
TAMKANG JOURNAL OF MATHEMATICS
Volume 52, Number 4, 445-451, December 2021
DOI:10.5556/j.tkjm.52.2021.3233

-
+

+
--
-

-
-

Submanifolds of SasakianManifolds with Concurrent
Vector Field

Pradip Mandal, Yadab Chandra Mandal and Shyamal Kumar Hui

Abstract. The submanifolds of Sasakian manifolds with a concurrent vector field have been
studied. Applications of such submanifolds to Ricci solitons and Yamabe solitons has also
been showed.

1 Introduction

Sasakian manifold M̄ is a (2n+ 1)-dimensional almost contact metric manifold such that [1]

(∇̄Xϕ)Y = g(X,Y )ξ − η(Y )X, (1.1)

∇̄Xξ = −ϕX, (1.2)

where (ϕ, ξ, η, g) is the almost contact metric structure and ∇̄ is the Riemannian connection on
M̄ . A vector fieldX on M̄ is said to be conformal if

LXg = 2αg, (1.3)

where α ∈ C∞(M̄) and LX denotes the Lie derivative alongX . In particular, if α = 0 thenX is
Killing. AndX is said to be concurrent if

∇̄ZX = Z (1.4)

for any Z ∈ χ(M̄).

Let M be an m-dimensional submanifold of M̄ . A Ricci soliton on M is a triplet (g,W, σ)

such that [12]
LW g + 2S + 2σg = 0, (1.5)
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where S is the Ricci tensor onM ,W is the potential vector field and σ ∈ R. An Yamabe soliton
onM is a triplet (g,W, λ) such that

1

2
LW g = (r − λ)g, (1.6)

where r is the scalar curvature onM and λ ∈ R. If the dimension ofM is 2 then the notions of
Ricci soliton and Yamabe soliton are equivalent. However, when the dimension of M is greater
than 2, they are different.

Chen and his co-author studied Euclidean submanifold whose canonical vector field are con-
current [4], concircular [11], conformal [10], torse-forming [9] and also in ([3], [5], [6]). Ricci
soliton and Yamabe soliton whose canonical vector field are concurrent and conformal studied in
([2], [7], [8]).

The object of the present paper is to study of submanifolds of Sasakian manifolds with con-
current vector field. We also apply such submanifolds to Ricci solitons and Yamabe solitons.

2 Preliminaries

An odd dimensional smooth manifold M̄2n+1 is said to be an almost contact metric manifold if
the following relations hold: [1]

ϕ2X = −X + η(X)ξ, ϕξ = 0, (2.1)

g(X, ξ) = η(X), ϕ ◦ η = 0, (2.2)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ) (2.3)

for allX , Y ∈ χ(M̄), where ϕ is a tensor of type (1, 1), ξ is a vector field, η is an 1-form and g is
a Riemannian metric on M̄ .

Let∇ and∇⊥ be the induced connections on the tangent bundleTM and the normal bundle
T⊥M ofM , respectively. Then we have

∇̄XY = ∇XY + h(X,Y ), (2.4)

∇̄XV = −AV X +∇⊥
XV, (2.5)

where h andAV are second fundamental form and shape operator respectively for the immersion
ofM into M̄ and they are related by the following equation, see [13]

g(h(X,Y ), V ) = g(AV X,Y ) (2.6)
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for anyX,Y ∈ Γ(TM) and V ∈ Γ(T⊥M). If h = 0, thenM is said to be totally geodesic.
Let {ei : 1 ≤ i ≤ m} be an orthonormal basis to the tangent space at any point ofM . Then the
mean curvature ofM is

H =
1

m

m∑
i=1

h(ei, ei). (2.7)

AndM is said to be totally umbilical if

h(X,Y ) = g(X,Y )H. (2.8)

AgainM is said to be umbilical with respect to V ∈ T⊥M if

g(h(X,Y ), V ) = µg(X,Y ) (2.9)

for some function µ. In particular if g(h(X,Y ),H) = µg(X,Y ) holds then M is said to be
pseudo-umbilical. Consider

ϕX = PX + FX, (2.10)

where PX and FX are the tangential and normal components of ϕX . AndM is called general-
ized self-similar submanifold of M̄ if

FX = fH, (2.11)

where f ∈ C∞(M).

3 Results

We now prove the followings:

Theorem 3.1. LetM be a submanifold of M̄ with a concurrent vector fieldX such that ξ is normal
toM . Then PX is conformal if and only ifM is umbilical with respect to FX .

Proof. SinceX is concurrent vector field of M̄ , we have from (1.4) that

ϕZ = ϕ∇̄ZX (3.1)

= ∇̄ZϕX − (∇̄Zϕ)X.

Using (1.1), (2.4), (2.5) and (2.10) in (3.1) we have

PZ + FZ = ∇̄Z(PX + FX)− g(X,Z)ξ (3.2)

= ∇ZPX + h(Z,PX) +∇⊥
ZFX −AFXZ − g(X,Z)ξ
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Comparing the tangential component of (3.2) we have

∇ZPX = PZ +AFXZ. (3.3)

Now we have

(LPXg)(Y, Z) (3.4)

= g(∇Y PX,Z) + g(Y,∇ZPX)

= g(PY +AFXY, Z) + g(Y, PZ +AFXZ)

= g(AFXY, Z) + g(AFXZ, Y ).

Using (2.6) in (3.4) we have

(LPXg)(Y, Z) = 2g(h(Y, Z), FX). (3.5)

Suppose PX is conformal. Then from (1.3) and (3.5) we have

g(h(Y, Z), FX) = αg(Y, Z), (3.6)

which implies thatM is umbilical with respect to FX .

Conversely, assume that M is umbilical with respect to FX . Then from (2.9) and (3.5) we
have

(LPXg)(Y, Z) = 2µg(Y, Z), (3.7)

which means that PX is conformal.

Theorem 3.2. LetM be a submanifold of M̄ with a concurrent vector fieldX . ThenX is a homo-
thetic vector field.

Proof. SinceX is a concurrent vector field, so we have from (1.4) and (2.4) that

∇ZX + h(X,Z) = Z. (3.8)

Equating tangential and normal components of (3.8) we get

∇ZX = Z, h(X,Z) = 0. (3.9)

Now we have

(LXg)(Y, Z) = g(∇Y X,Z) + g(Y,∇ZX). (3.10)

Using (3.9) in (3.10) we have
(LXg)(Y, Z) = 2g(Y, Z), (3.11)

which implies that X is conformal vector field of M with constant function α = 1, i.e. X is
homothetic.
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Theorem 3.3. LetM be a submanifold of M̄ with a concurrent vector fieldX . If (g,X, σ) is a Ricci
soliton onM thenM is Einstein and such a soliton is shrinking.

Proof. Since (g,X, σ) is a Ricci soliton on M , we have the equation (1.5). Using (3.11) in (1.5)
we get S(Y, Z) = −(σ + 1)g(Y, Z), which implies thatM is Einstein.
By virtue of (3.9) we get

R(Y, Z)X = ∇Y ∇ZX −∇Z∇Y X −∇[Y,Z]X = 0,

and hence S(Y,X) = 0. So, σ + 1 = 0, i.e., σ = −1. Hence the given Ricci soliton is shrinking.

Theorem 3.4. Let M be a submanifold of M̄ with a concurrent vector field X . If (g,X, λ) is an
Yamabe soliton onM then such soliton is shrinking, steady and expanding according as r < 1, r = 1

and r > 1 respectively.

Proof. Since (g,X, λ) is an Yamabe soliton on M , we have the equation (1.6). Using (3.11) in
(1.6) we get λ = r − 1. Hence the result.

Theorem 3.5. LetM be a submanifold of M̄ with a concurrent vector fieldX such that ξ is normal
toM . If (g, PX, λ) is an Yamabe soliton onM , then PX is conformal.

Proof. Let (g, PX, λ) be an Yamabe soliton onM . Then from the equation (1.6), we get

1

2
(LPXg)(Y, Z) = (r − λ)g(Y, Z). (3.12)

From (3.5) and (3.12) we have

g(h(Y, Z), FX) = (r − λ)g(Y, Z) (3.13)

for all Y, Z ∈ Γ(TM), which implies thatM is umbilical with respect to FX . Then by virtue of
Theorem 3.1, it follows that PX is conformal.

Theorem3.6. LetM be a generalized self-similar submanifold of M̄ with a concurrent vector fieldX
such that ξ is normal toM . Then PX is conformal vector field if and only ifM is pseudo-umbilical.

Proof. Let M be a generalized self-similar submanifold of M̄ , then we have the equation (2.11).
If PX is conformal vector field, then we have the equation (3.6). From (2.11) and (3.6) we can
say thatM is pseudo-umbilical.

Conversely, ifM is pseudo umbilical submanifold then from equation (2.11) we say thatM
is umbilical with respect to FX . So, by virtue of Theorem 3.1 it follows that PX is conformal
vector field.
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Theorem 3.7. LetM be a submanifold of M̄ with a concurrent vector fieldX such that ξ is normal
toM . Then (g, PX, σ) is a Ricci soliton onM if and only if the following condition holds:

S(Y, Z) = −σg(Y, Z)− g(h(Y, Z), FX) (3.14)

for any Y, Z tangent toM .

Proof. Using (3.5) in (1.5), we get the equation (3.14).

Theorem 3.8. LetM be a submanifold of M̄ with a concurrent vector fieldX such that ξ is normal
toM and (g, PX, σ) is a Ricci soliton onM . Then PX is conformal if and only ifM is umbilical.

Proof. Since (g, PX, σ) is a Ricci soliton onM , then we have (3.14). Also sincePX is conformal,
using (3.7) in (1.5) we have

S(Y, Z) = −σg(Y, Z)− µg(Y, Z). (3.15)

From (3.14) and (3.15) we can say thatM is umbilical.

Conversely, supposeM is umbilical. Then we have the equation (2.9). Using (2.9) in (3.14)
we get

S(Y, Z) = −σg(Y, Z)− µg(Y, Z). (3.16)

Using (3.16) in (1.5), we obtain

(LPXg)(Y, Z) = 2µg(Y, Z), (3.17)

which means that PX is conformal.
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