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The Principal Eigenvalue Problems for Perturbed

Fractional Laplace Operators

Guangyu Zhao

Abstract. We study a variety of basic properties of the principal eigenvalue of a perturbed
fractional Laplace operator and weakly coupled cooperative systems involving fractional Laplace
operators. Our work extends a number of well-known properties regarding the principal
eigenvalues of linear second order elliptic operators with Dirichlet boundary condition to
perturbed fractional Laplace operators. The establish results are also utilized to investigate
the spatio-temporary dynamics of population models.

1 Introduction

In this paper, we are concerned with the principal eigenvalue problem for a perturbed fractional

Laplace operator:

(—A)’u+c(z)u =Au inQ, (L)
u=0 inR"\Q. '
Here (2 is a bounded domain of R™ with smooth boundary, ¢ € L>°(2), and
sy _ wz) —uly) u(@) — u(y)
ayu—oy. [ LI el [ R 1< 0.0
45sT(F+s) . o . s
where ¢, s = P is the normalization constant. As shown in Proposition 4.4 of [20],

lim, ;- (—A)%u = —Awu for any u € C§°(R"™). The paper also addresses the principal eigen-
value problems for weakly coupled cooperative systems involving fractional Laplace operators as

follows:

{ (—A)siu; + Z?Zl Gj(@)u; =My inQ (1<i<k) (12)

u; =0 inR™\Q,
where s; € (0,1),and ¢; ; € L°°(€2). Its main goal is to examine basic properties of the principal

eigenvalues of the perturbed fractional Laplace operators given above, which would be similar to
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those for the principal eigenvalues of linear second order elliptic operators with Dirichlet bound-

ary condition.

The principal eigenvalue problems of linear second order elliptic operators are fundamental
to the theory and applications of partial differential equations and have been extensively studied
over past few decades (see [1],[2],[11],and [17]). It is well known that the principal eigenvalues
of linear second order elliptic operators play a crucial role in the study of spatio-temporary dy-
namics of population models. As shown in [8], just like the principal eigenvalues of other opera-
tors describing the dispersal and demographics of populations, the principal eigenvalues of linear
second order elliptic operators can provide the intrinsic growth rates for spatially structured pop-
ulations described by reaction-diffusion models. Meanwhile nonlocal diffusion equations have
gained considerable popularity recently, due to their demonstrated applications in numerous di-
verse and widespread fields of science and engineering (see [3], [4], [6], [7], [15], [10], [21], [23],
[24], [26] and references therein). In fact, perturbed fractional Laplace operators like the ones
given in (1.1) and (1.2) often arise as a result of the linearization at an equilibrium of a semi-linear
equation involving the fractional Laplacian. Therefore, under suitable boundary conditions, itis a
natural question to ask if the principal eigenvalues of perturbed fractional Laplace operators still

enjoy the essential features of the principal eigenvalues of linear second order elliptic operators.

In Dyda [12], a set of formulas are established for fractional calculus of power functions,
and these formulas are employed to estimate upper and lower bounds of the principal eigen-
value of (—A)® in a ball. Servadei and Valdinoci [23] investigates the eigenvalue problem of a
non-local integro-differential operator with homogeneous Dirichlet boundary conditions, which
along with [17] form the basis of our study. More recently, Massaccesi and Valdinoci [19] ex-
amined the distinction between local and non-local dispersal strategies in an attempt to analyze
and to understand the impacts of different diffusive strategies on interacting species. Their work
focus on a spatial model that describes the competition between two populations dispersing in
different manners. More precisely, they assumed that the motion of one population is governed
by a random walk while the other’s movement is subject to nonlocal dispersal that follows a power
law. A reverse Poincaré-Sobolev condition is given in [19], which serves as an indicator for the
abundance of resources. Among other things, the condition was repeatedly used to study the exis-
tence and linear stability of an equilibrium of the model revealing the crucial role of the condition
in determining the evolutionary stability of different dispersal strategies. It will become clear in
this paper that the validity of the reverse Poincaré-Sobolev condition of [19] is equivalent to the

negativity of the principal eigenvalue of (1.1).

Inspired by the above works and motivated by a characterization theorem in [17], which
manifests the equivalence between the validity of a strong maximum principle and the positivity
of the principal eigenvalue of linear second order elliptic operators under suitable conditions, the

present work extends the characterization theorem and other basic properties regarding principal
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eigenvalue for linear second order elliptic operators to perturbed fractional Laplace operators with
homogeneous Dirichlet boundary condition given in (1.1). The same characterization is also es-
tablished for (1.2). This paper is organized as follows: in section 2, we investigate the equivalence
between the validity of a strong maximum principle and the positivity of the principal eigenvalue
of (1.1). As immediate consequences of this equivalence, it can be shown that the principal eigen-
value of (1.1) is monotone and continuous with respect to ¢, and it is also continuous with respect
to a regular class of perturbations of {2 around its boundary.

We also study the existence and multiplicity of principal eigenvalues for a linear weighted
eigenvalue problem. Section 3 is focused on the principal eigenvalue of (1.2). The aforemen-
tioned equivalence is obtained for (1.2) as well under certain conditions on ¢; ;. This equivalence
reveals the interplays between the sign of the principal eigenvalue of (1.2), the validity of the strong
maximum principle, and the existence of a positive super-solution. As a result of the equivalence,
the maximum principle for domains of small volume is also established for weakly coupled coop-
erative systems. Finally, in section 4, the results established in the previous sections are utilized to
study several prototype models that arise in mathematical ecology. More specifically, we study a
nonlocal Ross-Macdonald model. It is shown that the principal eigenvalue plays a key role similar
to the basic reproduction number when it comes to determining infection dynamics.

Throughout the paper, let {2 be an open and bounded subset of R", we always write
d(z,09) = inf{lz —y| | y € R" \ Q}

for the distance of x to the boundary 02 of Q. Givenz € R", B, (z) := {y € R" | |y —z| < r}.
Given u € L*(), u > 0in Q means that u > 0 in 2, and there exists 2’ € Q and r > 0 for
which B,.(2') C Qand infyep (oyu > 0. u < 0in Qif —u > 0in Q. L¥ (R") denotes the

loc

space of functions u € L* (D) for any bounded measurable subset D C R"™.

2 The existence of principal eigenvalue and its properties

In the sequel, we let H(2) be the Hilbert space defined as the closure of C5°(£2) with respect to

the norm
2d )|2d d %

Notice that Hj(£2) is a subspace of H*(R™) consisting of functions that vanish outside €2. As
shown in [24], H§(£?) is equipped with the following equivalent norm

1 2 %
sl = ([ uar)’ o ([ M0l
lullager = [ 1o O

where R?" := R" x R" and ¢ = R" \ Q.
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Definition 1. Let @ C R” be a bounded domain. Given f € L?({2), a function w € H(Q) is

said to be a weak solution to the boundary value problem

(=AYu+c(x)u=f inQ, 2.1)
u=0 inR"\Q '
provided that
/ / wiwllote) = 6wl g, g, 1 / cwpds = / foda
n JRn |55 —y|tee Q Q
for any ¢ € Hj(2).
Thereafter, for the sake of convenience, we shall write
(Leu) () :== (—A)u+ c(x)u, =z €9, (2.2)
Du:=u, ze€R"\Q. '

Let A € R, X is said to be an eigenvalue of the eigenvalue problem (1.1), or equivalently, an
eigenvalue of { L., D, 2} if there exists a function v € H{(€2) such that u is a weak solution of
(2.1) with f = Au. Depending on our needs, we also consider classical solutions of (2.1), following
[21], assume that f € L>°(2), a classical solution to (2.1) is a continuous function u € C(R")
such that (—A)%u + ¢(z)u is well defined in Q and (—A)%u + ¢(x)u = f pointwise in €.

Proposition 2.1. Let Q) C R" be a bounded domain with Lipschitz boundary. Suppose thatn > 2s
and w € H(QY) is a weak solution to (2.1). Assume that c, f € LP(Q) and p > max{2,n/2s}.
Then

[w]l o) < C
for some positive constant C depending only onn, s,p, Q, ||cl|zr(q), and || f || r(0)-
Proof. The Moser’s iteration presented in [6] is utilized to prove the proposition. Given m > 0,

let wy,, be defined by wy,, = min{|w|, m}. Clearly, w,, € H;(2). In view of Lemma A.1 of [6],
there holds

) [[w(z)] — [wy)l[¢(x) — o(y)]
// |z — y[nt2s dydxé/ﬂ\cl\wlqbdw/glflaﬁdx

for any positive ¢ € H (). Now choose ¢ = (wy, +1)? — 1, then following the line of Theorem
3.1 of [6] gives that

n—2

(/ (wm+1><i*—@l"dx)”s <ctma (G rera( [ [<|wr+1><wm+6>ﬁ1qu>é}7
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n—2s_ 1
where ¢ = 25, K(c, f,Q) = |lcllzo) + [[fllzo) + 12 ™ ¢,and C(n, s) > 0is constant
depending only on n and s. Now let m — oo, thanks to the monotone convergence theorem, by

passing the limits in the above inequality, we find that

([ 1>(i+—@1”d:c)n"25 < o) (G Kt [ (ul + 1><1+ﬁ>q1d:c);}.

Letd = (1+f)gand x = ﬁ note that there exists a constant -y,, depending on ¢ only, such
that 5“ < /(B +1)aslongas 3 > = q g > E ,wrlte C(n,s,q) = C(n, s)v, then

(/Q(!wl +1)X9d:c>x19 < [K(c, fﬁﬂg<w>g</ﬂ(lw\ +1)9dx>é,

It follows from the assumption that x > 1. Now choose 6y = 2, andlet0,, ;1 = x0,, withn € N*,

after m iterations, we have

m a
Mmoo L C n,s,q 01 %
I+ ) ey < [ 79017508 T (200 % ol 4 1)

1=0 1

By passing the limit as 7 — oo, the desired conclusion follows. The proof is completed. O

Proposition 2.2. Let Q2 C R" be a bounded domain with Lipschitz boundary. Let L. and D be
given by (2.2). Then { L., D, 2} has a countable family of eigenvalues {\;;}3° | that can be written

as an increasing sequence approaching +o0o as k — co. Namely,
—00 <AL <A S A3 < <A <

In addition, there holds

Cn,s |2
A= in / / s dydx +/ c(x)udz, (2.3)
uEH (Q) ||u||L2(Q)71 2 n n |:Zj_ |TL+28 Q ( )

)2
B . Cn,s | 2
A = | inf / / |1: = |n+2s ———= dydx +/ c(r)uder, k>2,
weXi, lullg2y=1 2 Jrn Jrn Q

where X, = @le ker(L. — A\;I). Each Ay, has finite geometric multiplicity. Moreover, the eigen-
functions associated with {\.}7°, form an orthonormal basis of H{(SY). Assume further that )
satisfies the exterior ball condition, and py, € Xy Then ¢y, € C*(R™), and

Lepr = Mo inQ, @ =0 inR"\ Q.
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Proof. The proof of the existence of { A}, is the same as that in [23], while \; is referred to
as the principal eigenvalue of { L., D, 2}, which is a simple eigenvalue. Let ¢; be an eigenvalue
associated with \;. Owing to Proposition 2.1, ¢; € L*°(2). In particular, similar to [23], we can
show that 1 (z) > 0 (or p1(x) < 0) forall z € €. In case that §2 is a Lipschitz domain satisfying
the exterior ball condition, then it follows from [21] that ¢; € C*(R"™) satisfies L.; = Aip;

point-wise in 2. The proof is completed. O

Let \; be given by (2.3). In what follows, we denote A1 by )\, and A is referred to as the
principle eigenvalue of { L., D, Q}. Namely, A is the least eigenvalue of the eigenvalue problem

(1.1), and it is the only eigenvalue of { L., D, Q} with positive eigenfunctions.

Definition 2. [17] Let 2 C R" be a domain. (2 is said to satisfy the interior sphere property at a
single point z € OS2 if there exist 2z, € Q and r > 0 such that |z — 2z,| = r and B, (2,) C .

Definition 3. [17] Let 2 C R"” be a domain. 2 is said to satisfy the uniform interior sphere
property in the strong sense if there exists 7 > 0 such that for every z € Q with d(x,09Q) < r,

there exists a point z, € 02 for which |z — z;| = d(z,99) and B, <zm + =2 ) C Q.

|z—2a]

Definition 4. Letu € L2 (R™) N C(), u is said to be a (classical) super-solution of { L., D, Q}
if Lou € L*(9), and

(—A)°u+c(z)u>0in ©Q, and u>0in R"\ Q.

In addition, w is said to be a strict super-solution of { L., D, 2} provided that v is a (classical)
super-solution of {L., D, 2} while u is not classical solution of L,u = 0in Q and v = 0 in
R™\ Q.

Proposition 2.3. [15] Let u € LY (R™) N C(Q2) be a super-solution of { L., D, 2}. Assume that

loc

c € L*(Q) and ¢ > 0. Then either u = 0 in R™ or u > 0 in Q.

Proof. The proof can be found in [15](see the proof for Theorem 2.1 of [15]). O

Lemma 2.1. Let 2 C R" be a domain (either a bounded or an unbounded domain). Suppose that
() satisfies the interior sphere property at a point xo € OS). Let z5,, € Q2 such that |xo— zg,| = 7 and
By (2z,) C Q. Assume that u € C(By(zz,)) N L2 (R™) is a super-solution of {L¢, D, By(24,)}
and w > 0 in R™. Then there exist positive constants p and r1 with 0 < r1 < r such that u(zx) >
Opd(x, 0By (2g,))° for all x € By (2s,), where § = inf

€8y, (729) L and 1, p depend on r,s,n

and [cy | () only.



The Principal Eigenvalue Problems for Perturbed Fractional Laplace Operators 195

Proof. Set

wi(@) = (1 = |z = 20 [*)%,  wa(z) = (1 — |z — 20 )}, @ €R™

It then follows from Table 3 of [12] that

(—A)wy (z) = 22T(1 + S)F(Z + 5>F<Z> o ki, @ € Br(za),

(A wa(z) = 2%T(2+ s)F(Z + S>F<Z> - <r2 - (1 + 2;’) & — zz0|2>, x € By(2a)

2
— k2<7’2 — <1+8>]x—zzo\2).
n

2 2
lim (T2 — <1 + 5) |1E — Zx0’2> = —jT2, lim wp = lim wy = O,

[x—zpq | =T n n [£— 20 | =T |z =250 | =7

Since

there exists 7, € (0,7) such that ko (r? — (1 4 28|z — 259|?) + |4 Lo (w1 + w2) < —%
forall x € B(2z,) \ By (24,)- Apparently, r; is determined by 7, s, n, and |c. |1 only, and is

skor? _ s['(1+s)r? sT(14-5)r2

independent of z,. Note that 25~ = ——. Let k3 = min{1, —~

that

}, it is easy to see

(—A)*[kswy + wa] + ey (z)[ksw1 +w2] <0 in Br(zzy) \ Bry (220)-

Now let 6 = infmegr1 (2g) - Since w > 0in R", and (—A)*u + cyu > Oforall x € By (zy,), it
follows from Proposition 2.3 that w > 0 in B, (z,). Moreover, as By, (zz,) is compact, we have
0 > 0. Write v = m%(kgwl + ws). Clearly, sup, . v < 6, it then follows that u > v for
allz € By, (24,). In addition, the assumption shows that uw > v = 0 forallx € R™ \ B, (24,).
Meanwhile, there holds that (—A)®*(u — v) + ¢4 (u — v) > 0in By(24,) \ By (2z,). Thus
Proposition 2.3 implies that u > v for all # € B, (zz,) \ By, (24, ) Notice that

0 ’I’Sk?ﬁ
2 725 + T2+2S(k‘3w1) = 725 4 p2+2s (r = |2 — za0]) -

Let p = TQSC:%, we readily conclude that u(z) > Opd(z, 0By (24,))° for all x € By(2z,) \
By, (2,). In particular, as a result of the fact that w > v for all x € B, (24,), there hold that
u > vforallz € By(zy,). In other words, u > 6pd(x,0B,(zy,))° for all x € By(zg,). The
proof is completed. O]

We now give a uniform decay property of E. Hopf for super-solutions of { L., D, 2}, which

will be used in serval places of this paper.
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Lemma 2.2. Assume that Q) C R" is a bounded domain satisfying the uniform interior sphere prop-
erty in the strong sense. Let u € L2 (R™) N C(2) be a nonnegative super-solution of { L, D, 2},
and v > 0in R™. Then there exists § > 0 such that u(z) > fd(xz,00)° for allz € Q. Assume
further that OSY is of class C', and u = 0 in R™ \ ). Then limg(, 90)—0 d(a: 89 > B.

Proof. Letr > 0 be the constant specified in Definition 3. Given z € Q with d(z,0Q) < r, let
zy € 0N such that d(x,00Q) = |x — z,|, we write 2’ = z, + r|i 2%~ Due to the assumption,
B,(2') C Q. Clearly, z,, € B,(2') N 9Q. Let r; € (0,r) be the constant found in the proof of
Lemma 2.1 for B,(z'). Again, r1 depends on 7,7, s and |cy | () only. Let © := {z € Q |
d(x,082) > "1 }. Notice that d(z', 0) = |2’ — z;| = r. It hence follows that B, (') C ©.1In
fact, if there were ay € B, (2/) and y were not in ©, that is, d(y, 9Q) < "5™. Let z,, € 9§ such

that d(y, 9Q2) = |y — z,|. Then we would have [2' — z,| < |2/ —y| + |y — 2| < 1 + 52 =

I < r, which is obviously a contradiction as d(z/, 92) = r. The contradiction conﬁrms that
B,,(z') C ©. Slightly abusing the notation, we let § = inf,cg u. Then it follows from Lemma 2.1
that u(y) > 0pd(y, 0B, (z'))® fory € B,(a'). Namely, u(z) > 0pd(x, ). Note that x €
with d(x, 9§2) < r is arbitrary, and p depends on 7, s, 1 and |cy |1 () only. It is easy to see that
u(z) > Opd(x,00)* for all x € Q with d(z,0Q) < r. Nowlet ® = {x € Q | d(x,00) > r}.
Clearly, ©' is a compact subset of 2. Let ¥ = inf,cor u, then ¥ > 0asu > 0in . Since d(z, 90Q)
is bounded, there exists v > 0 such that u > vyd(z, 9Q)® forall z € ©'. Set f = min{fp, v}, we
readily conclude that u(z) > d(z,0Q)* for all x € Q. Assume further that 9 is of class C!, and
u = 0inR™\ Q, Then it follows from [21] that W € 0%(Q) for some a € (0, s). Hence

lim g, 50)—0 % > . The proof is completed. O

Remark 1. Under the assumptions that are slightly weaker than those of Lemma 2.1, by deriving
a contradiction, it is established in [15] that lim infy, 50)—0 % > 0. While Lemma 2.1
u(z)

presents a bit more explicit lower bound for FIEX Ok In case that 02 is sufficiently smooth, then

the Hopf’s lemma given in [15] can be restated as lim¢_,q u(g:e% > 0.

Definition 5. Let L. and D be defined in (2.2). Then {L., D, 2} is said to satisfy the strong
maximum principle if u > 0 in Q whenever v € C*(2) N L2 (R™) is a nontrivial super-solution
of {L.,D,Q}.

Theorem 2.1. Assume that Q@ C R" is a bounded domain with 92 € C1. Let \s be the principal
eigenvalue of { L., D, Q2}. Then the following statements are equivalent

(i) As > 0,

(ii) { Lc, D, Q} has a positive strict super-solution u € C(2) N L3®

loc

(R™),
(iii) { L¢, D, Q} satisfies the strong maximum principle;
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(iv) the linear boundary value problem

(—A)Yu+c(z)u=f inQ,
u=0 inR"\Q

has an unique solution u € H§(XY) for each f € L*(Q). In particular, u > 0 provided that f > 0.

Proof. (i) implies (ii). This is obvious as a positive eigenfunction associated with Ay is a strict
super-solution of {L, D, Q}. (i) implies (iii). Let u € C(Q) N L% (R™) be the positive strict
super-solution of { L., D, 2}. Let v € C*(Q) N L2 (R") be a super-solution of { L., D, 2}. We
shall follow the idea of [1] to show that v > 0 in €. Let v(x¢) = infy v(x) for some z¢ € Q. It is
sufficient to show that v(xg) > 0. Assume to the contrary that this is not true, that is v(xg) < 0,
then as v > 0 in Q¢ we have xg € Q. Given x € . Let T € 0f) be the point such that
|z —7Z| = d(z,09). Sincev € C*(Q), then there is k > 0 for which v(z) > v(T) — rkd(z, Q)% >
—kd(z,08)%. Consequently, v(x) > —rd(x, 0Q)* for all z € Q. Meanwhile, Lemma 2.2 shows
that u(x) > Bd(x,00)° for all z € Q and some 3 > 0. Hence there is ' > 0 such that
t'u(z) +v(z) > Oforallz € Q. Nowlett = inf{t > 0 | tu(z) + v(x) > 0 in Q}. Clearly,
t > 0and fu(x) + v(z) > 0in Q. Since tu(z) + v(x) is a strict super-solution of { L., D, Q},
we have tu(z) + v(z) > 0in Q. Thus, Lemma 2.2 shows that tu(z) + v(z) > 6d(x,09Q)* for
allz € O and some § > 0. Let ) = %. Then tu(x) + v(x) > —Yv(x) forall z € Q. Hence
Hiﬂu(a:) +v(z) > 0 forall z € 2, which contradicts the definition of . Therefore, v(x¢) > 0.
Particularly, Proposition 2.3 implies that v(z) > 0 in §2. It is apparent that (iii) yields that (ii)

Next we show that (ii) implies (i). Assume to the contrary that A\; < 0. Let w be the strict
super-solution and ¢ be a positive eigenfunction. It follows from Proposition 1.1 of [21] that
lo(x)] < Cd(z,00)°. Asw > 0and ¢ = 0in R™ \ Q, in particular, Lemma 2.2 shows that
there exists v > 0 for which w > ~d(z,00Q)° for all x € Q. Thus, there exists ¢ > 0 such
that tw — ¢ > Oforallz € R™ Againlet?t = {t € R | tw — ¢ > 0}. Apparently, ¢ > 0.
Note that tw — ¢ is a super-solution of L. — A;I. In addition, one of the followings must hold:
L.(tw — @) — As(tw — ¢) > 0in Q or tw — ¢ > 0 in Q°. With the same reasoning as above, we

can reach a contradiction. Hence Az > 0.

We now show that (i) implies (iv). Define

—C”S/ / Ju(z) — u(y)* dx+1/cu2dx—/fudx

2
0 < As C"S/ / n+2s’ d dx+/cu2dx,
ueHS( ||u||Lz 1 n JRrn Ix—yl Q
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it is easy to see that I is bounded from below and coercive. In addition, let w, v € Xy with w # v.

A straightforward calculation yields that

Cn.s w—v)(r)— (w—"v 2
(I'(w) — I'(v),w —v) = Qv/R% I )|§3)_y|i+28 )W) dydx+/ﬂc(x)(w—v)2dx
> Allw = v[f72iq) > 0.

Namely, I is strictly convex, and it follows from [13] that I has a unique minimizer still denoted
by u. That is, the boundary value problem has a unique solution. Given that f € L?(Q2) with
f > 0. Letu_ = min{u, 0}, Clearly, u_ € H{(£2). We show that u_ = 0,

(I' (), u-)

s [ (@) —u) @) —u ) [
- /gwl dyd /g (2)(u_)?d jg,f _d

2 |z — y|"+2s
_ _Cns u—(2) —u_(y)|*
N 2 /Rzn |z — y|nt2s dydz
Cn,s (ut(2) — us (y)) (u—(z) — u_(y)) / 2
+ / dydx — | c(x)(u—)*de — | fu_dz
2 Jgren |z — y[nt2s Q (){u-) Q
Cn,s u—(z) —u_(y)* / ut (2)u—(y) / 2
_ _fns dydz — ¢, . dydz — _)%d
5 o e g duds = [ T e — [ cla)(u-yas
— | fu_dx =
Q

Here R2" := R™ x R™. Hence,

u XT)u_—
Al B < —cmsjé%lL;f_LVH%Qdydx—-/gfudxf;o.

This implies that u_ = 0. Finally, we show (iv) implies (i). Choose any f € C(Q) with f > 0.
Then the boundary value problem has a unique solution uy € H{(§2) and uy > 0. Again,
Proposition 2.1 and Proposition 1.1 of [21] imply that uy € C*(R™). In particular, we have
uy > 01in €. Thus uy is a strict super-solution of { L., D, 2}. Namely, (ii) holds, and hence (i)
follows. O

Remark 2. Assume that A\; > 0. Let u; be the unique weak solution of (2.1). Then straightfor-
ward calculation shows that [|uy|12(q) < A7 fllL2(0)-

Proposition 2.4. Assume that Q) C R" is a bounded domain with Lipschitz boundary. Let \s be
the principal eigenvalue of { L., D, Q2}. Then

\> 1 4°T(s+1)I(s+ 5)(25 +2)(25 +n)(6 — 2s)
ST 2 T(2)[12n + (16 — 2n)s]

+ inf c,
z€Q

where r > 0 is the positive number such that |Q)| = | B,(0)].
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Proof. The idea of the proof is similar to that of the proof for Proposition 8.6 of [17]. We shall
present a sketch. Let 1) be an eigenfunction corresponding to As with [|¢)||z2(q) = 1, then the
Faber-Krahn inequality of [5] along with Proposition 2.2 imply that

23
S Cns Y . |[B:(0)]
// |$— |n+2s dyd“é‘elssz( 0] "B+ infe

where A1 (B,.) is the principal eigenvalue of { (—A)*, D, B,.(0)}. Note that A1 (B,.) = r~2\1(B1).
Now choose r > 0 such that | B,.(0)| = |Q2], the desired conclusion follows from Lemma 9 of [12].

The proof is completed. O]

Proposition 2.5. Let Q; (i = 1,2) C R" be two bounded open domains with 9Q; € C' such
that Qo C . Let Aq, be the principal eigenvalues of { L., D, §);}, respectively. Then \q, < Aq,.
In case that Qo C 1, then Ao, < Aq,. Let A, be the principal eigenvalue of {L.,, D, 2} with
ci € L>®(Q);(i = 1,2). Assume that c; < co. Then \¢; < Ac,. In case that ¢; < co, then

Ay < Acy. Furthermore, . is Lipschitz continuous with respect to c.

Proof. Clearly, H;(€Q22) C H{3(€1). Thus, it follows from Proposition 2.2 that Ag, > Ag,. In
case that (25 C )y, let 1 be a positive eigenfunction associated with A, , then we have L.¢1 —
Ao;1 = 0in Q9 and 1 > 0in R™ \ Q9. Namely, ¢; is a strict super-solution of {L. —
A, D, Qa}. As Mg, — Aq, is the principal eigenvalue of { L. — Aq,, D, 22}, Theorem 2.1 yields
that Ag, > Aq,. The monotonicity of A. with respect to c is also an immediate consequence of
Theorem 2.1. We now proceed to show the Lipschitz continuity of A\, with respect to c. Notice

that
[soi(:z:)—soz-(y)][wgf)—soj(y)} dydz + / cipipsda — / Nevgicpyda.
|z — y[nt?e Q Q

R2n
Here either ¢ = 1and j = 2, or¢ = 2 and j = 1, again )\, is the principal eigenvalue of L., in

2. By subtracting the two equations, we have

Joler — e2)p1p2da

Qer = Aa) = Jo p1ep2dz
Therefore,
Aoy — eyl < 0 |C}Q_¢ffp|j;;"2d$ < lex — call (-
Namely, \. is Lipschitz continuous with respect to c. The proof is completed. O

Proposition 2.6. Assume that 0 C R"™ is a connected and bounded domain with 0Q € C!. Let
Q; CC Q) be open subsets of 2 with smooth boundary satisfying 4 C Qi1 and ;2 € = Q. Let
¢ € C§°(S2). Then there exists a sequence {¢;}3%, with ¢; € CF°(€2;) such that lim; o0 || —
¢l s () = 0.
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Proof. Denote that A5 := {x € Q | dist(z,09) < %}, where § > 0. Assume without loss of
generality that ; C Q \ Ay; and that Q \ Ay; C ;. Following [17], we choose w; € C§°(£2)
such that 0 < w; < 1,w; = 1in Q\ A;, and w; = 0 in Ayj. Moreover, ||ij||c(§) < Cj
for some positive constant C' independent of j. Now write ¢; = w;¢. Clearly, ¢; € C5°(£2;).
It is easy to see that ¢; — ¢ in L?(£2) as j — oo. Notice that (¢; — ¢)(x) — (¢; — ¢)(y) = 0
whenever (z,y) € (2\ 4;) x (Q\ A4;), (2\ 4;) x Q°, and Q° x Q°. Hence, we have

[ 0w,
R2n

|z — gyt

(95 — D) (@) — (95 — ) () ?
=2 dyd
/14jX(Q\Aj)+/4jXAj ’l’—y|”+23 yax

pof Mmoo QLI
AjxQe

| — y[rt2s

Let o = sup{|x — y| | #,y € Q}. By Fubini’s theorem and mean value theorem, we find that

[ CECE QLI
AjixQ

|z — y[rt2e

<[ o 0w+ 16 o),
AjxQ

|z — y[ 2

4/_dx/ \¢(93)!2le($)—wj(y)l2+|wj(y)|2|¢(x)—¢(y)|2dy

|z — y[rt2e

. e
paf @S0,

| — y[rt2s

2 2
4,  JB,@) |z — y\ B,(x) |90 - y|
2 9 4 ,rn—i-l 9 14 ,rn—i-l

< 4an2(175)||v¢”%2(Aj) + 6WnQ2(178)qusH%OO(Q)’Aj"

Here w, = Fz(Z/%zy and we used the fact that [|¢|[z2(4;) < 1HV¢HL2(A )(see Remark 4.1 of

[17]). Nextlet Q§ = {z € Q¢ | dist(z,0Q) < 1},and ¢ = sup{|z — y| | =,y € 4; UQS}.
Straightforward calculation shows that

JRCELLEUE QLI
AjxQe

| — y[rt2s

= (5 = @)(@) = (6 =)W,
B /AjXQ‘f * /,;jx(ﬂc\gi:) ‘x _ y‘n+2s yax

< wnb2(1_s) [4HV¢H%2(AJ) + 6||V¢H%°°(Q)|AJ|]
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(¢ — 0)(2) = (&5 — &) (y)[*
- /ij(szc\ﬂg) |z — y|n+2s
n—1

s >
< w7 [4VHIIT2a,) + 6Vl T )| 451] + i /A 61170 (A /1 Tl
J

dydz

< w279 [4lIV0|[72(4,) + 61Vl F oo 0| A51] + 4wnll ]| ()| 45

Since ||V@||z2(a,) — 0,and [A;] — Oasj — oo, we readily conclude that lim;_, [|¢; —
¢l 3(0) = 0. The proof is completed. 0

Theorem 2.2. Assume that Q) C R™ is a connected and bounded domain with 02 € C. Let A\,
be the principal eigenvalue of { L., D, );}, where ; C R are a sequence of bounded domains
with smooth boundary. (i) Assume that ; CC 2 satisfying Q; C Qi1 and U;’il Q; = Q. Then
lim; o )\Qj = A\q. (ii) Assume that Q; CC ) satisfying ;41 C Q; and ﬂ;’il Q; = C Q.
Then lim;j 00 Ao, = Aqy-

Proof. To establish (i), we let ¢; be a positive eigenfunction corresponding to A,. Namely,
(—A)%pi +c(x)pi = Ao, pi

in €2; and ¢; = 0in Q°. As a result of Proposition 2.5, there holds that A\; > ;11 > Aq. Hence
Aq, are bounded and lim;_,~, Aq, exists. Assume without loss of generality that ||¢; || 2@ = L.
Then, in view of Proposition 2.1, we have ||¢;||cs(rn) < C for some positive constant C'. Since
;i = 0in QF, it follows from Ascoli-Arzela theorem that there exists ¢* € C(R™) for which
lim; 00 [[0i — ¢*[lc@n) = 0. Clearly, p* = 0in Q¢ and ¢* > 0 in Q. We next show that
lim; o0 [|0i — ™[z (@) = 0. To this end, we show that {¢; } is a Cauchy sequence of H{(£2).
Note that

/ (05 — i) (x) — () = %)(y)dedx _ / i () — wj(y)IZdydx
R2n R2n

|QZ _ y|n+25 |(13 _ y|n+25
. —h 2 . . . -
+/ lpi(z) — ¢i(y)| dydzs — 2/ [pj (@) — @i (¥)][pi(x) sol(y)]dydm
R |z —y[ntEs R2n |z — y|mt2s

Assume that j > i, then ; € H{(§2;), and

cns/ (05 — i) () — (9 — w)(y)\Qdydx
2 R2n ‘l' - y‘n+28

= / (Ao, — c)w?dm +/ (Aq, — c)p?dx — 2/ (Aq, — c)pjpidz
Q; Q; Q

J i J

<llp; = @illL2@l(Aq; — )il + (A, — )¢; — (A, — )il L2@)llvill 2()-

Thus, {(p; } is a Cauchy sequence in H () as ¢; converges to * in L?(2) and lim;_, o, Aq, exists.

In particular, in view of Poincaré- Sobolev inequality, we have lim;, [|¢; — ¢ [|gs () = 0.
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Given ¢ € C§°(2), in view of Proposition 2.6, there exists {¢; } with ¢; € C§°(€2;) such that ¢;
converges to ¢ in H§(£2) as ¢ — oo. Then

Cns / [pi(z) = pi(y)][¢i(z) — di(y)]
R2n

2 ’Q? _ y’n+25

dydx + / c(x)pigidr = Aq, / wipidx.
Q Q
By passing the limits in the above equation, we find that

Cns / (" (z) — " W)][o(x) — d(y)]
R2n

2 ‘33 _ y‘nJrQs

dyda:+/ c(x)go*gbidx:)\*/ P pida.
Q Q

Here \* = lim \q,. This yields that A* is an eigenvalue of { L., D, Q} and L.p* = A*¢* in Q.
Again, Proposition 2.3 implies that ¢* > 0 in Q0. Thus A* = Aq. We now proceed to show (ii).
With slight abuse of the notations, we still let ¢; be the positive eigenfunction corresponding to the
eigenvalue \; with [[¢; || 72(q) = 1. It is easy to see that A; < A;11 < Aq. In particular, it follows
from the same reasoning that lim; oo || — x|l gs(rny = 0 and lim; o0 || — @ullc@ny = 0
for some ¢, € H§(20) N C(R™). Note that H5(Qo) C H§(€). Let ¢ € H(o), then

Cns/ [pi(z) — @i(W)][o(x) — d(y)]
R2n

2 |ﬂ§ _ y‘n+25

dydo+ [ elwhoitids = o, [ i
Qo Q0
Let A« = lim;_, \q,. By passing the limits in the above equation, we find that

Cns lp:(2) = puW)llé(z) —oy)] , e L i
/]Rzn dyd +/Qo ( )@*(ﬁd )\*/ prpdr.

2 |z — y|nt2s Q0

Again, the same argument as that for (i) yields that A\, = Aq,. The proof is completed. O

Motivated by [2] and [17], a point-wise min-max characterization of \s can be given as fol-

lows

Proposition 2.7. Suppose that 1 C R™ is a connected and bounded domain with 92 € CL. Set
P:={ue CONLEMR") | ¢ > 0in R" Lp € L®(Q)}. Let X := sup{\ | 3¢ €
P, Legp > MpinQ}. Then N, = A, where )\ is the principle eigenvalue of { L., D, Q}. In addition,
As = supyep info (%) Furthermore, let P := {¢ € P | ¢ > 0 in Q}, and \! := sup{\ |

dp € P, L. > \pin Q}. Then N = \,. Additionally, \s = supd)elginfg (de)‘b).

Proof. It is obvious that A, > \,. Assume to the contrary that A, > \. Letn = % Then,
there exists 1» € C(R"™, R™") with ¢ > 0 in Q such that L.1) — Agtp > np > 0in Q. Hence, it
follows from Theorem 2.1 that the principal eigenvalue of {L. — \sI, D, Q} is strictly positive,
which is a contradiction. Thus, A, = A;. To show that Ay = sup sep infq (%), we fix A < A,
Then Theorem 2.1 implies that the boundary value problem: (L. — A)u = 1in Qandu = 0
in Q¢ has a unique positive solution ¢y € C*(R"™). Clearly, infq(Lc¥x/1y) > A. Hence A <
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SUp 4c p infq (L(;¢). Since this is true for any A < g, it follows that A; < SUP 4 p infq (%)

On the other hand, by means of the same argument given above, we can show that \, = \;. We
now prove the last part. Given any A < Ag, Theorem 2.1 and Proposition 2.6 imply that there
exists 2y C R" with Q CC Q) such that (L. — \)u = 1in Q) and u = 0 in Qf has a unique
positive solution 1, € C*(R"™). Clearly, ¥\ € P. Thus, it follows from the same reasoning that
Lo

5 infg ( 3 ) The proof is completed. O

Ao =As =sup, 5

We next consider the existence and multiplicity of principal eigenvalues for the linear weighted
boundary value problem
{ Leu = da(x)u, x€Q, (2.4)

u=0, zeR"\Q,

where a € L>(2). Let 11(\) be the principal eigenvalue of { L. — Aa, D, Q}. Following [17], As
is referred to as a principal eigenvalue of (2.4) if t(As) = 0. In view of Proposition 2.1, it is easy
to see that pu(tA1 + (1 — t)A2) > tu(A) + (1 — t)u(A2) forany ¢ € [0, 1] and A\, A2 € R, that
is, () is concave with respect to A. In addition, by invoking the same argument as that given in
[17] (see Theorem 9.1), we infer that ;(\) is analyticin A € R. The following results, Theorem 2.3
and Theorem 2.4, are given without proofs because the proofs are the same as those for theorem

9.3 and Theorem 9.4 in [17] in the presence of Proposition 2.2 and Proposition 2.5.

Theorem 2.3. Assume that Q@ C R" is a bounded domain with Lipschitz boundary. Let j1(\) be the
principal eigenvalue of { L. — Aa, D, Q}. (i) Suppose that there exists Q0 C € such that a > 0 in
Q4. Then limy_,o p1(\) = —o0. In addition, Assume that a > 0 in Q). Then (2.4) has a principal
eigenvalue if and only iflimy_, o, p1(\) > 0. Moreover, the principal eigenvalue is unique if it exists.
(ii) Suppose that there exists Q) C Qsuchthata < 0inQ_. Thenlimy_, o p(A) = oo. In addition,
Assume that a < 0 in Q. Then (2.4) has a principal eigenvalue if and only if limy_, _ u(A) < 0.

Moreover, the principal eigenvalue is unique if it exists.

Theorem 2.4. Assume that Q) C R" is a bounded domain with Lipschitz boundary. Suppose a €
L*>°(Q) changes sign in the sense that there exist Q. C Q such thata > 0in Qy, anda < 0in
Q_. Let () be the principal eigenvalue of { L. — Aa, D, Q}. Let p(A*) = maxyer () for some
A* € R. Then (i) (2.4) has no principal eigenvalues if n(\*) < 0. (ii) In case that p(A\*) = 0, (2.4)
has one and only one principal eigenvalue, which is \*. (iii) (2.4) possesses exactly two principal
eigenvalues A\ (a) and N[ (a) with \; (a) < A\ (a) provided that u(\*) > 0. In particular,
under the assumption that 1 (\*) > 0, there hold (a) \; (a) < 0 < Af(a) if n(0) > 0. (b)
0 =X, (a) < Ar(a)if u(0) = 0and p/'(0) > 0. (c) \;(a) < AF(a) = 0if u(0) = 0 and
@' (0) < 0.(d)0 < A\, (a) < A (a)if u(0) < 0and (/(0) > 0. (e) \; (a) < A\F(a) < 0if
1(0) < 0and 1/'(0) < 0.



204 G. Zhao

Corollary 2.5. Let all of the assumptions of Theorem 2.4 are satisfied. Suppose that ;1(0) > 0. Let
A; (a) < 0 < M(a) be the principal eigenvalues of (2.4) given in Theorem 2.4. Then, there holds
that

M (a) = inf J(u), A;(a)=— inf J(u
(@) {ueHg ()14 (u)=1} (u) (@) {ueHG (- (u)=1} (v)

2
= Cns/ / +2| d dx+/ c(x)ulde, Ii(u) :/:i:a(:ﬂ)Ude.

Proof. Let 6 € R. It is easy to see that J is bounded from below, weakly lower semi-continuous,

)

where

and coercive on the manifolds I+ (u) = 0. Write Ay = infy,e s ()14 (u)=1} J/ (v). In view of
Theorem 1.1.1 of [9], A4 are attained at some 1)+ € H{(2), respectively. Obviously, Ax > 0,
and both [¢)4| are also a minimizer. The same argument as that of proposition 9 of [23] implies
that 1)+ do not change sign in {). Thus, A+ and —\_ are two eigenvalues of (2.4) with positive
eigenfunctions. That is, u(Ay) = pu(—A-) = 0. As p(A) has only two A-intercepts at A, (a) and
Al (a), we readily infer that A; (a) = —A_ and A (a) = A. The proof is completed. O

Note that the same argument can be easily adopted to give a similar variational characteriza-
tion for the principal eigenvalues of (2.4) provided that ;(A*) > 0. As a matter of fact, we have
A (a) = X+ Ay and A\ (@) = A\* — A_, where Ay = influe s (Q)|1s (w)=1} Ja+u> and

Iy (u

2
‘I— ‘n—i—?s‘ dydm+/ﬂ[c(m) _A*a(flf)]lﬂdl'.

n n

We next consider the asymptotic behavior of p(A) as A — oo under the conditions that
a(x) < 01in © and that a(z) vanishes in a sub-domain € of 2.

Theorem 2.6. Let j1()\) be the principal eigenvalue of (2.4). Suppose that ¢ € C®(S2) with some
a € (0,1) and a € L®(Q) witha < 0in §. Assume that Qg := inta='(0) is connected
and of class C? and Qo C Q. Moreover, infg, o a(xz) < 0 for sufficiently small 5 > 0, where
Qs = {x € Q| dist(x,Qy) < 0}. Then limy_,oo u(X) = pq,, where ugq, is the principal
eigenvalue of { L., D, }.

Proof. Notice that u(\) < pg,. Thus, suffices it to show that for each € > 0, there exists Ac > 0
for which p(\) > pq, — € provided that A > A.. In view of Theorem 2.1, this can be done by
showing that { L. — Aa — (uq, — €), D, 2} has a strict super-solution. To obtain a strict super-
solution, we first observe that lims_,o p10; = f10,, which is guaranteed by Theorem 2.2. Here p10;
is the principal eigenvalue of { L., D, Qs }. Therefore, o, > 10, — € as long as 4 is sufficiently
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small. Given that € > 0, we chose ¢ > 0 such that ug; > g, — 5. Fix R > 0, and let u be the
unique solution to the following boundary value problem

(Le —poy +e)u=1—c(z)R+ (po, —€)R, z€Qs,
w=0, zecR"\ Q.

Then Remark 1 implies that ||u|z2(q,) < 6*12||f||L2(96), where f =1 — ¢(z)R + (pq, — €)R.
Hence Proposition 2.1 and Proposition 1.1 of [21] imply that [[u|csgn) < € 'K, where K >
0 is a constant depending on n, s, R, ¢, uq,, and Qo only. Note that (—A)%u = (ug, — € —
cu+ finQsandu = 0in R™ \ Q5. Let d(z) = d(z, Q). As shown in [22], there holds
that [|u/d*(| cesmings.ar /2y < Cll(pg, — € — cJu + f\\cmin{s,a}(m) for some positive constant
C' depending on n, s, and Q. Let w = u/d® in Q4, and © = u + R. Clearly, we have that
(Le — poy +€)u = 1in Q5,andw = Rin R™\ Q5. In particular, Theorem 2.1 implies that @ > 0
in {25. We next show that % is a desired strict supersolution of {L, — Aa — (uq, — €), D, Q} if
A > 0 is sufficiently large. To this end, we first show that (—A)*% is bounded in R™ \ 5. Given
z € R"\ Qg if ¢ ¢ 00, then let 2 be the project of 2 on 9. Then, for every € > 0, we have

u(x) —u(y)
e Y
/Bg(m) |z — y|nt2s

),
< (2)NQs |z — y|

[ e s,
Bg(x)NQs

|z — gyt
S\ _ S S\ _ A4S N _
_ w(x/)/ d* (') dgy)dy—/ [d*(2') —d (y)][w(g) w(y)]dy
Be(o)nes T —y[" e Be(2)n Qs |z — y|nt2s

= Il,s(x) - 12,5(1;)'
Here BS(xz) = R™ \ B.(z) and we used the fact that

d*(2)w(z)—d*(y)w(y) =
d*(2)[w(z) —w(y)] +w(z)[d*(2) — d°(y)] — [d°(2) — d*(y)][w(2) — w(y)]

for z,y € R"(see [21]). Lemma 3.1 of [21] shows that (—A)*d* € CP(Q; ,, ) forsome 3 € (0, 1),
where Qs ,, = Q5 N {d < po}, and py > 0 depends on €25 only. In fact, a careful look into the
proof of Lemma 3.1 of [21] shows that py can be so chosen that it is independent of § if § is
sufficiently small. Since |z — y| > |2’ — y|, and w € C*+min{sa}/2(Q5) it follows that | T .| are
uniformly bounded for z € Q\ Q5 and e > 0. Additionally, as |d*(z") — d*(y)||w(z’) —w(y)| <
e 102’ —y|?*77, where v = min{1—s, min{s, a}/2}, and C is the constant specified above, we
have |d*(2")—d* (y)||w(z') —w(y)||2’ —y|~"F29) € L1(Qs),and so | I3 .| are uniformly bounded
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as well. Hence, |(—A)*7| is bounded in € Q \ 5, and |(—=A)*7| < e 'C, where C > O isa
constant depending on n, s, R, ¢, f10,, $20, and Q. Consequently, (L. — (po, — €)u € L>(Q).
Since infﬁ\m a < 0, there exists A such that (L. —Aa— g, —€)u > 0in {2 provided that A > A..
It then follows from Theorem 2.1 that (X)) > pq, — € if A > A.. The proof is completed. O

We now conclude section 2 with a brief discussion on an optimization problem for positive
principal eigenvalues of (2.4). Our discussion is motivated by [8] and provides a answer for the

minimization of positive principal eigenvalues of (2.4), which is parallel to Theorem 3.9 of [8].

Theorem 2.7. Let Q) C R™ be a bounded domain with Lipschitz boundary. Let 11(0) be the principal
eigenvalue of {L.,D,Q}. Let M = {a(x) € L™®(Q) | —az < a(zx) < a2;a@ = ap;a(x) >
0 in Qg }, where ag, a1, and ag are constants with a1,as > 0, —az|Q| < ag < a1|Q|, Qg C Q
is a nonempty open subset, anda = |Q| ™! [, adz. Let X} (a) be the positive principal eigenvalue
of (2.4). Suppose that (1(0) > 0. Then there exist a measurable set E C () and a simple function
a* = a1xg — azxo\g € M such that A (a*) = infaepm AT (a).

Proof. The proof is similar to that for Theorem 3.9 of [8]. Only part of it needs elaboration for the
sake of clarity. As shown in [8], for each w € L?(92), there exists a measurable set £, C {2 such
that a; x g, —azX ke, solves sup, fQ aw’dz. Letw € L%(Q), we write a}, = a1 xg, — azx e, -
Given that a € M, let ¢ be the eigenfunction for \{ (a). Note that [ a},p?dx > [ ap®dx. Hence,
we have

weHS, [ au?dz>0 / a* UZdl‘ / a* @2(11: / a(p2d$
® P
Q Q Q

This implies that A} = infoep AF (@) = inf{A} (a1xE — azxq\g)}- To complete the proof,
we only need to show \! is attainable. Choose a sequence {a,, A\{ (a,,)} with a,, € M such
that lim,, 00 Af (a,) = A2. Let ¢, be the positive eigenfunction associated with A} (a,, ). Since
J(r,) are bounded, there exists a subsequence, still denoted by {y, }, such that ,, weakly con-
verge to . in H(€2) for some o, € HG(€2), and limy, o0 [|on — ¢4 12(q) = 0. In particular,

limy, o0 J(¢n) = A0 > J(ps) > 100) |||l L2 (2)- Observethatlimnﬁoo/ an (@ —p?)dz = 0,
Q

and/ anp?dz = 1. Thus, p* # 0. Nowlet ¢, = (J(gon))_%cpn and ¢, = (J((p*))_%go*."[hen,
Q

we have

1 1 2 25 . _ )\(s) P 2

)\—> (*)2/a¢¢dm>/§2an¢>*daz—J(@*)/Qan<m> dz,
2d —

fywtite = s
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Hence

L Yy M

By passing the limits as n — oo, we find that A\ = J(¢,) and A0 = AT (a},)- The proof is

completed. O

3 Cooperative systems

This section is focused on the principal eigenvalues and a maximum principle for cooperative
systems involving fractional Laplace operators. The results established in the section are a coun-
terpart of those given in [18] for cooperative elliptic systems. We again assume that 2 C R" isa
bounded domain with smooth boundary and first consider boundary value problem

(—A)%iu; + Z?zl CijUj = file) inQ (1<i<k) (3.1)

U; = 0 inR" \ Q, .
where ¢; j € L>*(Q),1 <14,j <k,ands; € (0,1), k > 2 stands for an integer. Throughout this
section, we shall assume without loss of generality that 0 < 51 < --- <5; < 541 < -+ < 5 <
1.

Definition 6. Let 2 C R" be a bounded domain. Given f = (f1,--- , fx) with f; € L*(Q),
a function w = (w1, --- ,wy) with w; € Hy'(£2) is said to be a weak solution to the boundary
value problem (3.1) if

Cnosi i(@) — wi(y)][di(x) — ¢i(y)] b
: /n /n = Tj’ﬂ— BEE Y dyda?+/ﬂjz:;0i,jwj¢idx=/ﬂfz‘éidw

forany ¢ = (¢1,--- , ¢x) with ¢; € Hy'(Q) fori € {1,--- , k}.

Proposition 3.1. LetQ) C R"™ be a bounded domain with Lipschitz boundary. Letw = (wy, - -+, wy)
withw; € Hy'(Q) (i = 1,-- - , k) be a weak solution of (3.1). Namely,

{// [wi(z) — 2|[Z)i(251) ¢i(y)]dydx+i40i’jwj¢idx} :zzk;/ﬂfi‘lsidx

forany o = (¢1,- -+, ¢r) with ¢; € Hy (Q). Assume that ¢; ; € L>°(Q) (i # j,i,5=1,--- k),
cii € LP(Q),and f; € LP(Q) (i =1,--- ,k),n > 2sy, wherep > max{n/251,2/[1—2(;f7;;)]}.
Then there exists a constant C' > 0 such that

|will gy <C, 1<i<k

where C' depends only on |Q|, 1, p, si, ||cijl| L () (0 # 1), |will L2y lIciill Loy, and | fill Lr )
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Proof. We fix q1 = pL and set ¢; > 1 (2 < i < k) such that (n 2’;1)(11 = (n_2722)q2 =
= 7@ )k Let y = m Clearly x > l,and2 > ¢ > --- > ¢; > -+ > q1. The

Moser iteration is again utilized to deduce the conclusion. To implement each iteration, we always
chose an ordered pair (31, - , 8x) so that (1 + 81)q1 = (1 + B2)g2 = -+ = (1 + Br)qx. Let
Wj ym = min{|w;|, m}, where m > 0 is a given number. Similar to the proof of Proposition 2.1,
Multiplying the ith equation of (3.1) by (w;m + 1)% — 1 and integrating the resulting equation
over () give

—2s;

(pn \ T w 5 _|_ 1
(/(|wi,m| +1) dx) < Cln, 52 Z/ a1y (lwim] + 1) da
Q

6%+1 / Bi 1 / (1+5_) .
3 7 i,m 1)~ Q i,m 1 Rl .
—|—C’(n,s)(2\r { | fil (|wim| + 1)Pidx + | | Q(|w |4+ 1) dx

Letr; = (H—B@ andt; = %. For j # 1, using Holder’s inequality and Cauchy inequality

yield that

/Q el lws | (wigm] + 1) d < sup [eql[Jw; | pos 1 (wim] + 1) s

(1+8;)9;—Bs

1
1 (1+8;)a; T Bi N a4
< | (1+B4)a;—B; . 1 (1+8:)a:
suplessl 5t ([ ) B ]+ )0

1
(1+ﬁz)(‘11 7
< sup e, 1) ( [t %dw) ( [ il + 1><1+ﬁi>%dx)q .

; < p. Then, we find that

Letp; = ;%5

(14+8;)n n_TQSZ
(/ (|wi | + 1) 725 dfc)
Q

< C(n,Si)(12+\/>§:)2{”cii||Lp,-(Q)(/Q[(‘wﬂ + 1) (|wim] +1)6¢]qidx)

k 1
+ sup ‘Ci,jHQ| i E (/ (|w]| + 1)(1+/81)q1dx)
7 j=ti 7

n—2si7i é
+ [k —14+1Q » %+ HfiHL:Di(Q)] </ (\w@m\ + 1)(1+ﬁ¢)qz'dx) }
Q

Let 7,4, > 0 be the number such that %’g < /g, (1 + B) provided that § > 2;%. Write C

LB TN 21
O, 8i)70u (14 50) [0piy leil| 50— b= 1| 5 Hleall o+ filloi oy
Note that 3; > q’“ for all i whenever f3;, > %= q’“ . By passing the limits as m — oo, we have

s\ k W
(/(\wz\ +1) 2 dx) < C{( g /(\w]] + 1)(1+Bi)Qidx>
Q — |,
J=1
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Let again 0 = (1 + B3;)g; and x = ”25 4> and assume without loss of generality that [€2] > 1,
then
% 0 qek k k
X Cl 2R iR
)< () )5 o)
([ui+ 1) ey > [
where €] = maxj<;<k C(n Sl)’qu,CQ =k— 1+|Q‘ +maX1<Z<k(HCn||LPz(Q)+HfZHLpL )

and c3 = sup; ; |¢i j|r. In view of the fact that (Zizl \azl) < Zi:l la;|t forany 0 < ¢t < 1

and q; € R, we have

(55 fwteear) o5 el ) (35 o 4 100r)

Set O, +1 = X0, and Oy = 2. Then by induction, we have

i 019 7 Ik
Il + Dll oes H( ) [\mcucz}(ZH s+ 1) )

j=0
Since x > 1, there exists m such that 6,,11 > p. Namely, after finite number of iterations, we
find that w; € LP(Q) (1 < i < k). Write that f; = f; + Z;?:L#i ¢, jwj, clearly, f; € LP(Q).
Thus, Proposition 2.1 implies that w; € L>(£2) (1 <14 < k). The proof is completed. O

Lemma 3.1. Let ) C R" be a bounded domain with Lipschitz boundary. Suppose that c; ; €
L®(Q) (1 <4,5 < k). Given f; € L*(Q) (1 < i < k), then the boundary value problem

(—A)Siui + pu; + Z;n:l CijUj = fi mQ (3.2)
w=0 inR"\Q
has a unique weak solution w = (wi,--- ,wy) with w; € Hy'(Q) provided that 1 € R is suffi-

ciently large. In particular, if ¢; ; < 0 whenever i # j and f; > 0 for each i, then w; > 0.

Proof. The existence and uniqueness of a weak solution shall be established via the Lax-Milgram

theorem. To this end, we set

k
X=[[#®
j=1

Y = L*(Q) x --- x L*(Q).
k

Foru = (uy,--- ,ug),and v = (vy,--- ,vg) € Y or X, define

k
(u]v)= Z/ ujv;de,
j=179
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[, ) =) = [ 0,
Q

|z — y|n 2

and ||ul|x = /(u | uw), |ully = /(u | u). Clearly, both X and Y are Hilbert spaces. Now Let
a(u,v) : X x X — R be defined by

a i\ L) — U; Vi) — Uy
a(um:;{?/n/nu) |x<_zjij]‘[n+<2sg W) g+

k
Z/ci,jUjvida:}. (3-3)
j=1"9

It follows from Sobolve embedding inequality and Holder inequality that

la(u, v) + pu | V)| < Cuallullxllvllx,  a(u,w) + plu | u) > Cppllullk

for some constants C, 1 > 0 and C), 2. It is also easy to see that C), o > 0 provided that p is
sufficiently large. Following [16], we let L. : D(L.) — Y be the unbounded linear operator

associated with a(-, -) with a(u,v) = (Lcu | v) for u,v € X. Here
D(L;) ={u € X | v+— a(u,v) is continuous on X in terms of the topology induced by Y'}.

Similarly, we let £. + w1 be the linear operator associated with a(u,v) + p(u | v). Notice that
D(L.) is dense in X. As a matter of fact, C3(Q) x - -- x Ca(Q2) C D(L.). Hence Theorem 3.6

of [16] implies that (L. + pI) has bounded inverse ak; w is sufficiently large. In other words, the
boundary value problem (3.2) has a unique weak solution (L. + uI)~! f, where f € Y. Note
that £, is Fredholm due to the compactness of (L. + uI)~! since X is compactly embedded in
Y. We now proceed to complete the last part of this lemma. Assume that ¢; ; < 0if ¢ # j. Let

¢; = w; , where w; = min{w;,0}. Then

{5 [ L) w0 2 ),
— Ll 2 Jrm |z — y|nt2si
k
,u/ w; |2da — Z /civjiji_da:}
“ j=1gi 7

k k
— _Z { Z/ ci,jwj_wi_d:v—l—/ fiwi_dx}.
i=1 L j=17% Q

In view of the fact that ¢; ; < 0ifi # j, and using the Hélder inequality, we find
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Z{C"SZ /R?n wz]i:xz;’:fwg )] dydﬂﬁ+#/ |wi|2dfﬁ}

1=1
k
< Z{Z/ ‘Ci,ijj_wi_’d:U—/fiwi_dx}
o Lo /e Q
<2&nax ]c”|LooZ/ lw; | dx—Z/flw dx.
Let A\pin, = minj<;<i{As, }, where Ay, is the principal eigenvalue of (—A)* subject to

Dirichlet boundary condition in €, then as long as yt > 2 max;<; j<f | j| oo — Amin, We have

k k
92/ lw; [2dx < —Z/ fiw; dx.
=17/ j=179

Here 0 = p — 2max;<; j<i [Ci j|Lo + Amin- It immediately follows that w;” = 0 (1 < i < k).

The proof is completed. 0

Theorem 3.1. Let L. be defined in Lemma 3.1. Suppose that 2 C R™ is a bounded domain with
o0 € CY, and n > 2sy. Assume that ¢;; € L®() and ¢;j < 0ifi # j. Moreover, there
exists a permutation p1pa - - - pg of {1,--- ,k} for which cppp,,, < 0in Q) (i = 1,--- k — 1),
and cp,p, < 0in S Then L. possesses exactly one real eigenvalue g that is equal to s(L.), where

s(Le) = inf{RX | X\ € o(L.)}. In particular, Xs is a simple eigenvalue. Assume further that
cij = cj; provided thati # j, then A\s = inf,c x ||u| x =1 a(u, u), where a(u, v) is defined by (3.3).

Proof. As shown in the proof of Lemma 3.1, (L. +uJ) ! is positive if  is sufficiently large. Let 7,
be the spectral radius of (L. + pI) ™. To show that r, > 0 provided that y is sufficiently large, let
Y € © C Qbeabounded domain, where © is a compact subset of 2. Let f = (f1,--- , fx) beso
chosen that f; > Oand f; € C.(Q). Writet) = (1, -+ ,¥x) = (Le4pI) L f. Thus, Lemma 3.1
shows that ¢, € H' () and ¢, > 0. Moreover, Proposition 3.1 and Theorem 1.2 of [21] imply
that ¢y, € C%(R™). Note that (—A)%ip,+ci¢0, > 0inQ, and ¥y, = 0in QF, thus, it follows from
the Proposition 2.3 that either ¢); > 0 or ¢; = 0in (2 for each ¢. Due to the assumption, if ¢); = 0
for some i, then v); = O foralli. As f; > 0, we see thatt); > 0in € for all i. Hence there exists § >
0 such that ¢ > 0f, thatis, (L. +pul)~f > 6f,and hence o(L. + uI)~1)\ {0} # @. Then the
Krein-Rutman theorem implies that 1 /r,, — 1 is an eigenvalue of L. with a positive eigenfunction
(¢1,-, ) = 0. Write Ay = 1/7, — p. It follows from the same reasoning as above that
¢; € C%(R™),and (—A)%¢; +Zf:1 Cij0j = As@; in €2, and ¢; = 01in . In particular, ¢; > 0
in Q for all i. Meanwhile, as L, is resolvent positive, 5(L.) is also an eigenvalue of L.. Obviously,
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5(L:) < As. Next we show that s(L£.) = A. To thisend, welet (¢1, -+ , o) € ker(s(L:) I — L),
and assume without loss of generality that 1 (z1) < 0 for some x; € Q. In view of Theorem 1.2
of [21], there exists C' > 0 such that |¢;(z)| < Cd(z,02)% . Now assume to the contrary that
s(L:) < Xs. Note that there exists ¢ > 0 such that t(¢1, -+, ¢x) + (¢1, -+, px) > 0in Q. Let
t=inf{t € RT | t(¢1, -+, Px) + (1, -+ ,x) > 0}. Apparently, > 0 and t¢; + ¢; > 0in Q
for all 7. Notice that

(—A)Si(t(ﬁi + 4,01‘) + [Ci,i — /\s](t(ﬁi + (,OZ‘) >0 inQ, tp;+¢;=0 in R™ \ Q.

It follows from the same reasoning that either (t¢1 + o1, ,tdr + wr) > 0in Q or (t¢1 +
01, torp+ k) = 01in . If the former is true, then Lemma 2.2 implies that ¢¢; (x) + p;(x) >
Bid(z,0€)% in Q for some 3; > 0. Let § = min;<;<x{f;}. Since ¢;(z) < Cd(x,0Q)%, there
exists ¢ € (0, ) for which t'¢;(z) < gd(az, 0N)%. Now let 7 =t — t'. It is clear that 7 € (0,7)
and 7¢; + ¢; > gd(:n, 0N)% for all zz € €, which contradicts the definition of ¢. Consequently,
(o1, yo8) = —t(¢1,- -+, ¢r). However, this also gives rise to a contradiction if s(£.) < As,
which confirms that §(£.) = As. The above argument also shows that no other eigenvalue of £,
has a corresponding positive eigenfunction. In addition, the same argument leads to the fact that
ker(AI — L) = span{(¢1,--- , ¢r)}. To show that ker(\I — L)% = ker(AsI — L), we let L

be the linear operator associated with a*(u, u), where a*(u,u) : X x X — R is given by

¢ uj(z) — u;(y)lvi(@) — v;(y)] :
a*(u,v) nsj/ / it J J 272 dydx + g /c-iuivdaz}.
( { n n |1: — y|n+2S] 1 Q 7 J

Namely, L7 is the adjoint operator of £.. Hence X is an eigenvalue of £}, and there exists a

nonnegative eigenfunction (¢7,-- -, ¢;) of L} corresponding to A\s with ¢ € C*(R"). The
same argument given above implies that ¢ > 0 for each 7. Thus, the Fredholm alternative yields
that ker(AsI — L.)? = ker(AsI — L.). To conclude the proof, we let X' = inf, ¢ v ||y =1 a(u, w)
and show that X = Xg. In light of [9], \ is attained by some w € X, and inf,,c x ||y x =1 @(u, u)
is an eigenvalue of L.. Then, from the fact that a(|w|, |w|) < a(w,w), we infer that |w| is an
eigenfunction associated with inf, ¢ x |y =1 @(u, u). Since A is the only eigenvalue of £. with

positive eigenfunctions, we must have A = inf,,c x |y =1 @(u, u). The proof is completed. [

Thereafter, given ¢ = {c¢; j }1<i j<k with ¢; j € L*°(€2). Suppose that ¢ = {¢; ;}1<; j<i satisfies

the condition given in Theorem 3.1, we shall write

{ (Leu)(2) = (=A)*u; + iy cig(a)uy, @€ Q(1<i <K) 4)

Du := xeR™\ Q.

Let A be given in Theorem 3.1, then )\ is referred to as the principal eigenvalue of {L., D, Q2}.
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Definition 7. Letu = (ug,--- ,ug) € C(Q,R¥)N L
solution of {L, D, Q} if Leu € L>®(Q,R¥), (—A)%u; + Z?:l ciju; > 0in , and u; > 0in
R™\ Qforalli € {1,---,k}. In addition, u is said to be a strict super-solution of {L., D, 2}
provided that u is a (classical) super-solution of {L¢, D, 2} while u is not classical solution of

Lu=0inQandu =0inR™\ Q.

(R™, R¥), w is said to be a classical super-

Definition 8. Let L. and D be defined in (3.4). Then {L.,D,Q} is said to satisfy the strong
maximum principle if u; > 0in Q for each i € {1,---,k} whenever v = (uy,---,u) €

L2 (R™, R*) with u; € C%(Q) for each i is a nontrivial super-solution of {L., D, Q2}.

loc

Theorem 3.2. Assume that Q C R" is a bounded domain and is of class C*. Let {L.,D,Q} be
defined in (3.4). Assume that {c; j}1<; j<k satisfies the condition given in Theorem 3.1. Let \s be
the principal eigenvalue of {L¢, D, 2}. Then the following statements are equivalent

(i) Xs > 0,
(ii) {Lc, D, Q} has a positive strict super-solution u € C(Q, R¥) N L$°

loc (Rn7 Rk)’
(iii) {L¢, D, 1} satisfies the strong maximum principle;

(iv) the linear boundary value problem

(—A)Siui + Z?zl CZ'J‘(:L')U]' = fl in €2, (1 << k‘)
wi=0 inR"\Q

has an unique solution u € X for each f = (f1,- -+, fx) with f; € L?(Y). In particular, u; > 0
for all i provided that f; > 0 foreachi € {1,--- , k}.

Proof. The proof is very similar to the one for Theorem 2.1. We just omit details. O]

Corollary 3.3. Let Q; (i = 1,2) C R" be two bounded open domains with 0Q; € C! such that
Qy C Q. Denote the principal eigenvalues of {L¢, D, §;} by \q,, respectively. Then Aq, < Aq,.
In case that Qp C (1, then Ao, < Aq,. Let A, be the principal eigenvalue of {L¢,,D, 2} with
cr = {cl{j}lfi,jgk and cz{j € L>*(Q);(I = 1,2). Assume that cll,j < c%j. Then A\, < A,
Moreover, if there exist i and j such that cz{ ;s 0127 ; in S, then A; < Ac,.

Proof. In light of theorem 3.2, the proof is the same as the one for Proposition 2.5. The proof is
completed. O]

Corollary 3.4. Suppose that all of the assumptions of Theorem 3.2 are satisfied. Let u € C(R™) N

C*(2) be a strict super-solution of {Lc, D, Q1 }. Then exists a positive constant w, depending only on

n, i, Ci j, such that u > 0 whenever || < w.
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Proof. Let A be the principle eigenvalue of {L., D, Q}. In view of Theorem 3.2, it is sufficient to
show that A > 0if || < w. Let¢ = (1, - - , ¢x) be an eigenfunction corresponding to As with
|l@lly = 1. By virtute of Proposition 2.4 and Theorem 3.1, we find that

k
Cn,si |¢z )| n 57,
s > Z : / |x — ‘n+2s dydx— 21?31); |Cijloe > Z: 25, ngla)ék|cl]’Loo,

where 7 is the positive constant such that |B,(0)| = ||, and K (n,s;) > 0 is a constant only
depending on n and s;. Therefore, there exists w > 0 such that Ay > 0if 0 < r < w. The proof
is completed. O

4 Applications

Proposition4.1. LetQ C R" be a bounded domain with 02 € C'. Suppose that u, v € L2 (R™)N
C*(Q) satisfy

(_A)Su - f(IE,'LL) >02> (_A)S,U - f(.'L',’U), T e Qv
u>0inR" and u>vinR"\ Q.

Here f € C%1(Q x R) satisfies that f(x,0) = 0 for any & € Q. Assume further that t f (z, z)
f(x,tz) in Q foranyt > 1, z > 0, and there exist z' € Q and B,.(z') C Q such thattf(z, 2)
f(z,t2) forany x € B,(z), and anyt > 1, z > 0, wherer > 0. Then u > v in R".

2
>

Proof. The argument is similar to the one adopted in the proof of Theorem 2.1. We shall give a
sketch. Let (u — v)(29) = min, g(u — v)(z). Again we need to show that (u — v)(zg) > 0.
Note that (u — v)(z) > Oforallz € R"\ Qand u — v € C*(Q). Hence, there exists £ > 0 for
which (u — v)(z) > —kd(x,00)* for all x € €. On the other hand, the assumptions show that
(—=A)u+ L ( [ew)y > 04n Q and u > 0. Therefore, Lemma 2.2 implies that there is 5 > 0 for
which u > Bd(x, 00Q)° for all x € €. Now assume that the desired conclusion is not true, that is,
(u—v)(zg) < 0. Then, as the proof of Theorem 2.1, let ¢ = inf{t € R | (¢t + 1)u(z) — v(z) >
0 in Q}. Clearly, £ > 0. Write w = (£ + 1)u — v. Due the assumptions made on f, there holds
flz, (t+ Du) — f(x,v)

(=A) 4+ Du— flz, (t+Du) 20, (=4)w - Tibu_os V30 zef

Consequently, there exists ¥ > 0 such that ( + 1)u — v > ~d(z,99Q)* for all z € . Hence
the rest proof follows from the same reasoning given in the proof of Theorem 2.1. The proof is

completed. O
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Theorem 4.1. Suppose that all the assumptions of Proposition 4.1 on ) and f are satisfied. Assume
further that f € CO1T(Q xR) for some a € (0, 1), and there exists M > 0 for which f(z,u) < 0
forall x € Q whenever u > M. Let \s be the principle eigenvalue of { L., D, 2}, where c(x) =
—f2(x,0). Then the following boundary value problem

{ (—A)u = f(z,u), z€Q

(4.1)
u=0, ze€R"\Q

has an unique nontrivial bounded positive solution if and only if A\s < 0. Here 0 < s < 1.

Proof. We first prove the only if part by an old trick. Let u € L°({2) be the positive solution, and
let ¢ be a positive eigenfunction associated with ;. Now multiplying the both sides of (4.1) by ¢

and integrating resulting equation over 2 yield that
0= [ [(=A)'up — f(a,u)plds
= [ lu=aye = fauyelds

:/Q{)\S—i— [fz(x,o)—f(“;“)”wdm.

Notice that u, ¢ > 0in €, and f,(z,0) > f(z,u)/u in 2. In particular, the assumption implies
that there exist a 2’ € 2 and an open neighborhood B, (z’) of 2’ such that f,(z,0) > f(z,u)/u
for all z € B,/(2'). Consequently, A\s < 0. We now proceed to show that (4.1) has a bounded
positive solution provided that \; < 0. Since f(x,typ) — tf,(x,0)p = (fol fa(x, Tto)dr —
fz(x,0))ty, there exists t; > 0, which is sufficiently small such that f(z,t1¢) > t1f.(x,0)p +
%tlgo and t1p < M. Thus, (—A)’t1o — f(x,t19) <0inQand t1p = 0in R™ \ Q.

Nowset X = {u € C(R") [u=0inR*"\ Q},and Y = {u € C(2) | w = 0 on 0N}.
Let J : X — Y be given by Ju := ulg. Clearly, J is a linear bijection. Given h € Y, we let
u = (—A)* + pI)~1h be the unique (weak) solution of

{ (~Ayutpu=h, we®, (4.2)

u=0, zeR"\Q

Here p > 0 is a constant. In view of Proposition 1.1 of [21], (—A)® + pI)~'h € C*(R")isalso a
classic solution of (4.2). Next we let 7 : X — X be defined by Fu := (—A)® + pl) " F(z, Ju),
where F(x,z) = pz + f(x, z). We now show that F is continuous and compact. In fact, given
that hy, he € X, assume without loss of generality that ||h; — ha||x < 1, and ||| < M, it

follows from Theorem 2.1 that

[Fhi — Fhallp20) < Cpl|F(x, Jh1) — F(z, Jha)| L2() < Clp, f, M)||h1 — he| x.
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Note that (—A)*(Fhy — Fha) 4+ p(Fh1 — Fha) = F(x,h1) — F(x, ha). It follows from Propo-
sition 2.1 and Proposition 1.1 of [21] that

[ Fh1 — Fhallcs@ny < C'(p, £, M, Q)||h1 — ha||x.

Therefore, F is continuous. In case that hy = 0, for any h € X with ||h||x < M, It is clear that
| Fhllcs@ny < C'(p, f, M, Q) M. Hence Ascoli-Arzela theorem implies that F is also compact.
Nextwelet X, ps := {u € X | tip < u < M}. Apparently, X, a/ isa close and convex subspace
of X. Let p be sufficiently large such that p > L(M), where L(M) is the Lipschitz constant for
f(z,z) over z € [0, M]. Then F'(z, z) is non-decreasing in z. Thanks to the fact that

(_A)Stlgo +p(t190) < F(‘/Eatl(p)v T € (), (_A)SM + pM > F(.T,M), z €,

from Theorem 2.1, we infer that t1¢o < Fh < M aslongas h € X, . Thus, it follows from
Schauder’s fixed point theorem that 7 has a fixed point in X, ;. Namely, (4.1) has a solution
in X, ps. We now proceed to show the uniqueness of the bounded positive solution of (4.1).
Let u; and u; be two bounded positive classic solutions of (4.1), in view of Proposition 4.1, by
interchanging the role of u; and us as a super-solution and a sub-solution, we find that u; = wus.

The proof is completed. O

Theorem 4.2. Let Q@ C R"™ be a bounded domain with 9 € CL. Let f = (f1,---,fx) €
CO2+e(Qy x RF, RF) satisfies that f(x,0) = 0 forallz € Q. Given z = (21, ,21), let
¢ij(x,2) = —0;fi, where 0;fi(x, 2) stands for the partial derivative of f; with respect to z;.
Suppose that there exist k positive constants M; (1 < i < k) such that ¢; j(x,z) < 0 for
any (z,z) € Q x Hle[(), M;] and i # j. Moreover, there exist a permutation pips - - - p of
{1,--- ,k} and subsets Qp,p,, ., (1 <i < k—1)andQy, p, suchthat ., <0 forany (z,z) €
Qpipis X Hle[O, M;), and cp,p, < O forany (x,z) € Qpp, X Hle[O,Mi). In particular,
cij(2,0) < ¢ j(w, 2) forall (z,2) € Q x Hle[o, M), and there exist some i, j and x1 € Q such
that ¢; j(x,0) < ¢; ;(z, z) for any x € By, (x1) X Hle((), M;], where r1 > 0 and By, (x2) C L.
Assume further that for each i, f; < 0 whenever (z1,--- , 2~ ,2,) > (0,--+,M;,---0). Let
0 <s <11 < i< k). Suppose that 2min << s; > maxj<i<i S;. Ihen the following

boundary value problem

Ay = f: 9]
(&) = filww), e s
w=0, z€R"\Q
has a bounded positive solution u with uw = (u1,-- - ,ug) and u; € [0, M;] if and only if As < 0.

Here ) is the principal eigenvalue of {L¢, D, Q} with ¢ = {c¢; j(x,0) }i<i j<k-
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Proof. We first prove the non-existence of a bounded positive solution u with u; € [0, M;] pro-
vided that A¢ > 0. Assume to the contrary that (4.3) has a bounded positive solution u with

€ [0, M;] when A\ > 0. Then Proposition 1.1 of [21] implies that u; € C% (R"). Letz* € Q) be
a point such that u;(2°) = max,egrn u; (), then we see that 0 < (—A)%u;(2?) = fi(2?, u(x?))
unless u;(z) = 0 for all z € R". Thus, the assumption implies that 0 < wu;(x) < u;(2%) < M;

for each 4. In addition, since f(x,0) = 0, we have

1 k
Gij(z) = —/0 Ojfi(z, tur (), -, tug(z))dt, (—A)%u; + Z'cvi,j(m)uj =0, ze
—

Hence the assumption shows that u;(z) > 0 in €2 for each 4, and consequently, 0 is the principal
eigenvalue of {Lz, D, Q}. Here ¢ = {¢; j }1<i j<k- Due to the assumption, ¢; j(x) > ¢; ;(x, 0) for
1 <i,7 < k. Moreover, it is easy to see that

1
Gusle) = (.00 2 [ [0,6:,0) = 0 i, tun o).+ tug () .
2

In view of the assumption, there exist some ¢, j such that ¢; j(x) > ¢; j(x,0) in §2. It then follows
from Corollary 3.3 that Ay < 0, which is a contradiction. We now proceed to show the existence
of a bounded positive solution to (4.3) given that Ay < 0. The argument is almost the same as the
one for Theorem 4.1. Only a sketch is needed. Let ¢ = (1, - - - , @) be a positive eigenfunction
for A with |p|re = 1. Note that (—A)%p; + c;i(x,0)p; > 01in €, it follows from Lemma
2.2 that p; > [;d% (z,00) for some 3; > 0, where d* (z) = d*(x,0). Meanwhile, since

€ C%(R") and ¢; = 0 in Q°. there exists C; > 0 for which p; < C;d% (z). Given t € (0,1),
for each x € (2, applying Taylor®s formula gives

|fiz, tp) — Zaflx()t%l—

S P / — )05, fi(, 01)]d6

T,j=1
< Z [mt%j%] ,
T,j=1
where 7; = max;<,, jgk{sup( 2,2)€0x[0,1]F |0-0; fi|}. In view of the assumption, we may assume

without loss of generality that 0 < 53 < s9--- < 's; < -+ < 5,50 251 > 5p, and we have

k 2 Sr+S;
it ‘ CrC;d %
0 mZm_l Prei tmz =1 (z)

ty; o 5@ ds ( )

Since forany i, j,7 € {1,--- ,k}, s +5; > 251 > 51, > s, it follows that

C,C dsr+si
i th =1 (z)

lim By () =0 uniformly in Q.
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Thus, there exists t; > 0 sufficiently small such that f;(x,t1¢) > t; Z;?:l 0;fi(x,0)p; +t1%goi
in Q, and t;1; < M; for each i. Namely, (—A)%t19; — fi(x,t1p) < 0in Q for each i. On
the other hand, we have (—A)%M; — fi(x, My,--- , M) > 0in Q for each i. Now let F :
Hle X; — Hle X be defined by

Fu = ((—A)* + pI) ' Fy(z, Ju), -, (—A)% + pI) " Fy(x, Ju),
- (A 4 pI) Ty, Ju)),

where X; = X, which is specified in the proof of Theorem 4.1, and .J is the linear bijection given
in the proof of Theorem 4.1. In addition, F;(x, z) = pz; + fi(x, z), and

> max su 0i fil.

e (:c7z)€§><HIZ€:1[O,Mi] o1
Clearly, F;(x, z) is nondecreasing in z. The same argument as that given in the proof of Theorem
4.1 yields that F is continuous and compact. Moreover, t1o < Fh < M aslongash € =, ur,
where =, s = {u € Hle Xiltipr <wuy < M;, 1 <i<k},and M = (My,---,My). Thus,
Schauder’s fixed point theorem shows that (4.3) has a solution u with 0 < w; < M;. The proof is
completed. O

The assumption of Theorem 4.2 on s; seems to be a bit restrictive, and could be relaxed via
degree theory approach and should be dealt with in the near future. Nonetheless, it always holds
if s; € [5,1) for all i. Theorem 4.2 may be used to study the existence and non-existence of

non-negative equilibria of a nonlocal Ross-Macdonald model as follows:

wi + (=A)51w = a(x)b(z)m(x)(1 — w)v —r(z)w, (t,z) € RT x Q,
v + (—A)20 = a(z)c(x)(1 —v)w — ro(z)v, (t,z) € RT x Q,
w=v=0, (t,z)eRT xQ°.

Herea > 0,0 > 0,c¢ > 0;m > 0,71 > 0,and ro > 0in 2. The biological meanings of these
parameters can be found in [25], w and v are the density of infected vectors and the density of
infectious mosquitoes at (¢, z), respectively. Suppose that 0 < s; < 1 (i = 1,2), and either
281 > S2,51 < sg0or2s9 > 51,82 < s1. Then all of the assumptions of Theorem 4.2 on f and s;

are satisfied. Let \s be the principal eigenvalue of {L, D, 2}, where L. is given by
Lo(w,v) = ((—A)"'w + rw — abmuv, (—A)*v + rov — acw).

Then Theorem 4.2 suggests that A\ plays a role analogous to that of basic reproduction num-
ber, a crucial threshold in the Ross-Macdonald theory of mosquito-borne pathogen transmission.
Thanks to Corollary 3.4, \s > 0 if || is sufficiently small. Hence, a plausible biological implica-
tion of Theorem 4.2 is that spatial environments of small size can not sustain disease spreading

since 0 is the only non-negative equilibrium in [0, 1] x [0, 1], which is linearly stable.
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