TAMKANG JOURNAL OF MATHEMATICS
Volume 51, Number 4, 303-312, December 2020
doi:10.5556/].tkjm.51.2020.3077

ON THREE DIMENSIONAL COSYMPLECTIC MANIFOLDS
ADMITTING ALMOST RICCI SOLITONS

UDAY CHAND DE AND CHIRAN]JIB DEY

Abstract. In the present paper we study three dimensional cosymplectic manifolds ad-
mitting almost Ricci solitons. Among others, we prove that in a three dimensional com-
pact orientable cosymplectic manifold M3 without boundary, an almost Ricci soliton re-
duces to a Ricci soliton under certain restriction on the potential function A. As a conse-
quence we obtain a corollary. Moreover, we study gradient almost Ricci solitons.

1. Introduction

The study of almost Ricci solitons was introduced by Pigola et al. [19], where essentially
they modified the definition of Ricci soliton by adding the condition on the parameter A to be
a variable function. More precisely, we say that a Riemannian manifold (M", g) is an almost
Ricci soliton, if there exists a complete vector field V and a smooth soliton function A : M" —
R satisfying

1
S+5Evg+Ag=0, (1.1)

where S and £ stand, respectively, for the Ricci tensor and the Lie derivative. We shall refer
to this equation as the fundamental equation of an almost Ricci soliton (M", g, V,1). The
soliton will be called expanding, steady or shrinking, respectively, if A >0, A =0 or 1 <0.
Otherwise, it will be called indefinite. When the vector field V is the gradient of a smooth
function f: M" — R, the manifold will be called gradient almost Ricci soliton. In this case,
the preceding equation becomes

S+Vif+Ag=0, (1.2)

where V2 f stands for the Hessian of f.
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We notice that when n = 3 and Vis a Killing vector field, an almost Ricci soliton will be a
Ricci soliton, since in this case we have an Einstein manifold, from which we can apply Schur’s
lemma to deduce that A is constant. Ricci solitons have been studied by several authors such
as Bejan et al. [4], Chen [6], Wang et al. ([21], [22], [23]), Deshmukh ([11], [12]), Cho [7], De
etal. ([8], [9], [10]) and many others. Taking into account that the soliton function A is not
necessarily constant, certainly comparison with soliton theory will be modified. In particular,
the rigidity result contained in Theorem 1.3 of [19] indicates that almost Ricci solitons should
reveal a reasonably broad generalization of the fruitful concept of classical soliton.

To understand the geometry of almost Ricci soliton, in [2] Barros et al. proved that a com-
pact non-trivial almost Ricci soliton with constant scalar curvature is isometric to a Euclidean
sphere $" and is gradient. Also, Barros and Ribeiro Jr. proved in [3] that a compact gradient
almost Ricci soliton with non-trivial conformal vector field is isometric to a Euclidean sphere.
In the same paper, they proved an integral formula for compact case, which was used to prove
several rigidity results, for more details see [3].

Almost Ricci solitons have been studied by Duggal [13], Ghosh [15], Sharma [20] and

many others.

The existence of almost Ricci soliton has been confirmed by Pigola et al. [19] on some
certain class of warped product manifolds. Some characterizations of almost Ricci soliton on
a compact Riemannian manifold can be found in ([1], [2] [3]). It is interesting to note that if
the potential vector field V of the almost Ricci soliton (M", g, V, A) is Killing, then the soliton
becomes trivial, provided the dimension of M is > 2. Moreover, if V is conformal then, M" is
isometric to the Euclidean sphere S”. Thus, the almost Ricci soliton can be considered as a

generalization of Einstein metric as well as Ricci soliton.

The paper is organized as follows: After introduction, in section 2 we discuss some pre-
liminaries of cosymplectic manifolds. Section 3 is devoted to prove our main result. Section 4
deals with the study of gradient almost Ricci solitons. Our main Theorems can be presented
as follows:

Theorem 1.1. In a three dimensional compact orientable cosymplectic manifold M® without
boundary, an almost Ricci soliton reduces to a Ricci soliton, provided (A = 0. Also the scalar
curvaturer cannot be constant.

Theorem 1.2. If a three dimensional cosymplectic manifold admits a gradient almost Ricci

soliton, then it reduces to a gradient Ricci soliton.
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2. Cosymplectic manifolds

In this section, we shall collect some fundamental results regarding cosymplectic mani-
folds (for more details see Blair [5], Goldberg and Yano [16]). A (2n+1)-dimensional manifold
M is said to admit an almost contact structure if it admits a tensor field ¢ of type (1, 1), a vector
field ¢ and a 1-form 7 satisfying ([5])

(@ ¢*=—-I+neé, (b) nE) =1, (©) ¢p&=0, (d) nop=0. 2.1)

An almost contact structure is said to be normal if the almost complex structure J on the
product manifold M x R defined by

](X,f%) = (ng—ff»T)(X)%)

is integrable, where X is tangent to M, ¢ is the coordinate of R and f is a smooth function
on M xR. If g is a compatible Riemannian metric with the almost contact metric structure
(¢p,¢,m), that s,

8pX,pY) =g(X,Y)—n(X)n(Y), 2.2)

then M becomes an almost contact metric structure (¢,¢,n,g). From (2.2) it can be easily
seen that
(@ gX,¢pY)=-gX,Y), (b)) gXE=nX), (2.3)

for all vector fields X, Y on M. An almost contact metric structure becomes a contact metric
structure if
g(X,pY)=dn(X,Y), 2.4)

for all vectors fields X, Y. In this case, the 1-form 7 is called a contact metric form and ¢ is its
characteristic vector field. We define a (1,1)-tensor field i by h = %?_;(/), where £ denote the
Lie derivative. Then h is symmetric and satisfies the conditions h¢p = —¢ph, Tr.h = Tr.ph =0
and hé =0. Also

Vxé=—-pX —phX, (2.5)

holds in a contact metric manifold.

An almost contact metric manifold is a Sasakian manifold if and only if
VxP)(Y) =g(X,Y)§—n(Y)X, (2.6)

where X,Y € y(M) and V is the Levi-Civita connection of the Riemannian metric g. Remark
that a normal contact metric manifold is a Sasakian manifold. A contact metric manifold
M2+ (¢, &,1m, g) for which ¢ is a Killing vector field is said to be a K-contact metric manifold.

Following Blair [5], an almost contact metric manifold satisfying dn = 0 and d® = 0 where
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(X, Y) = g(X,¢Y)is called an almost cosymplectic manifold. In particular, an almost cosym-
plectic manifold is said to be a cosymplectic manifold if the associated almost contact struc-

ture is normal, which is also equivalent to V¢ = 0.

It is well-known that the Riemannian product of the real line and a K&hler manifold ad-
mits a cosymplectic structure. However, there exist some examples of cosymplectic manifolds
which are not globally the product of a Kdhler manifold and the real line (see Olszak [17]).
Moreover, on a cosymplectic manifold we have the following relation (see Goldberg and Yano
[16]):

Vé=0 (& Vn=0), 2.7
this implies that ¢ is a Killing vector field. By (2.7), it follows directly that
R(,)$=0 (>Q{=0), (2.8)

where Q denotes the Ricci operator.

3. Proof of the Theorem 1.1

Suppose that (M3,gb,§,n,g) is a three dimensional cosymplectic manifold. It is known

that the curvature tensor of a 3-dimensional Riemannian manifold is given by
R(X,V)Z=[S(Y,Z2)X-S(X,2)Y+g(Y,2)QX-g(X, Z)QY]—g[g(Y, Z2)X-g(X,2)Y], 3.1

where S and r are the Ricci tensor and the scalar curvature respectively and Q is the Ricci
operator defined by g(QX,Y) = S(X,Y).

If we replace both Y and Z by ¢ in (3.1) and use (2.8), then the Ricci operator can be

written as
QX = Lx-1 (X)¢ (3.2)
Tt T ’

for all vector fields X. This means that M3 is an n-Einstein manifold.

In view of equation (3.2), the Ricci tensor is given by
r r
S(X,Y) =Eg(X, Y)_EU(X)U(Y)~ (3.3)
By our hypothesis (M3,gb,§ ,7, &) admits an almost Ricci soliton. Therefore, (1.1) becomes

EvgY,2)=-28(Y,2)-27g(Y, 2)
=—-Q2A+1)glY,2)+rnY)n(2). (3.4)
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Taking covariant differentiation of £ g with respect to X, we get

(Vxsvg) (Y, Z2) =-[2(XA) + (XN]gY, Z2)+ (Xr)n(Y)n(Z),
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(3.5)

for any vector field X, Y, Z on M. Following Yano ([24], pp.23), the following formula holds

(EvVxg—-VxEvg-Virx18)(Y,2) = -g(EvV)(X, Y), Z) - g((EvV)(X, 2),Y)

for any vector fields X, Y, Z on M. As g is parallel with respect to the Levi-Civita connection

V, then the above relation becomes
(Vxsv@) (Y, 2)=g(EvV)(X,Y), 2) + g((EvV)(X, 2),Y)

for any vector fields X, Y, Z on M. Since £yV is a symmetric tensor of type (1,2), i.e.,
EyV(X,Y) = EyV)(Y, X), it follows from (3.6) that

1 1 1
glEyVI(X,Y), Z) = E(Vxﬁvg)(Y, Z)+ E(Vyﬁvg) X, 2)- E(Vzﬁvg) (X, Y).
Using (3.5) in (3.7) we obtain

2g((EvV(X,Y), Z2) == [2(XA) + (XNIgY, Z) + (Xr)n(Y)n(Z)
—[2(YA) + (Y N]gX, Z) + (Y rn(X)n(Z)
+[2(ZM) + (ZN1g(X, Y) = (Zrn(X)n(Y).

Removing Z from the above equation, we have

28y V)X, Y) = - 2(X) + (XY + (Xr)n(Y)¢
—2(YAD) + (Y NIX+ (Yr)n(X)¢
+8(X, Y)[2(DA) + (Dn)] —n(X)n(Y)(Dr),

where Xa = g(Da, X), D denotes the gradient operator with respect to g.

Taking the covariant derivative of £,V with respect to X, we get

2(VxEyV(Y,Z2) =—[2g(Vx(DA),Y) + g(Vx (Dr), )] Z+ g(Vx(Dr),Y)n(Z)¢
—[2g(Vx(DA), Z) + g(Vx(Dr), 2)1Y
+8(Vx(Dr), Z)n(Y)¢
+8(Y, Z)[2VxDA+VxDrl —n(Y)n(Z)VxDr.

Using the foregoing equation in the following formula (see [24])

EvRI(X,Y)Z =(VxsyV)(Y, Z2) - (Vy £y V)(X, Z),

(3.6)

(3.7

(3.8)

(3.9

(3.10)

(3.11)
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we get

28y R)(X,Y)Z =—[2g(VxDA, Z) + gV xDr, Z)]Y + g(Vx Dr, Z)(Y)é
+g(Y, 2)[2VxDA+VxDrl-n(Y)n(Z)VxDr
+[2¢(VyDA, Z) + g(Vy Dr, Z)] X — g(Vy Dr, Z)(X)&
—g(X,2)[2Vy DA+ Vy Drl+n(X)n(Z)VyDr. (3.12)

Since ¢ is Killing, {r = 0. Applying {r =0 and V¢ = 0, contracting X in (3.12), we infer

28y S)(Y,2)=2g(VyDA, Z) + [2AA + Arlg(Y, Z)
—8(VeDr, Z)n(Y) — Arn(Y)n(2), (3.13)
where A denotes the Laplacian. Moreover, from (3.3) follows directly that

Ev9Y,2) =$g(Y,Z)—$

- gn(vyV)n(Z) - %n(sz)n(Y). (3.14)

n(Y)n(2) + %[g(VyV, 2)+g(Y,V V)]

Equating (3.13) and (3.14) yields that

2g(VyDA, Z) + [2AA+ Ar1g(Y, Z) — g(Ve Dr, Z)n(Y) — Arn(Y)n(Z)
=(VnglY,2)—-(Vrn(¥Y N 2)+r(g(VyV,2Z)+ g(Y,Vz V)]
—rn(Vy VIn(Z) —rn(VzV)n(Y). (3.15)

Then substituting Y = ¢ and Z = ¢ in the foregoing equation we get
SEA)+AL=0. (3.16)

Now we assume that (A = 0. Then (3.16) implies that the Laplacian of the smooth soliton

function A is zero, that is, A is harmonic. Thus we can state the following:

Proposition 3.1. In a three dimensional cosymplectic manifold M® with EA = 0, admitting

almost Ricci solitons, the soliton function A is harmonic.

Now we state the Hopf’s Lemma:

Lemma 3.1 ([14]). IfAf = 0 for a smooth function f on a compact orientable Riemannian

manifold M without boundary, then f is constant on M.
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In view of Lemma 3.1 and (3.16) we can conclude that in a three dimensional compact
orientable cosymplectic manifold M3 without boundary admitting almost Ricci solitons, the
soliton function A is constant. Also, Barros et al. [2] proved that a compact non-trivial al-
most Ricci soliton with constant scalar curvature is isometric to a Euclidean sphere S” and is

gradient. This completes the proof.

In a recent paper Wang [23] proved that if a three dimensional cosymplectic manifold M3
admits a Ricci soliton, then either M3 is locally flat or the potential vector field is an infinites-

imal contact transformation. Hence, we can state the following:

Corollary 3.1. If a three dimensional compact orientable cosymplectic manifold M> without
boundary with A = 0 admits an almost Ricci soliton, then either M® is locally flat or the po-

tential vector field is an infinitesimal contact transformation.

Now we have justified the assumption {4 = 0.

Taking Lie derivative of the equation (1.1) along the vector field ¢, we have
£:£v8+2(EN) g =0. (3.17)
Butf£yf£:g —£:£v g = £, &. So using this relation in the above equation we obtain
£v,08 = 2(CA)g. (3.18)

Now we have considered two cases:

Case 1: Let V be point-wise orthogonal to {. From equation (1.1) and using (2.7) we get
g(VeV, X) +218(&, X) = 0. (3.19)

Removing X from both sides of the above equation we have V¢V = —2A¢. This implies [V,¢] =
2. Putting this relation in (3.18) and contracting, we get 21 = 3¢A. Hence A = 0.

Case 2: Let V be point-wise colllinear with ¢, thatis, V = f¢, where f is a non zero smooth
function. Then from (1.1), we can easily deduce ¢f = —A. Now, using V = f¢ in (1.1) and
contracting we obtain

r+¢f+31=0.

Substituting ¢ f = —A in the above relation, we get r = —21 and therefore {r = —2¢A. But {r =
0. So, we have {4 = 0.
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4. Proof of the Theorem 1.2

This section is devoted to study three dimensional cosymplectic manifold M admitting

gradient almost Ricci solitons. For a gradient almost Ricci soliton, we have
VyDf =-AY - QY, @.1)

where D denotes the gradient operator of g.

Then

Vix,yiDf =-AX, Y] -QIX,Y]. 4.2)

Differentiating (4.1) covariantly in the direction of X yields

VxVyDf =-dAX)Y -AVxY - VxQY. (4.3)

Similarly, we get

VyVxDf =—-dAY)X-AVy X -VyQX. 4.4)

In view of (4.2), (4.3) and (4.4) we have

R(X,Y)Df =VxVyDf-VyVxDf-VixyDf
=(VyQ)X-(VxQ) Y+ (Y1) X - (XA)Y. (4.5)

From (3.2) we get
r r
QY =3Y - 2on(¥)E. (4.6)

Differentiating (4.6) covariantly in the direction of X and using (2.7), we get

X X
(VxQY = (z—r)Y - %U(Y)f- (4.7)

In view of (4.5) and (4.7), we get

1 1
RX, Y)Df =Z[(Y )X = (Y r)n(X)¢] - S[(XnY = (Xr)n(¥Y)d]
+(YA)X - (XA)Y, (4.8)

which implies

R(X,¢)Df = A X - (XA)E. (4.9)
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Also, from (3.1) we have
R(X,é)Df =0. (4.10)
Taking Y = ¢ in (4.8) and using (4.10) we get
CAX = (XA, (4.11)

for any vector field X on M.
Contracting X in (4.11) we get {1 = 0 and hence from (4.11) we obtain A is constant on M.

This completes the proof.

For a Kdhler-Einstein manifold N and the real line R, the cosymplectic manifold N x R is
a gradient Ricci soliton with f = )L%Z, where ¢ € R. Such a gradient Ricci soliton is rigid [18].
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