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INEQUALITIES FOR TERMINAL VALUE PROBLEMS

FOR DIFFERENTIAL EQUATIONS

S. B. PACHPATTE AND B. G. PACHPATTE

Abstract. The aim of the present paper is to establish some new integral inequalities which

provide explicit bounds on unknown functions. The inequalities given here can be used as handy

tools in the study of terminal value problems for certain di�erential equations.

1. Introduction

The classical integral inequalities which give explicit bounds for an unknown func-

tion have played a foundamental role in establishing the foundations of the theory of

di�erential and integral equations. Integral inequalities of the Gronwall-Bellman type

are frequently used in various contexts. Over the years several such inequalities have

been developed and used considerably to study the various problems in the theory of

di�erential and integral equations, see [1,2] and the references therein. In the present

paper, we o�er some fundamental integral inequalities, which can be used as tools in the

analysis of terminal value problems for certain di�erental equations.

2. Main Results

In what follows, we donote by R the set of real numbers and R+ = [0;1). We assume

that all the integrals involved throughout the discussion exist on the respective domains

of their de�nitions.

An interesting and useful integral inequality is established in the following theorem.

Theorem 1. Let u(t); a(t); b(t) be real-valued nonnegative continuous functions de-

�ned for t 2 R+ and suppose that a(t) is nonincreasing for t 2 R+. If

u(t) � a(t) +

Z
1

t

b(s)u(s)ds; (2.1)
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for t 2 R+, then

u(t) � a(t) exp

�Z
1

t

b(s)ds

�
; (2.2)

for t 2 R+.

Proof. First we assume that a(t) > 0 for t 2 R+. From (2.1) it is easy to observe

that
u(t)

a(t)
� 1 +

Z
1

t

b(s)
u(s)

a(s)
ds: (2.3)

De�ne a function z(t) by the right side of (2.3), then z(1) = 1,
u(t)

a(t)
� z(t) and

z0(t) = �b(t)
u(t)

a(t)
� �b(t)z(t): (2.4)

The inequality (2.4) implies the estimate

z(t) � exp

�Z
1

t

b(s)ds

�
: (2.5)

Using (2.5) in
u(t)

a(t)
� z(t), we get the desired inequality in (2.2).

If a(t) is nonnegative, we carry out the above procedure with a(t) + � instead of a(t),

where � > 0 is an arbitrary small constant, and subsequently pass to the limit as �! 0

to obtain (2.2).

We next establish the following inequality which can be used in more general situa-

tions.

Theorem 2. Let u(t), a(t), b(t), be as in Theorem 1 and L : R2
+ ! R+ be a

continuous function which satis�es the condition

0 � L(t; u)� L(t; v) �M(t; v)(u� v);

for u � v � 0, where M(t; v) is a real-valued nonnegative continuous function de�ned for

t; v 2 R+. If

u(t) � a(t) +

Z
1

t

b(s)u(s)ds+

Z
1

t

L(s; u(s))ds; (2.6)

for t 2 R+, then

u(t) � E(t)

�
a(t) +A(t) exp

�Z
1

t

M(s; E(s)a(s))E(s)ds

��
; (2.7)
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for t 2 R+, where

E(t) = exp

�Z
1

t

b(s)ds

�
; (2.8)

A(t) =

Z
1

t

L(s; E(s)a(s))ds; (2.9)

for t 2 R+.

Proof. De�ne a function z(t) by

z(t) =

Z
1

t

L(s; u(s))ds; (2.10)

then (2.6) can be restated as

u(t) � a(t) + z(t) +

Z
1

t

b(s)u(s)ds: (2.11)

Since a(t) + z(t) is nonnegative, continuous and nonincreasing for t 2 R+, by applying

Theorem 1 to (2.11) we have

u(t) � (a(t) + z(t))E(t): (2.12)

From (2.10) and (2.12) and the hypotheses on L, we observe that

z(t) �

Z
1

t

[L(s; E(s)a(s) +E(s)z(s))� L(s; E(s)a(s)) + L(s; E(s)a(s))]ds

� A(t) +

Z
1

t

M(s; E(s)a(s))E(s)z(s)ds: (2.13)

Clearly, A(t) is nonnegative, continuous and nonincreasing for t 2 R+. Now an applica-

tion of Theorem 1 to (2.13) yields

z(t) � A(t) exp

�Z
1

t

M(s; E(s)a(s))E(s)ds

�
: (2.14)

Using (2.14) in (2.12) we get the required inequality in (2.7).

The inequalities established in the following theorems can be used in certain applica-

tions.

Theorem 3. Let u(t); a(t), b(t) be real-valued nonnegative continuous functions

de�ned for t 2 R+ and L;M be as in Theorem 2. If

u(t) � a(t) + b(t)

Z
1

t

L(s; u(s))ds; (2.15)
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for t 2 R+, then

u(t) � a(t) + b(t)e(t) exp

�Z
1

t

M(s; a(s))b(s)ds

�
; (2.16)

for t 2 R+, where

e(t) =

Z
1

t

L(s; a(s))ds; (2.17)

for t 2 R+.

Proof. De�ne a function z(t) by (2.10). Then from (2.15),

we have

u(t) � a(t) + b(t)z(t): (2.18)

From (2.10), (2.18) and the hypotheses on L, we observe that

z(t) �

Z
1

t

[L(s; a(s) + b(s)z(s))� L(s; a(s)) + L(s; a(s))]ds

� e(t) +

Z
1

t

M(s; a(s))b(s)z(s)ds; (2.19)

where e(t) is de�ned by (2.17). Clearly e(t) is real-valued nonnegative, continuous and

nonincreasing in t 2 R+. An application of Theorem 1 to (2.19) yields

z(t) � e(t) exp

�Z
1

t

M(s; a(s))b(s)ds

�
: (2.20)

The desired inequality in (2.16) follows from (2.18) and (2.20).

Theorem 4. Let u(t), a(t), b(t) be as in Theorem 3 and L : R2
+ ! R+ be a continuous

function which satis�es the condition

0 � L(t; u)� L(t; v) �M(t; v)��1(u� v);

for u � v � 0, where M(t; v) is de�ned as in Theorem 2, � : R+ ! R+ be a continuous

and strictly increasing function with �(0) = 0, ��1 is the inverse function of � and

��1(uv) � ��1(u)��1(v);

for u; v 2 R+. If

u(t) � a(t) + b(t)�

�Z
1

t

L(s; u(s))ds

�
; (2.21)

for t 2 R+, then

u(t) � a(t) + b(t)�

�
e(t) exp

�Z
1

t

M(s; a(s))��1(b(s))ds

��
; (2.22)
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for t 2 R+, where e(t) is de�ned by (2.17).

Proof. De�ne a function z(t) by (2.10), then from (2.21)

we have

u(t) � a(t) + b(t)�(z(t)): (2.23)

From (2.10), (2.23) and the hypotheses on L and �, it is easy to observe that

z(t) �

Z
1

t

[L(s; a(s) + b(s)�(z(s))) � L(s; a(s)) + L(s; a(s))]ds

� e(t) +

Z
1

t

M(s; a(s))��1(b(s))�(z(s))ds

� e(t) +

Z
1

t

M(s; a(s))��1(b(s))z(s)ds;

where e(t) is de�ned by (2.17). Now by following the last arguments as in the proof of

Theorem 3, we get the required inequality in (2.22).

3. Two Independent Variable Generalizations

In this section, we establish two independent variable versions of Theorems 1-4, which

can be used as tools in the study of terminal value problems for certain hyperbolic partial

di�erential equations.

The following result is the two independent variable version of the inequality given

in Theorem 1.

Theorem 5. Let u(x; y), a(x; y). b(x; y) be real-valued nonnegative continuous func-

tions de�ned for x; y 2 R+ and suppose that a(x; y) is nonincreasing in x; y 2 R+. If

u(x; y) � a(x; y) +

Z
1

x

Z
1

y

b(s; t)u(s; t)dtds; (3.1)

for x; y 2 R+, then

u(x; y) � a(x; y) exp

�Z
1

x

Z
1

y

b(s; t)dtds

�
; (3.2)

for x; y 2 R+.

Proof. First we assume that a(x; y) > 0 for x; y 2 R+. From (3.1) it is easy to

observe that
u(x; y)

a(x; y)
� 1 +

Z
1

x

Z
1

y

b(s; t)
u(s; t)

a(s; t)
dtds: (3.3)

De�ne a function z(x; y) by the right side of (3.3). Then z(x;1) = z(1; y) = 1,
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u(x; y)

a(x; y)
� z(x; y) and zxy(x; y) = b(x; y)

u(x; y)

a(x; y)
� b(x; y)z(x; y).

The rest of the proof can be completed by following the proof of Theorem 4.2.1 give in [2,

p. 324] with suitable changes and closely looking at the proof of Theorem 1 given above.

We next establish the two independent variable versions of the Theorems 2-4, whose

proofs follows by colosely looking at the proofs of Theorems 2-4, and making use of

Theorem 5.

Theorem 6. Let u(x; y), a(x; y), b(x; y) be as in Theorem 5 and L : R3
+ ! R+ be a

continuous function which satis�es the condition

0 � L(x; y; u)� L(x; y; v) �M(x; y; v)(u� v);

for u � v � 0, where M(x; y; v) is a real-valued nonnegative continuous function de�ned

for x; y; v 2 R+. If

u(x; y) � a(x; y) +

Z
1

x

Z
1

y

b(s; t)u(s; t)dtds+

Z
1

x

Z
1

y

L(s; t; u(s; t))dtds; (3.4)

for x; y 2 R+, then

u(x; y) � F (x; y)

�
a(x; y) + B(x; y) exp

�Z
1

x

Z
1

y

M(s; t; F (s; t)a(s; t))

�
F (s; t)dtds

�
;

(3.5)

for x; y 2 R+, where

F (x; y) = exp

�Z
1

x

Z
1

y

b(s; t)dtds

�
; (3.6)

B(x; y) =

Z
1

x

Z
1

y

L(s; t; F (s; t)a(s; t))dtds; (3.7)

for x; y 2 R+

Theorem 7. Let u(x; y), a(x; y), b(x; y) be real-valued, nonnegative and continuous

functions de�ned for x; y 2 R+ and L, M be as in Theorem 6. If

u(x; y) � a(x; y) + b(x; y)

Z
1

x

Z
1

y

L(s; t; u(s; t))dtds; (3.8)

for x; y 2 R+, then

u(x; y) � a(x; y) + b(x; y)f(x; y) exp

�Z
1

x

Z
1

y

M(s; t; a(s; t))b(s; t)dtds

�
; (3.9)
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for x; y 2 R+, where

f(x; y) =

Z
1

x

Z
1

y

L(s; t; a(s; t))dtds; (3.10)

for x; y 2 R+.

Theorem 8. Let u(x; y), a(x; y), b(x; y) be as in Theorem 7 and L : R3
+ ! R+ be a

continuous function wich satis�es the condition

0 � L(x; y; u)� L(x; y; v) �M(x; y; v) �1(u� v);

for u � v � 0, where M(x; y; v) is as de�ned in Theorem 6,  : R+ ! R+ is a continuous

and strictly increasing function with  (0) = 0,  �1 is the inverse function of  and

 �1(uv) �  �1(u) �1(v), for u; v 2 R+. If

u(x; y) � a(x; y) + b(x; y) 

�Z
1

x

Z
1

y

L(s; t; u(x; y))dtds

�
; (3.11)

for x; y 2 R+, then

u(x; y) � a(x; y) + b(x; y) 

�
f(x; y) exp

�Z
1

x

Z
1

y

M(s; t; a(s; t)) �1(b(s; t))

�
dtds

�
;

(3.12)

for x; y 2 R+, where f(x; y) is de�ned by (3.10).

4. Applications to Terminal Value Problems

In this section, we present some immediate applications of Theorem 1 to study certain

properties of solutions of the following terminal value problem for di�erential equation

u0(t) = f(t; u(t)) + p(t); (P )

u(1) = u1; (P1)

where f : R+ �R! R, p : R+ ! R are continuous functions and u1 2 R.

The following theorem deals with the estimate on the solution of problem (P )-(P1).

Theorem 9. Suppose that

jf(t; u)j � b(t)juj; (4.1)

ju1 �Q(t)j � a(t); (4.2)

where a(t); b(t) are as de�ned in Theorem 1 and Q(t) =
R
1

t
p(s)ds.

If u(t) is a solution of (P )-(P1), then

ju(t)j � a(t) exp

�Z
1

t

b(s)ds

�
; (4.3)
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for t 2 R+.

Proof. If u(t) is a solution of (P )-(P1), then it can be written as (see [1, p. 80])

u(t) = u1 �

Z
1

t

[f(s; u(s)) + p(s)]ds; (4.4)

for t 2 R+. From (4.4), (4.1), (4.2), we observe that

ju(t)j � a(t) +

Z
1

t

b(s)ju(s)jds: (4.5)

Now an application of Theorem 1 to (4.5) yields the required estimate in (4.3).

Next we shall prove the uniqueness of the solutions of problem (P )-(P1).

Theorem 10. Suppose that the function f in (P ) satis�es the condition

jf(t; u)� f(t; v)j � b(t)ju� vj; (4.6)

where b(t) is de�ned as in Theorem 1. Then the problem (P )-(P1) has at most one

solution on R+.

Proof. The problem (P )-(P1) is equivalent to the integral equation (4.4). Let u(t)

and v(t) be two solutions of (P )-(P1) on R+. From (4.4) and (4.6) we have

ju(t)� v(t)j �

Z
1

t

b(s)ju(s)� v(s)jds: (4.7)

Now an application of Theorem 1 to (4.7) yields u(t) = v(t) i.e. there is at most one

solution of the problem (P )-(P1).

Our next result shows the dependency of solutions of (P )-(P1) on terminal values.

Theorem 11. Let u1(t) and u2(t) be the solutions of (P ) with the given terminal

conditions

u1(1) = u11; (P11)

and

u2(1) = u21; (P21)

respectively, where u11, u21 2 R. Suppose that the function f in (P ) satis�es the

condition (4.6) in Theorem 10. Then

ju1(t)� u2(t)j � ju11 � u21j exp

�Z
1

t

b(s)ds

�
; (4.8)

for t 2 R+.
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Proof. By using the facts that u1(t) and u2(t) are the solutions of (P )-(P11) and

(P )-(P21) respectively, we have

u1(t)� u2(t) = u11 � u21 �

Z
1

t

[f(s; u1(s))� f(s; u2(s))]ds: (4.9)

From (4.9), (4.6), we have

ju1(t)� u2(t)j � ju11 � u21j+

Z
1

t

b(s)ju1(s)� u2(s)jds: (4.10)

Now an application of Theorem 1 to (4.10) yields the required estimate in (4.8).

We next consider the following di�erential equations

u0(t) = f(t; u(t); �); (4.11)

u0(t) = f(t; u(t); �0); (4.12)

with the given terminal value condition (P1), where f : R+ � R2
! R is a continuous

function and �; �0 are real parameters.

The following theorem shows the dependency of soutions of (4.11)-(P1) and (4.12)-

(P1) on pure paremters.

Theorem 12. Suppose that the function f satis�es the conditions

jf(t; u; �)� f(t; v; �)j � b(t)ju� vj; (4.13)

jf(t; u; �)� f(t; u; �0)j � c(t)j�� �0j; (4.14)

where b(t), c(t) : R+ ! R+ are continuous functions. If u1(t) and u2(t) are the solutions

of (4.11)-(P1) and (4.12)-(P1) for t 2 R+ respectively, then

ju1(t)� u2(t)j � B(t) exp

�Z
1

t

b(s)ds

�
; (4.15)

for t 2 R+, where

B(t) = j�� �0j

Z
1

t

c(s)ds; (4.16)

for t 2 R+.

Proof. Let z(t) = u1(t) � u2(t), t 2 R+. As in the proof of Theorem 11, from the

hypotheses, we observe that

z(t) =

Z
1

t

[f(s; u1(s); �)� f(s; u2(s); �) + f(s; u2(s); �)� f(s; u2(s); �0)]ds

� B(t) +

Z
1

t

b(s)jz(s)jds; (4.17)
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where B(t) is de�ned by (4.16). Clearly B(t) is nonnegative, continuous and nonincreas-

ing for t 2 R+. Now an application of Theorem 1 to (4.17) yields the required estimate

in (4.15).

In concluding, we note that the inequality given in Theorem 5 can be used to study

the similar properties as in Theorems 9-12 for the terminal value problem for hyperbolic

partial di�erential equation of the form

uxy(x; y) = f(x; y; u(x; y)) + p(x; y); (H)

u(x;1) = �1(x); u(1; y) = �1(y); u(1;1) = k; (H1)

where f : R2
+ � R ! R, �1, �1 : R+ ! R are continuous functions and k is a real

constant, under some suitable conditions on the functions involved in (H)-(H1) and the

constank k. Since the details of these results are very close to those given above, we omit

it here. Various applications of the other inequalities will be reported elsewhere.
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