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WEIGHTED OPIAL INEQUALITIES

J. J. KOLIHA AND J. PE�CARI�C

Abstract. This paper presents a class of very general weighted Opial type inequalities. The

notivation comes from the monograph of Agarwal and Pang (Opial Inequalities with Applica-

tions in Di�erential and Di�erence Equations, Kluwer Acad., Dordrecht 1995) and the work

of Anastassiou and Pe�cari�c (J. Math. Anal. Appl. 239 (1999), 402-418). Assuming only a very

general inequality, we extend the latter paper in several directions. A new result generalizing

the original Opial's inequality is obtained, and applications to fractional derivatives are given.

1. Introduction and Preliminaries

The Opial inequality, which appeared in [7], is of great interest in di�erential and

di�erence equations and other areas of mathematics, and has attracted a great deal of

attention in the recent literature (see, for instance, [1,2,3,4,5,8]). Recall that the original

inequality [7] (see also [6, p. 114]) states the following:

Theorem 1.1. Let a > 0. If f 2 C
1[0; a] with f(0) = f(a) = 0 and f(t) > 0 on

(0; a), then Z
a

0

jf(t)f 0(t)jdt � a

4

Z
a

0

(f 0(t))2dt:

The constant a=4 is the best possible.

Our paper is motivated by the work of Anastassiou and Pe�cari�c [5] on Opial inequal-

ities for linear di�erential operators. Unlike [5], this paper does not initially assume any

relation between the functions y and h except for the inequality (2.1); this leads to a very

general type of inequalities in Section 2, extending the results of [5] in several directions.

In Section 3 we derive a new generalization of the original Opial's inequality, and in

Section 4 we apply our results to fractional derivatives.

2. Results

The following hypotheses are assumed throughout this section: Let I be a closed

interval in R; a a �xed point in I , let � be a continuous function nonnegative on I � I ,
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and let y; h 2 C(I). We assume that the following condition involving �, h and y is

satis�ed:

jy(x)j �
���
Z

x

a

�(x; t)jh(t)jdt
���; x 2 I: (2.1)

We give some typical examples of the condition (2.1).

Example 2.1. Let K be a continuous function on I � I and let y be de�ned by

y(s) =

Z
s

a

K(s; t)h(t)dt; s 2 I:

Then (2.1) holds with �(s; t) = jK(s; t)j. A useful modi�cation of this example|easier

to attain in practice|is obtained when a function z 2 C(I) de�ned by

z(s) =

Z
s

a

K(s; t)h(t)dt

satis�es the inequality jz(t)j � jy(t)j. Again, (2.1) holds with �(s; t) = jK(s; t)j.
In general, there need not be any relation between the functions y and h apart from

the inequality (2.1). However, the following two examples describe useful applications

with y and h closely related.

Example 2.2. Let f 2 C
n(I) and let f (j)(a) = 0 for j = 0; 1; : : : ; n � 1. Then, for

any k 2 f0; 1; : : : ; n� 1g and any s 2 I ,

f
(k)(s) =

1

(n� k � 1)!

Z s

a

(s� t)n�k�1f (n)(t)dt: (2.2)

(Observe that for s < a, this formula can be written as

f
(k)(s) =

(�1)n�k
(n� k � 1)!

Z
a

s

(t� s)n�k�1f (n)(t)dt:)

Then (2.1) is satis�ed with

�(s; t) =
js� tjn�k�1
(n� k � 1)!

; y(t) = f
(k)(t); h(t) = f

(n)(t):

Example 2.3. More generally, our results will yield Opial type inequalities for linear

di�erential operators (see [1,3,4]). Let

L =

n�1X
j=0

aj(t)D
j +D

n
; t 2 I; (2.3)

be a linear di�erential operator with aj 2 C(I), let h 2 C(I), and let G(x; t) be the

Green's function for L. It is known that

y(x) =

Z
x

a

G(x; t)h(t)dt (2.4)
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is the unique solution to the initial value problem

Ly = h; y
(j)(a) = 0; j = 0; 1; : : : ; n� 1: (2.5)

Then (2.1) is satis�ed for y and h with �(s; t) = jG(s; t)j.
Assuming the conditions stated at the beginning of this section we derive our �rst

result which extends Theorems 1 and 2 and Corollary 1 of [5].

Theorem 2.4. Assume that (2:1) holds. Let x 2 I, let �; � > 0, r > max(1; �), and

let U , V 2 C(I) be such that U(s) � 0 and V (s) > 0 for all s 2 I. Then

���
Z x

a

U(s)jy(s)j� jh(s)j�ds
��� � C(x)

���
Z x

a

V (s)jh(s)jrds
���(�+�)=r; (2.6)

where

C(x) :=
�

�

�+ �

��=r�Z x

a

(Ur(s)V ��(s))1=(r��)P (s)�(r�1)=(r��)ds
�(r��)=r

; (2.7)

P (s) :=
���
Z

s

a

V (t)�1=(r�1)�(s; t)r=(r�1)dt
���: (2.8)

Proof. Assume that x � a. Then, using (2.1) and H�older's inequality with the

conjugate indices r and u = r=(r � 1), we obtain

jy(s)j �
Z s

a

�(s; t)jh(t)jdt

=

Z
s

a

V (t)�1=r�(s; t) � V (t)1=rjh(t)jdt

�
�Z s

a

V (t)�1=(r�1)�(s; t)udt
�1=u�Z s

a

V (t)jh(t)jrdt
�1=r

� P (s)1=u'(s)1=r ;

where '0(s) = V (s)jh(s)jr and '(a) = 0. For any � > 0,

jh(s)j� = V (s)��=r('0(s))�=r :

Then, for � > 0,

U(s)jy(s)j� jh(s)j� � U(s)P (s)�=uV (s)��=r'(s)�=r('0(s))�=r : (2.9)

Integrate (2.9) over [a; x] and apply H�older's inequality with the conjugate indices r=�

and v = r=(r � �) to obtain

Z
x

a

U(s)jy(s)j� jh(s)j�ds
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�
�Z x

a

U(s)vV (s)��v=rP (s)�v=uds
�1=v�Z x

a

'(s)�=�'0(s)ds
��=r

=
�Z x

a

U(s)r=(r��)V (s)��=(r��)P (s)�(r�1)=(r��)ds
�(r��)=r� �

�+ �

��=r
'(x)(�+�)=r

= C(x)
�Z x

a

V (t)jh(t)jrdt
�(�+�)=r

:

This proves (2.6).

The case x < a follows from the preceding proof by using the relation
R
a

x
(�)ds =

�
R
x

a
(�)ds.

We remark that [5, Corollary 1]|proved for linear di�erential operators|is recovered

from the theorem when y, h and G satisfy conditions of Example 2.3, that is,

y(s) =

Z s

a

G(s; t)h(t)dt; s 2 I:

In this case �(s; t) = jG(s; t)j.
In particular, if r = 2 in Theorem 2.4, we have the following specialization (see also

[5, Corollary 2]).

Corollary 2.5. Assume that (2:1) holds. Let x 2 I, 0 < � < 2 and � > 0. Let U ,

V 2 C(I) be such that U(s) � 0 and V (s) > 0 for all s 2 I. Then

���
Z x

a

U(s)jy(s)j� jh(s)j�ds
��� � ~C(x)

���
Z x

a

V (s)jh(s)j2ds
���(�+�)=2; (2.10)

where

~C(x) :=
�

�

�+ �

��=2�Z x

a

(U2(s)V ��(s))1=(2��) ~P (s)�=(2��)ds
�(2��)=2

(2.11)

~P (s) :=
���
Z s

a

V (t)�1�(s; t)2dt
���: (2.12)

The following extreme case analogous to [5, Proposition 1] is proved similarly as

Theorem 2.4.

Theorem 2.6. Assume that (2:1) holds. Let x 2 I, let �, � > 0, r > max(1; �), and

let V , V 2 C(I) be such that U(s) � 0 and V (s) > 0 for all s 2 I. Then

���
Z x

a

U(s)jy(s)j� jh(s)j�ds
��� �

Z x

a

U(w)
���
Z x

a

V (t)�(w; t)dt
���(r��)=rjjV jj�1jjhjj�+�1

; (2.13)

where jjf jj1 = supfjf(t)j : t 2 [a; x] [ [x; a]g for any f 2 C(I).

Following [5], we consider a situation when the exponents �, � and r in Theorem 2.4

are not necessarily positive. In this case the inequality (2.1) must be strengthened to

equality

jy(s)j =
���
Z

s

a

�(s; t)jh(t)jdt
���; (2.14)
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where � is again a nonnegative continous function on I � I , and y, h 2 C(I). As before,

a is a �xed point in the interval I .

The proof of the following theorem is omitted as it is similar to the proofs of Theorems

3-6 in [5]. Let us remark that our result applies to completely general function y and h

as long as they satisfy (2.14) for some �, while [5] treats the case of linear di�erential

operators with y and h related as in Example 2.3.

Theorem 2.7. Assume that (2:14) holds. Let x 2 I, and let U , V 2 C(I) be such

that U(s) � 0 and V (s) > 0 for all s 2 I. Let C(x) be de�ned by (2:7) and (2:8).

Consider real numbers �, �, r and the following relations:

(i) r > 1, � > 0, 0 < � < r;

(ii) r < � < 0, � < 0;

(iii) �� < � < 0, 0 < � < r < 1;

(iv) � > 0, 0 < r < min(�; 1);

(v) � < 0 < r < 1, 0 < � < ��;
(vi) � < 0, � < 0, r > 1;

(vii) 1 < r < �, �� < � < 0;

(viii) � > 0, r < 0 < �;

(ix) � < r < 0, 0 < � < ��.
If one of the conditions (i)�(iii) is satis�ed, then

���
Z

x

a

U(s)jy(s)j� jh(s)j�ds
��� � C(x)

���
Z

x

a

V (s)jh(s)jrds
���(�+�)=r:

If one of the conditions (iv)�(ix) is satis�ed, then

���
Z

x

a

U(s)jy(s)j� jh(s)j�ds
��� � C(x)

���
Z

x

a

V (s)jh(s)jrds
���(�+�)=r:

3. Further Results

In this section we assume that I is a closed interval in R and a, b are two �xed points

in I such that a < b. Further we assume that �1 and �2 are two nonnegative continuous

functions on I � I , and that y, h 2 C(I). In place of (2.1) we assume that

jy(s)j �

8>><
>>:

Z
x

a

�1(x; t)jh(t)jdt if x � a;

Z b

x

�2(x; t)jh(t)jdt if x � b:

(3.1)

A typical example of this condition:
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Example 3.1. Let f 2 C
n(I) and let f (j)(s) = 0 for s = a; b, j = 0; 1; : : : ; n � 1.

Then, for any k 2 f0; 1; : : : ; n� 1g and any s 2 I ,

f
(k)(s) =

1

(n� k � 1)!

Z
s

a

(s� t)n�k�1f (n)(t)dt; s � a; (3.2)

f
(k)(s) =

(�1)n�k
(n� k � 1)!

Z
b

s

(t� s)n�k�1f (n)(t)dt; s � b: (3.3)

In this case (3.1) holds with

�i(s; t) =
js� tjn�k�1
(n� k � 1)!

; i = 1; 2; y(t) = f
(k)(t); h(t) = f

(n)(t):

As in previous examples concerning (2.1), this can be extended to linear di�erential

operators.

In the next proposition it is assumed that r = �+ �.

Proposition 3.2. Assume that condition (3:1) is satis�ed. Let �, � > 0, �+ � > 1

and let U , V 2 C(I) be such that U(s) � 0 and V (s) > 0 for all s 2 I.

(i) If x � a, then

Z
x

a

U(s)jy(s)j� jh(s)j�ds � A(x)

Z
x

a

V (s)jh(s)j�+�ds; (3.4)

where

A(x) :=
�

�

�+ �

��=(�+�)�Z x

a

(U�+�(s)V ��(s))1=�Q1(s)
�+��1

ds

��=(�+�)
; (3.5)

Q1(s) :=

Z s

a

V (t)�1=(�+��1)�1(s; t)
(�+�)=(�+��1)

dt: (3.6)

(ii) If x � b, then

Z b

x

U(s)jy(s)j� jh(s)j�ds � B(x)

Z b

x

V (s)jh(s)j�+�ds; (3.7)

where

B(x) := (
�

�+ �
)�=(�+�)(

Z
b

x

(U�+�(s)V ��(s))1=�Q2(s)
�+��1

ds)�=(�+�); (3.8)

Q2(s) :=

Z b

s

V (t)�1=(�+��1)�2(s; t)
(�+�)=(�+��1)

dt: (3.9)

Proof. The result follows from Theorem 2.4 for the special case r = �+ �.
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The following result generalizes Opial's inequality.

Theorem 3.3. Let the hypotheses of Proposition 3:2 be satis�ed with A(b) 6= 0 and

B(a) 6= 0, where A and B are de�ned by (3:5) and (3:8), respectively. Then there exists

x0 2 (a; b) such that A(x0) = B(x0) =: D, and

Z b

a

U(t)jy(t)j� jh(t)j�dt � D

Z b

a

V (t)jh(s)j�+�ds: (3.10)

Proof. The function S(x) := A(x) � B(x) is continuous for x 2 [a; b], and S(a) =

�B(a) < 0, S(b) = A(b) > 0. By the intermediate value theorem there exists x0 2 (a; b)

such that S(x0) = 0, that is, A(x0) = B(x0) := D. According to Proposition 3.2,

Z
b

a

U(t)jy(t)j� jh(t)j�dt =
Z

x0

a

U(t)jy(t)j� jh(t)j�dt+
Z

b

x0

U(t)jy(t)j� jh(t)j�dt

� A(x0)

Z
x0

a

V (t)jh(s)j�+�ds+B(x0)

Z
b

x0

V (t)jh(s)j�+�ds

= D

Z
b

a

V (t)jh(s)j�+�ds:

Remark 3.4. The original Opial's inequality is recovered from Theorem 3.3 when

y(t) = f(t), h(t) = f
0(t), U(t) = V (t) = 1 and � = � = 1, where f 2 C

1(I) and

f(a) = f(b) = 0. The condition (3.1) holds with �i(s; t) = 1, i = 1; 2, as gleaned from

the representations

f(s) =

Z s

a

f
0(t)dt = �

Z b

s

f
0(t)dt; a � s � b:

We calculate A(x0) = (x0�a)=2 and B(x0) = (b�x0)=2. From A(x0) = B(x0) we obtain

x0 = (a+ b)=2 and D = (b� a)=4 in agreement with Theorem 1.1.

Remark 3.5. The constant D depends on the choice of �1 and �2 in Theorem 3.3. If

we make a non-optimal choice in the preceding remark, say �1(s; t) = 1 and �2(s; t) = 2,

a calculation yields D = (b� a)=(2 +
p
2) > (b� a)=4.

4. Applications to Fractional Derivatives

First we review basic facts about fractional derivatives needed below following essen-

tially Chapter 1 of the monograph [9] by Samko, Kilbas and Marichev. Let x > 0. By

C
m[0; x] we denote the space of all functions on [0; x] which have continuous derivatives

up to orderm, and AC[0; x] is the space of all absolutely continuous function on [0; x]. By

AC
m[0; x] we denote the space of all functions g 2 C

m[0; x] with g
(m�1) 2 AC[0; x]. For

any � 2 R we denote by [�] the integral part of � (the integer k satisfying k � � < k+1).
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By L(0; x) we denote the space of all Lebesgue integrable functions on the interval (0; x)

and by L
1(0; x) the set of all Lebesgue measurable functions essentially bounded on

[0; x].

Let � > 0. For any f 2 L(0; x) the Riemann-Liouville fractional integral of f of order

� is de�ned by

I
�
f(s) =

1

�(�)

Z s

0

(s� t)��1f(t)dt; s 2 [0; x]: (4.1)

The integral on the right side of (4.1) exists for almost all s 2 [0; x] (see [9]), and

I
�
f 2 L(0; x). The Riemann-Liouville fractional derivative of f 2 L(0; x) of order � is

de�ned by

D
�
f(s) =

�
d

ds

�m
I
m��

f(s) =
1

�(m� �)

�
d

ds

�m Z s

0

(s� t)m���1f(t)dt (4.2)

where m = [�] + 1, provided that the derivative exists. In addition, we stipulate

D
0
f := f =: I0f; I

��
f := D

�
f if � > 0; D

��
f := I

�
f if 0 < � � 1: (4.3)

If � is a positive integer, then D
�
f = (d=ds)�f .

Let � > 0 and m = [�] + 1. A function f 2 L(0; x) is said to have an integrable

fractional derivative D�
f (see the de�nition and discussion in [9, pp. 43-44]) if

D
��k

f 2 C[0; x]; k = 1; : : : ;m and D
��1

f 2 AC[0; x]: (4.4)

The following theorem is a strong analogue of Taylor's formula with vanishing frac-

tional derivatives of lower orders. An interesting aspect of this formula is that � and �

can be arbitrarily close.

Theorem 4.1. Let � > � � 0, let f 2 L(0; x) have an integrable fractional derivative

D
�
f , and let D��k

f(0) = 0 for k = 1; : : : ; [�] + 1. Then

D
�
f(s) =

1

�(� � �)

Z s

0

(s� t)����1D�
f(t)dt; s 2 [0; x]: (4.5)

Proof. Set � = ��� > 0 and � = �� < 0. According to the index law for fractional

derivatives (Theorem 2.5 in [9,p.45]),

I
���

D
�
f = I

�
I
�
f = I

�+�
f = I

��
f = D

�
f:

This proves the result.

We can now give an application of Theorem 2.4 to fractional derivatives.
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Theorem 4.2. Let x > 0, let �, � > 0, r > maxf1; �; (���)�1g, and let U , V 2 C(I)

be such that U(s) � 0 and V (s) > 0 for all s 2 I. Let f 2 L(0; x) have an integrable

fractional derivative D�
f 2 L

1(0; x) such that D��j
f(0) = 0 for j = 1; : : : ; [�]+1. Then

Z x

0

U(s)jD�
f(s)j� jD�

f(s)j�ds � 
(x)
�Z x

0

V (s)jD�
f(s)jrds

�(�+�)=r
; (4.6)

where


(x) :=
�

�

�+ �

��=r�Z x

0

(Ur(s)V ��(s))1=(r��)�(s)�(r�1)=(r��)ds
�(r��)=r

; (4.7)

�(s) :=

Z s

0

V (t)�1=(r�1)
h 1

�(� � �)
(s� t)����1

ir=(r�1)
dt: (4.8)

Proof. According to Theorem 4.1,

D
�
f(s) =

1

�(� � �)

Z s

0

(s� t)����1D�
f(t)dt; s 2 [0; x]: (4.9)

Setting

y(s) = D
�
f(s); h(s) = D

�
f(s); �(s; t) =

(s� t)
����1
+

�(� � �)
;

we observe that condition (2.1) is satis�ed with a = 0 and I = [0; x]:

jy(s)j �
Z

s

0

�(s; t)jh(t)jdt; 0 � s � x:

Write  = � � � � 1. If  < 0, a slight modi�cation of the proof of Theorem 2.4 is

required as � is not continuous on [0; x]� [0; x]. By hypothesis,  > �1. For the integral
in �(x) to exist, the function

t 7! V (t)�1=(r�1)(s� t)r=(r�1)

must be integrable on [0; s]. As V (t) is continuous and positive on [0; s], we must have

r=(r � 1) > �1. This is ensured by the condition r > (� � �)�1. The assumption

D
�
f 2 L

1(0; x) is needed to ensure that the function t 7! V (t)jD�
f(t)jr is integrable.

The proof of Theorem 2.4 then goes through and the result follows.

An interesting special case follows.

Theorem 4.3. Let x > 0, v > � � 0, let �, � > 0 and let r > maxf1, �,
(���)�1g. Let f 2 L(0; x) have an integrable fractional derivative D�

f 2 L
1(0; x) such

that D��j
f(0) = 0 for j = 1; : : : ; [�] + 1: Then

Z
x

0

jD�
f(s)j� jD�

f(s)j�ds � 
1x
(��+r��)=(r��)

�Z x

0

jD�
f(s)jrds

�(�+�)=r
; (4.10)
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where


1 :=
h�

�

�+ �

���r � 1

�

��(r�1)� r � �

�� + r � �

�r��i1=r
�(� � �)�� (4.11)

with � := r� � r�� 1.

Proof. By Theorem 4.2,Z x

0

jD�
f(s)j� jD�

f(s)j�ds � 
(x)
� Z x

0

jD�
f(s)jrds

�(�+�)=r
; (4.12)

where


(x) =
�

�

�+ �

��=r�Z x

0

�Z s

0

h 1

�(� � �)
(s� t)����1

ir=(r�1)
dt

��(r�1)=(r��)
ds

�(r��)=r

=
�

�

�+ �

��=r
�(� � �)��

�
r � 1

�

��(r�1)=r�Z x

0

s
��=(r��)

ds

�(r��)=r

=
�

�

�+ �

��=r
�(� � �)��

�
r � 1

�

��(r�1)=r� r � �

�� + r � �

�(r��)=r
x
1+��=(r��)

:

This completes the proof.
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