prove our existence result for the problem

(1.1){(1.3). For the study of this problem we �rst list the following hypotheses:

(H1) F : J � C([�r; 0]; E) �! BCC(E) is an L1 -Carath�eodory map;

(H2) There exist constants 0 � c1 < 1 and c2 � 0 such that

jg(t; u)j � c1kuk+ c2; t 2 J; u 2 C([�r; 0]; E);

(H3) There exist constants dk such that jIk(y)j � dk; k = 1; : : : ;m for each y 2 E;

(H4) kF (t; u)k = supfjvj : v 2 F (t; u)g � p(t) (kuk) for almost all t 2 J and all

u 2 C([�r; 0]; E), where p 2 L1(J;R+) and  : R+ �! (0;1) is continuous and

increasing with

1

1� c1

Z T

0

p(s)ds <

Z
1

c

d�

 (�)
;

where c = 1
1�c1

n
(1 + c1)k�k+ 2c2 +

mP
k=1

dk

o
;

(H5) The function g is completely continuous and for any bounded set A � 
 the set

ft! g(t; yt) : y 2 Ag is equicontinuous in 
;

(H6) For each bounded B � 
 and t 2 J the set

n
�(0) +

Z t

0

v(s)ds+
X

0<tk<t

Ik(y(tk)) : v 2 SF;B

o

is relatively compact in E, where SF;B = [fSF;y : y 2 Bg.

Remark 3.1. (i) If dimE <1, then for each u 2 C([�r; 0]; E) the set SF;u is nonempty

(see Lasota and Opial [13]).

(ii) If dimE = 1 and u 2 C([�r; 0]; E) the set SF;u is nonempty if and only if the

function Y : J �! R de�ned by

Y (t) := inffjvj : v 2 F (t; u)g

belongs to L1(J;R) (see Hu and Papageorgiou [11]).

Theorem 3.2. Assume that hypotheses (H1)-(H6) hold. Then the IVP (1:1){(1:3)

has at least one solution on [�r; T ]:
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Proof. Transform the problem into a �xed point problem. Consider the operator,

N : 
 �! 2
 de�ned by:

N(y) =

8>>><
>>>:
h 2 
 : h(t)

8>>><
>>>:
�(t); t 2 [�r; 0]

�(0)� g(0; �(0)) + g(t; yt)

+

Z t

0

v(s)ds+
X

0<tk<t

Ik(y(tk)); t 2 J;

9>>>=
>>>;

where v 2 SF;y.

Remark 3.3. Clearly from Lemma (2.5) the �xed points of N are solutions to

(1.1){(1.3).

We shall show that N satis�es the assumptions of Lemma 2.4. Using (H5) it su�ces

to show that the operator N1 : 
 �! 2
 de�ned by:

N1(y) =

(
h 2 
 : h(t) =

(
�(t); t 2 [�r; 0]

�(0) +
R t
0
v(s)ds+

P
0<tk<t

Ik(y(tk)); t 2 J;

)

where v 2 SF;y; is u.s.c. condensing with bounded, closed and convex values. The proof

will be given in several steps.

Step 1. N1(y) is convex for each y 2 
.

This is obvious since SF;y is convex (because F has convex values).

Step 2. N1 maps bounded sets into relatively compact sets in 
:

This is a consequence of the L1-Carath�eodory character of F: As a consequence of

Steps 1 and 2 and (H4) together with the Arzela-Ascoli theorem we can conclude that

N : 
 �! 2
 is completely continuous multivalued and therefore, a condensing map.

Step 4. N has a closed graph.

Let yn �! y
�
; hn 2 N(yn); and hn �! h

�
. We shall prove that h

�
2 N(y

�
).

hn 2 N(yn) means that there exists vn 2 SF;yn such that for each t 2 J

hn(t) = �(0)� g(0; �(0)) + g(t; ynt) +

Z t

0

vn(s)ds +
X

0<tk<t

Ik(yn(tk)):

We must prove that there exists v
�
2 SF;y� such that for each t 2 J

h
�
(t) = �(0)� g(0; �(0)) + g(t; y

�t) +

Z t

0

v
�
(s)ds+

X
0<tk<t

Ik(y�(tk)):

Since the functions g(t; :); t 2 J; Ik; k = 1; : : : ;m are continuous we have that�hn ��(0) + g(0; �(0))� g(t; ynt)�
P

0<tk<t

Ik(yn(tk))
�

�

�
h
�
� �(0) + g(0; �(0))� g(t; y

�t)�
P

0<tk<t

Ik(y�(tk))
�



�! 0; as n!1:
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Consider the linear continuous operator

� : L1(J;E) �! C(J;E)

v 7�! �(v)(t) =

Z t

0

v(s)ds:

From Lemma 2.3, it follows that � � SF is a closed graph operator.

Moreover, we have that�
hn(t)� �(0) + g(0; �(0))� g(t; ynt)�

X
0<tk<t

Ik(yn(tk))
�
2 �(SF;yn):

Since yn �! y
�
; it follows from Lemma 2.3 that

�
h
�
(t)� �(0) + g(0; �(0))� g(t; y

�t)�
X

0<tk<t

Ik(y�(tk))
�
=

Z t

0

v
�
(s)ds

for some g
�
2 SF;y� .

Step 5. Now it remains to show that the set

M := fy 2 
 : �y 2 N(y); for some � > 1g

is bounded.

Let y 2M. Then y 2 �N(y) for some 0 < � < 1. Thus for each t 2 J

y(t) = ��1�(0)� ��1g(0; �(0)) + ��1g(t; yt) + ��1
Z t

0

v(s)ds + ��1
X

0<tk<t

Ik(y(tk)):

This implies by (H2)-(H4) that for each t 2 J we have

jy(t)j � k�k+ c1k�k+ 2c2 + c1kytk+

Z t

0

p(s) (kysk)ds+

mX
k=1

dk:

We consider the function � de�ned by

�(t) = supfjy(s)j : �r � s � tg; 0 � t � T:

Let t� 2 [�r; t] be such that �(t) = jy(t�)j. If t� 2 [0; T ], by the previous inequality we

have for t 2 [0; T ]

�(t) � k�k+ c1k�k+ 2c2 + c1kytk+

Z t

0

p(s) (kysk)ds+
X

0<tk<t

jIk(y(tk))j

� k�k+ c1k�k+ 2c2 + c1�(t) +

Z t

0

p(s) (�(s))ds +

mX
k=1

dk:
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Thus

�(t) �
1

1� c1

n
(1 + c1)k�k+ 2c2 +

Z t

0

p(s) (�(s))ds +

mX
k=1

dk

o
:

If t� 2 J0 then �(t) = k�k and the previous inequality holds.

Let us take the right-hand side of the above inequality as v(t); then we have

c = v(0) =
1

1� c1

n
(1 + c1)k�k+ 2c2 +

mX
k=1

dk

o
; �(t) � v(t); t 2 J

and

v0(t) =
1

1� c1
p(t) (�(t)); t 2 J:

Using the nondecreasing character of  we get

v0(t) �
1

1� c1
p(t) (v(t)); t 2 J:

This implies for each t 2 J thatZ v(t)

v(0)

du

 (u)
�

1

1� c1

Z T

0

p(s)ds <

Z
1

v(0)

du

 (u)
:

This inequality implies that there exists a constant b such that v(t) � b; t 2 J; and hence

�(t) � b; t 2 J: Since for every t 2 [0; T ]; kytk � �(t), we have

kyk
 � b0 = Maxfk�k; bg;

where b0 depends only T and on the functions p and  . This shows that M is bounded.

Set X := 
. As a consequence of Lemma 2.4 we deduce that N has a �xed point

which is a solution of (1.1){(1.3).

4. Second Order Impulsive NFDIs

In this section we study the initial value problem (1.4){(1.7).

De�nition 4.1. A function y 2 
 \ 

1
is said to be a solution of (1.4){(1.7) if y

and y0(t) � g(t; yt) are absolutely continuous on J � ft1; : : : ; tmg and (1.4) to (1.7) are

satis�ed.

Here



1
= fy : [�r; T ] �! E : yk 2W

2;1(Jk ; E); k = 0; : : : ;m and there exist

y(t�
k
) and y(t+

k
); k = 1; :::;m with y(t�

k
) = y(tk); y(t) = �(t); 8t 2 [�r; 0]g

which is a Banach space with the norm

kyk


1 = MaxfkykkW 2;1(Jk;E); k = 0; : : : ;mg:

Theorem 4.2. Assume that hypotheses (H1), (H2) (with c1 � 0), (H5) and
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(H3)' There exist constants dk; dk such that jIk(y)j � dk ; jIk(y)j � dk k = 1; : : : ;m for

each y 2 E;

(H4)' kF (t; u)k � p(t) (kuk) for almost all t 2 J and all u 2 C([�r; 0]; E), where p 2

L1(J;R+) and  : R+ �! (0;1) is continuous and increasing with

Z T

0

M(s)ds <

Z
1

c

ds

s+  (s)
;

where c=k�k+[j�j+c1k�k+2c2]T+
mP
k=1

[dk+(T�tk)dk]; andM(t)=maxf1; c1; p(t)g:

(H6)' For each bounded B � 
 and t 2 J the set

n
�(0) + t� +

Z t

0

Z s

0

v(u)duds+
X

0<tk<t

[Ik(y(tk)) + (t� tk)Ik(y(tk))] : v 2 SF;B

o

is relatively compact in E; where SF;B = [fSF;y : y 2 Bg

hold. Then the IVP (1:4){(1:7) has at least one solution on [�r; T ]:

Proof. Transform the problem into a �xed point problem. Consider the operator,

N 0 : 
 �! 
 de�ned by:

N 0(y) =

8>>>>>>><
>>>>>>>:
h 2 
 : h(t)

8>>>>>>><
>>>>>>>:

�(t); t 2 [�r; 0]

�(0) + [� � g(0; �(0))]t

+

Z t

0

g(s; ys)ds+

Z t

0

Z u

0

v(u)duds

+
P

0<tk<t

[Ik(y(tk)) + (t� tk)Ik(y(tk))]; t 2 J;

9>>>>>>>=
>>>>>>>;

where v 2 SF;y: As in Theorem 3.2, we can prove that N 0 is a bounded, closed and

convex valued multivalued map and is u.s.c. We omit the details. Here we repeat only

the proof that the set

�(N 0) := fy 2 
 : y = �N 0(y); for some 0 < � < 1g

is bounded.

Let y 2 �(N 0). Then y = �N 0(y) for some 0 < � < 1. Thus for each t 2 J

y(t) = ��1�(0) + ��1[� � g(0; �(0))]t+ ��1
Z t

0

g(s; ys)ds+ ��1
Z t

0

Z u

0

v(u)duds

+��1
X

0<tk<t

[Ik(y(tk)) + (t� tk)Ik(y(tk))]:
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This implies by (H2), (H3)' and (H4)' that for each t 2 J we have

jy(t)j � k�k+ [j�j+ c1k�k+ 2c2]T + c1

Z t

0

kyskds

+

Z t

0

Z s

0

p(u) (kyuk)duds+

mX
k=1

[dk + (T � tk)dk]

� k�k+ [j�j+ c1k�k+ 2c2]T + c1

Z t

0

M(s)kyskds

+

Z t

0

M(s)

Z s

0

p(u) (kyuk)duds+

mX
k=1

[dk + (T � tk)dk];

where M(t) = maxf1; c1; p(t)g: We consider the function � de�ned by

�(t) = supfjy(s)j : �r � s � tg; 0 � t � T:

Let t� 2 [�r; t] be such that �(t) = jy(t�)j. If t� 2 [0; T ], by the previous inequality

we have for t 2 [0; T ]

�(t) � k�k+ [j�j+ c1k�k+ 2c2]T +

Z t

0

M(s)�(s)ds

+

Z t

0

M(s)

Z s

0

 (�(u))duds+

mX
k=1

[dk + (T � tk)dk]:

If t� 2 J0 then �(t) = k�k and the previous inequality holds.

Let us take the right-hand side of the above inequality as v(t); then we have

c = v(0) = k�k+ [j�j+ c1k�k+ 2c2]T +

mX
k=1

[dk + (T � tk)dk]; �(t) � v(t); t 2 J

and

v0(t) =M(t)�(t) +M(t)

Z t

0

 (�(t))

�M(t)

�
v(t) +

Z t

0

 (v(t))

�
; t 2 J:

Put

u(t) = v(t) +

Z t

0

 (v(s))ds; t 2 J:

Then

u(0) = v(0) = c; v(t) � u(t); t 2 J
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and

u0(t) = v0(t) +  (v(t)) �M(t)[u(t) +  (u(t))]; t 2 J:

This implies for each t 2 J that

Z u(t)

u(0)

du

u+  (u)
�

Z T

0

M(s)ds <

Z
1

u(0)

du

u+  (u)
:

This inequality implies that there exists a constant b1 such that u(t) � b1; t 2 J; and

hence �(t) � b1; t 2 J: Since for every t 2 [0; T ]; kytk � �(t), we have

kyk
 � b00 = Maxfk�k; b1g;

where b00 depends only T and on the functions p and  . This shows that �(N 0) is

bounded.
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