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ON THREE DIMENSIONAL COSYMPLECTIC MANIFOLDS

ADMITTING ALMOST RICCI SOLITONS

UDAY CHAND DE AND CHIRANJIB DEY

Abstract. In the present paper we study three dimensional cosymplectic manifolds ad-

mitting almost Ricci solitons. Among others, we prove that in a three dimensional com-

pact orientable cosymplectic manifold M3 without boundary, an almost Ricci soliton re-

duces to a Ricci soliton under certain restriction on the potential function λ. As a conse-

quence we obtain a corollary. Moreover, we study gradient almost Ricci solitons.

1. Introduction

The study of almost Ricci solitons was introduced by Pigola et al. [19], where essentially

they modified the definition of Ricci soliton by adding the condition on the parameter λ to be

a variable function. More precisely, we say that a Riemannian manifold (M n , g ) is an almost

Ricci soliton, if there exists a complete vector field V and a smooth soliton function λ : M n
−→

R satisfying

S +
1

2
£V g +λg = 0, (1.1)

where S and £ stand, respectively, for the Ricci tensor and the Lie derivative. We shall refer

to this equation as the fundamental equation of an almost Ricci soliton (M n , g ,V ,λ). The

soliton will be called expanding, steady or shrinking, respectively, if λ > 0, λ = 0 or λ < 0.

Otherwise, it will be called indefinite. When the vector field V is the gradient of a smooth

function f : M n
−→ R, the manifold will be called gradient almost Ricci soliton. In this case,

the preceding equation becomes

S +∇
2 f +λg = 0, (1.2)

where ∇
2 f stands for the Hessian of f .
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We notice that when n ≥ 3 and V is a Killing vector field, an almost Ricci soliton will be a

Ricci soliton, since in this case we have an Einstein manifold, from which we can apply Schur’s

lemma to deduce that λ is constant. Ricci solitons have been studied by several authors such

as Bejan et al. [4], Chen [6], Wang et al. ([21], [22], [23]), Deshmukh ([11], [12]), Cho [7], De

et al. ([8], [9], [10]) and many others. Taking into account that the soliton function λ is not

necessarily constant, certainly comparison with soliton theory will be modified. In particular,

the rigidity result contained in Theorem 1.3 of [19] indicates that almost Ricci solitons should

reveal a reasonably broad generalization of the fruitful concept of classical soliton.

To understand the geometry of almost Ricci soliton, in [2] Barros et al. proved that a com-

pact non-trivial almost Ricci soliton with constant scalar curvature is isometric to a Euclidean

sphere S
n and is gradient. Also, Barros and Ribeiro Jr. proved in [3] that a compact gradient

almost Ricci soliton with non-trivial conformal vector field is isometric to a Euclidean sphere.

In the same paper, they proved an integral formula for compact case, which was used to prove

several rigidity results, for more details see [3].

Almost Ricci solitons have been studied by Duggal [13], Ghosh [15], Sharma [20] and

many others.

The existence of almost Ricci soliton has been confirmed by Pigola et al. [19] on some

certain class of warped product manifolds. Some characterizations of almost Ricci soliton on

a compact Riemannian manifold can be found in ([1], [2] [3]). It is interesting to note that if

the potential vector field V of the almost Ricci soliton (M n , g ,V ,λ) is Killing, then the soliton

becomes trivial, provided the dimension of M is > 2. Moreover, if V is conformal then, M n is

isometric to the Euclidean sphere Sn . Thus, the almost Ricci soliton can be considered as a

generalization of Einstein metric as well as Ricci soliton.

The paper is organized as follows: After introduction, in section 2 we discuss some pre-

liminaries of cosymplectic manifolds. Section 3 is devoted to prove our main result. Section 4

deals with the study of gradient almost Ricci solitons. Our main Theorems can be presented

as follows:

Theorem 1.1. In a three dimensional compact orientable cosymplectic manifold M 3 without

boundary, an almost Ricci soliton reduces to a Ricci soliton, provided ξλ = 0. Also the scalar

curvature r cannot be constant.

Theorem 1.2. If a three dimensional cosymplectic manifold admits a gradient almost Ricci

soliton, then it reduces to a gradient Ricci soliton.
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2. Cosymplectic manifolds

In this section, we shall collect some fundamental results regarding cosymplectic mani-

folds (for more details see Blair [5], Goldberg and Yano [16]). A (2n+1)-dimensional manifold

M is said to admit an almost contact structure if it admits a tensor fieldφ of type (1,1), a vector

field ξ and a 1-form η satisfying ([5])

(a) φ2
=−I +η⊗ξ, (b) η(ξ) = 1, (c) φξ= 0, (d) η◦φ= 0. (2.1)

An almost contact structure is said to be normal if the almost complex structure J on the

product manifold M × R defined by

J
(

X , f
d

d t

)

=

(

φX − f ξ,η(X )
d

d t

)

is integrable, where X is tangent to M , t is the coordinate of R and f is a smooth function

on M ×R. If g is a compatible Riemannian metric with the almost contact metric structure

(φ,ξ,η), that is,

g (φX ,φY ) = g (X ,Y )−η(X )η(Y ), (2.2)

then M becomes an almost contact metric structure (φ,ξ,η, g ). From (2.2) it can be easily

seen that

(a) g (X ,φY ) =−g (φX ,Y ), (b) g (X ,ξ) = η(X ), (2.3)

for all vector fields X ,Y on M . An almost contact metric structure becomes a contact metric

structure if

g (X ,φY ) = dη(X ,Y ), (2.4)

for all vectors fields X ,Y . In this case, the 1-form η is called a contact metric form and ξ is its

characteristic vector field. We define a (1,1)-tensor field h by h =
1
2

£ξφ, where £ denote the

Lie derivative. Then h is symmetric and satisfies the conditions hφ=−φh, Tr.h = Tr.φh = 0

and hξ= 0. Also

∇X ξ=−φX −φhX , (2.5)

holds in a contact metric manifold.

An almost contact metric manifold is a Sasakian manifold if and only if

(∇Xφ)(Y ) = g (X ,Y )ξ−η(Y )X , (2.6)

where X ,Y ∈ χ(M ) and ∇ is the Levi-Civita connection of the Riemannian metric g . Remark

that a normal contact metric manifold is a Sasakian manifold. A contact metric manifold

M 2n+1(φ,ξ,η, g ) for which ξ is a Killing vector field is said to be a K -contact metric manifold.

Following Blair [5], an almost contact metric manifold satisfying dη = 0 and dΦ = 0 where
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Φ(X ,Y ) = g (X ,φY ) is called an almost cosymplectic manifold. In particular, an almost cosym-

plectic manifold is said to be a cosymplectic manifold if the associated almost contact struc-

ture is normal, which is also equivalent to ∇φ= 0.

It is well-known that the Riemannian product of the real line and a Kähler manifold ad-

mits a cosymplectic structure. However, there exist some examples of cosymplectic manifolds

which are not globally the product of a Kähler manifold and the real line (see Olszak [17]).

Moreover, on a cosymplectic manifold we have the following relation (see Goldberg and Yano

[16]):

∇ξ= 0 (⇔∇η= 0), (2.7)

this implies that ξ is a Killing vector field. By (2.7), it follows directly that

R(·, ·)ξ= 0 (⇒Qξ= 0), (2.8)

where Q denotes the Ricci operator.

3. Proof of the Theorem 1.1

Suppose that (M 3,φ,ξ,η, g ) is a three dimensional cosymplectic manifold. It is known

that the curvature tensor of a 3-dimensional Riemannian manifold is given by

R(X ,Y )Z =[S(Y , Z )X−S(X , Z )Y +g (Y , Z )Q X−g (X , Z )QY ]−
r

2
[g (Y , Z )X−g (X , Z )Y ], (3.1)

where S and r are the Ricci tensor and the scalar curvature respectively and Q is the Ricci

operator defined by g (Q X ,Y ) = S(X ,Y ).

If we replace both Y and Z by ξ in (3.1) and use (2.8), then the Ricci operator can be

written as

Q X =
r

2
X −

r

2
η(X )ξ, (3.2)

for all vector fields X . This means that M 3 is an η-Einstein manifold.

In view of equation (3.2), the Ricci tensor is given by

S(X ,Y ) =
r

2
g (X ,Y )−

r

2
η(X )η(Y ). (3.3)

By our hypothesis (M 3,φ,ξ,η, g ) admits an almost Ricci soliton. Therefore, (1.1) becomes

(£V g )(Y , Z ) =−2S(Y , Z )−2λg (Y , Z )

=−(2λ+ r )g (Y , Z )+ rη(Y )η(Z ). (3.4)
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Taking covariant differentiation of £V g with respect to X , we get

(∇X £V g )(Y , Z ) =−[2(Xλ)+ (X r )]g (Y , Z )+ (X r )η(Y )η(Z ), (3.5)

for any vector field X , Y , Z on M . Following Yano ([24], pp.23), the following formula holds

(£V ∇X g −∇X £V g −∇[V ,X ]g )(Y , Z ) =−g ((£V ∇)(X ,Y ), Z )− g ((£V ∇)(X , Z ),Y )

for any vector fields X , Y , Z on M . As g is parallel with respect to the Levi-Civita connection

∇, then the above relation becomes

(∇X £V g )(Y , Z )= g ((£V ∇)(X ,Y ), Z )+ g ((£V ∇)(X , Z ),Y ) (3.6)

for any vector fields X , Y , Z on M . Since £V ∇ is a symmetric tensor of type (1,2), i.e.,

(£V ∇)(X ,Y )= (£V ∇)(Y , X ), it follows from (3.6) that

g ((£V ∇)(X ,Y ), Z )=
1

2
(∇X £V g )(Y , Z )+

1

2
(∇Y £V g )(X , Z )−

1

2
(∇Z £V g )(X ,Y ). (3.7)

Using (3.5) in (3.7) we obtain

2g ((£V ∇)(X ,Y ), Z )=− [2(Xλ)+ (X r )]g (Y , Z )+ (X r )η(Y )η(Z )

− [2(Y λ)+ (Y r )]g (X , Z )+ (Y r )η(X )η(Z )

+ [2(Zλ)+ (Z r )]g (X ,Y )− (Z r )η(X )η(Y ). (3.8)

Removing Z from the above equation, we have

2(£V ∇)(X ,Y ) =− [2(Xλ)+ (X r )]Y + (X r )η(Y )ξ

− [2(Y λ)+ (Y r )]X + (Y r )η(X )ξ

+ g (X ,Y )[2(Dλ)+ (Dr )]−η(X )η(Y )(Dr ), (3.9)

where Xα= g (Dα, X ), D denotes the gradient operator with respect to g .

Taking the covariant derivative of £V ∇ with respect to X , we get

2(∇X £V ∇)(Y , Z )=− [2g (∇X (Dλ),Y )+ g (∇X (Dr ),Y )]Z + g (∇X (Dr ),Y )η(Z )ξ

− [2g (∇X (Dλ), Z )+ g (∇X (Dr ), Z )]Y

+ g (∇X (Dr ), Z )η(Y )ξ

+ g (Y , Z )[2∇X Dλ+∇X Dr ]−η(Y )η(Z )∇X Dr. (3.10)

Using the foregoing equation in the following formula (see [24])

(£V R)(X ,Y )Z = (∇X £V ∇)(Y , Z )− (∇Y £V ∇)(X , Z ), (3.11)
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we get

2(£V R)(X ,Y )Z =− [2g (∇X Dλ, Z )+ g (∇X Dr, Z )]Y + g (∇X Dr, Z )η(Y )ξ

+ g (Y , Z )[2∇X Dλ+∇X Dr ]−η(Y )η(Z )∇X Dr

+ [2g (∇Y Dλ, Z )+ g (∇Y Dr, Z )]X − g (∇Y Dr, Z )η(X )ξ

− g (X , Z )[2∇Y Dλ+∇Y Dr ]+η(X )η(Z )∇Y Dr. (3.12)

Since ξ is Killing, ξr = 0. Applying ξr = 0 and ∇ξ= 0, contracting X in (3.12), we infer

2(£V S)(Y , Z )=2g (∇Y Dλ, Z )+ [2∆λ+∆r ]g (Y , Z )

− g (∇ξDr, Z )η(Y )−∆rη(Y )η(Z ), (3.13)

where ∆ denotes the Laplacian. Moreover, from (3.3) follows directly that

(£V S)(Y , Z )=
(V r )

2
g (Y , Z )−

(V r )

2
η(Y )η(Z )+

r

2
[g (∇Y V , Z )+ g (Y ,∇Z V )]

−
r

2
η(∇Y V )η(Z )−

r

2
η(∇Z V )η(Y ). (3.14)

Equating (3.13) and (3.14) yields that

2g (∇Y Dλ, Z )+ [2∆λ+∆r ]g (Y , Z )− g (∇ξDr, Z )η(Y )−∆rη(Y )η(Z )

=(V r )g (Y , Z )− (V r )η(Y )η(Z )+ r [g (∇Y V , Z )+ g (Y ,∇Z V )]

− rη(∇Y V )η(Z )− rη(∇Z V )η(Y ). (3.15)

Then substituting Y = ξ and Z = ξ in the foregoing equation we get

ξ(ξλ)+∆λ= 0. (3.16)

Now we assume that ξλ = 0. Then (3.16) implies that the Laplacian of the smooth soliton

function λ is zero, that is, λ is harmonic. Thus we can state the following:

Proposition 3.1. In a three dimensional cosymplectic manifold M 3 with ξλ = 0, admitting

almost Ricci solitons, the soliton function λ is harmonic.

Now we state the Hopf’s Lemma:

Lemma 3.1 ([14]). If ∆ f = 0 for a smooth function f on a compact orientable Riemannian

manifold M without boundary, then f is constant on M.
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In view of Lemma 3.1 and (3.16) we can conclude that in a three dimensional compact

orientable cosymplectic manifold M 3 without boundary admitting almost Ricci solitons, the

soliton function λ is constant. Also, Barros et al. [2] proved that a compact non-trivial al-

most Ricci soliton with constant scalar curvature is isometric to a Euclidean sphere S
n and is

gradient. This completes the proof.

In a recent paper Wang [23] proved that if a three dimensional cosymplectic manifold M 3

admits a Ricci soliton, then either M 3 is locally flat or the potential vector field is an infinites-

imal contact transformation. Hence, we can state the following:

Corollary 3.1. If a three dimensional compact orientable cosymplectic manifold M 3 without

boundary with ξλ = 0 admits an almost Ricci soliton, then either M 3 is locally flat or the po-

tential vector field is an infinitesimal contact transformation.

Now we have justified the assumption ξλ = 0.

Taking Lie derivative of the equation (1.1) along the vector field ξ, we have

£ξ£V g +2(ξλ)g = 0. (3.17)

But £V £ξg −£ξ£V g = £[V ,ξ]g . So using this relation in the above equation we obtain

£[V ,ξ]g = 2(ξλ)g . (3.18)

Now we have considered two cases:Case 1: Let V be point-wise orthogonal to ξ. From equation (1.1) and using (2.7) we get

g (∇ξV , X )+2λg (ξ, X ) = 0. (3.19)

Removing X from both sides of the above equation we have ∇ξV =−2λξ. This implies [V ,ξ] =

2λξ. Putting this relation in (3.18) and contracting, we get 2ξλ= 3ξλ. Hence ξλ = 0.Case 2: Let V be point-wise colllinear with ξ, that is, V = f ξ, where f is a non zero smooth

function. Then from (1.1), we can easily deduce ξ f = −λ. Now, using V = f ξ in (1.1) and

contracting we obtain

r +ξ f +3λ= 0.

Substituting ξ f = −λ in the above relation, we get r = −2λ and therefore ξr = −2ξλ. But ξr =

0. So, we have ξλ = 0.
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4. Proof of the Theorem 1.2

This section is devoted to study three dimensional cosymplectic manifold M 3 admitting

gradient almost Ricci solitons. For a gradient almost Ricci soliton, we have

∇Y D f =−λY −QY , (4.1)

where D denotes the gradient operator of g .

Then

∇[X ,Y ]D f =−λ[X ,Y ]−Q[X ,Y ]. (4.2)

Differentiating (4.1) covariantly in the direction of X yields

∇X∇Y D f =−dλ(X )Y −λ∇X Y −∇X QY . (4.3)

Similarly, we get

∇Y ∇X D f =−dλ(Y )X −λ∇Y X −∇Y Q X . (4.4)

In view of (4.2), (4.3) and (4.4) we have

R(X ,Y )D f =∇X∇Y D f −∇Y ∇X D f −∇[X ,Y ]D f

=(∇Y Q)X − (∇X Q)Y + (Y λ)X − (Xλ)Y . (4.5)

From (3.2) we get

QY =
r

2
Y −

r

2
η(Y )ξ. (4.6)

Differentiating (4.6) covariantly in the direction of X and using (2.7), we get

(∇X Q)Y =
(X r )

2
Y −

(X r )

2
η(Y )ξ. (4.7)

In view of (4.5) and (4.7), we get

R(X ,Y )D f =
1

2
[(Y r )X − (Y r )η(X )ξ]−

1

2
[(X r )Y − (X r )η(Y )ξ]

+ (Y λ)X − (Xλ)Y , (4.8)

which implies

R(X ,ξ)D f = (ξλ)X − (Xλ)ξ. (4.9)
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Also, from (3.1) we have

R(X ,ξ)D f = 0. (4.10)

Taking Y = ξ in (4.8) and using (4.10) we get

(ξλ)X = (Xλ)ξ, (4.11)

for any vector field X on M .

Contracting X in (4.11) we get ξλ= 0 and hence from (4.11) we obtain λ is constant on M .

This completes the proof.

For a Kähler-Einstein manifold N and the real line R, the cosymplectic manifold N ×R is

a gradient Ricci soliton with f =λ t 2

2 , where t ∈R. Such a gradient Ricci soliton is rigid [18].
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