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On strongly starlike functions related to the

Bernoulli lemniscate

Vali Soltani Masih, Ali Ebadian and Janusz Sokoét

Abstract. Let S5 ()) be the class of functions f, analytic in the unit disc A = {z:
|z] < 1}, with the normalization f(0) = f’(0) — 1 = 0, which satisfy the condition

2f'(2)
f(2)

where < is the subordination relation. The class S} (A) is a subfamily of the known
class of strongly starlike functions of order A. In this paper, the relations between
S (A\) and other classes geometrically defined are considered. Also, we obtain some
characteristics such as, bounds for coefficients, radius of convexity, the Fekete-Szego
inequality, logarithmic coefficients and the second Hankel determinant inequality
for functions belonging to this class. The univalent functions f which satisfy the

condition "
é}%{l+z]‘£(i§)}<l+;, (z € A)

<(1+42)",

are also considered here.
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1 Introduction and preliminary

Let H denote the class of holomorphic functions in the open unit disc A = {z: z € C and |z| < 1}

on the complex plane C, and let 4 denote the subclass of functions f € H of the form

f(z) zz—l—Zanz" (z € A).
n=2

The subclass of A consisting of all univalent functions f in A, is denoted by S. Robert-
son [14], Brannan and Kirwan [4], introduced the classes ST (3), CV(8), and SS(«a) of starlike
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and convez functions of order 0 < f < 1, and strongly starlike function of order 0 < a < 1,
respectively, which are defined by

ST(B):{feA:%{Zf/(Z)}>ﬁ, zeA},

f(z)
CV(ﬂ){feA:é)‘k{1+ZJ{,/;i§)}>6, ZGA},
and
SS(a)z{feA: ‘Arg{zﬁz)}’<ga, zeA}.

We also note that SS(1) = ST(0) = ST and CV(0) = CV are the well-known classes of all
normalized starlike and convex functions in A, respectively. Let S(a,b) denote the class of
functions f € A which satisfy the inequality

a<§R{Z]{;i§)}<b (zeA),

for some real number a; (0 < a < 1) and some real number b; (b > 1) (See [8]).

Definition 1 ([5]). Let f and g be analytic in A. Then the function f is said to be subordinate
to g in A, written by

f(z) <g(2), (1.2)
if there exists a function w(z) € B such that f(z) = g(w(z)); (2 € A), where B is the family of
all Schwarz functions

w(z) = anz” (lw(z)| <1, z € A). (1.3)

From the definition of subordinations, it is easy to show that the subordination (1.2) implies
that
f(0)=g(0) and  f(A)Cg(A). (1.4)
In particular, if g(z) is univalent in A, then the subordination (1.2) is equivalent to the condi-
tion(1.4).

Definition 2 ([12]). Let G(«) denote the class of locally univalent normalized analytic functions
f in A satisfying the condition

%{1+Z}f,/;(5>}<1+3 (z€A),

for some 0 < a < 1.

Definition 3. In 1976, Noonan and Thomas [11] defined the ¢'" Hankel determinant of the
Taylor’s coefficients of function f € A of the from (1.1) for natural numbers n and ¢, as follows

(07% Ap4+1 - Ap4q—1

Ap41 Ap4+2 ... An4q
Hy(n) = . . . : (a1 =1). (1.5)

Un4q—1 Opiq -+ QAn42q—2
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The Hankel determinants Hz(1) = a3z — a3 and Hy(2) = azay — a3 are well-known as Fekete-Szego
and second Hankel determinant functionals respectively. Further, Fekete and Szego introduced
the generalized functional az — a3, where ¢ is some real number. We will give the sharp upper
bound for the second Hankel determinant |H5(2)|, when f has lemniscate of Bernoulli domain.

Definition 4. Let P be a class of the analytic functions p of the form

p(z) =1+ pa2"  (z€A4). (1.6)

satisfying {p(z)} > 0 in the unit discA.

Lemma 1.1 ([15]). Let q(z) = Y., Bnz" be analytic and convex univalent in A. If p(z) =
Yoo Ap2™ is analytic in A and satisfies the subordination p(z) < q(z), then

|An] < |Bi] (n=1,2,...).
Lemma 1.2. [6, p.254] If the function w € B given by (1.3). Then
wo = 5(1 — w%) ,
wy = (1 —wf) (1 - [6%) ¢ —wi(l - w) €,
for some complex number &, ¢ with |€] <1 and |¢] < 1.

Lemma 1.3. [7, p.10] If the function w € B given by (1.3), then

s — puw?| < max {1, ]} .

Let us denote by Q the class of functions f that are analytic and injective on A\ E(f),
where

E(f) = {C:CE@A and Zh_)m(f(z)—oo},

and are such that

f(Q#0  for ¢€OA\E(S)

Lemma 1.4. [10, p.24] Let ¢ € Q with q(0) =1 and let p(z) =1+ p1z + --- be analytic in A
with p(z) # 1. If p A q in A then there exits points zg € A and ( € OA\ E(q) and there exits a
real number m > 1 for which

p(l2l <lzol) Ca(d),  plzo) =a(C), 200’ (20) = m(d (C)-

The purpose of this work is to define a new subfamily of P related to a domain bounded by

- o\ A AT AT
B I ;7 - <=1,
LB()\) {pe p (2 cos )\) , > <p< 5 }

We present a new resolution to get the univalence from class functions LB(X). The curve LB(\)
is composed of a base pattern symmetrical about real axis obtained for —An/2 < ¢ < An/2. The
classes Sj () is introduced and its properties and its relevance to other classes presented. In the
sequel, we get the extremal functions of class S} (\). Also, some examples are presented.
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2 The class S;()\) and its properties

This section provides a detailed exposition of an analytic function that maps the unit disk onto
a domain bounded by a lemniscate of Bernoulli and contained in a right halfplane.

Let
i(z) =1 +2) =0+ (0< A< 1),

where the branch of the power is chosen to be ¢ (0) = 1; more explicitly,

ZAA=1)---(AN—k+1 >
(z) =1+ ( ) k,( h )zk:1+ZBkzk (2.1)
k=1 ’ k=1
:1+)\z+)\()\;1)22+A(Ailé(AingJr-'- (zeA).

We note that the set gq)(A) lies in the region bounded by the right loop of the lemniscate of
Bernoulli given by

) AR AT AT
— ) peie. = s ¥ o< ot
LB()) {pe P <2c05 )\) , 5 ¢S5 }

Since by take z = e; (f € (—m,7)), we have

A A
qx (ew) = (1 + eie))\ = (2 coS g) oY = (2 cos z> (cos g + ¢sin )\29) .

Hence

: o\
§R{q>\(e’9)} = <2cos 2) cos o = Q(9) (—m<O<m).
So we can see that Q(0) is well defined also for # = 7. The function Q(6); (-7 < 6 < ) attains
its minimal value when 6 = 7, and maximum value when 6 = 0.

If we take qy (619) = pe'?, simple calculations show that ¢ = \0/2 and p = (2 cos g)A.

Therefore its boundary q ,\(ew) in the polar coordinates will be as follows

, , A A A
q,\(ew):{wzpe“": p:(2cos§), —27T<<p§27r}. (2.2)

Thus from (2.2) we have |Arg {q,\ (ew) }‘ < Ar/2. Additionally, the right loop of the lemniscate
of Bernoulli LB(\) is a boundary of the domain ¢y (A). Also note that g»(D) is a domain which
is symmetric about the real axis, starlike with respect to the point qx(0) = 1, and satisfies
q5(0) = A > 0. Also, LB(\) has tangential radial vector ¢ = £Amr/2 (see Fig. 1.).

Lemma 2.1. The functions qx(z) are conver univalent in A for each 0 < A < 1. Moreover
g (z) = (ax(2) = 1)/A € CV((1 + X)/2). Also, if |z| =r < 1, then

min |qx(2)| = qa(—7) and max |qx(2)| = qa(r).

|z|=r |z|=r

Proof. Let us consider

9n(z) = (ax(z) = /A (z€4).
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Figure 1: image of unit circle under qy(z) for A = 3. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

/! 1 1
§R{1+ZQ/A(Z)}:§R{ +)\z}>)\—|— 7
95(2) I+=z 2
so gx € CV((A+1)/2) C ST, so qa(z) are convex univalent too for each 0 < A < 1. In order to
prove the second part of lemma, let § € [0, 27), then the function

Then, we have

Q) = |q,\(rei0)| =1 +7’ei9|>\ =(1+7r*+ 27"(‘,080)% 0<r<1),
attains its minimum at = 7 and maximum at # = 0. This ends the proof. O
Theorem 2.1. Let p(z) € H with p(0) = 1. If
p(z) <ar(z),  (z€4),
then
[Arg {p(2)}] < %ﬁ 0<R{p(2)} <2* (2€4), (2:3)
and
phe) -1 <1, (zea). (2.4)

Conversely, if p € P with |Arg {p}| < (Ar)/2 and p satisfies (2.4), then p < qy in A.
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Proof. The subordination p < g with p(0) = ¢, (0), and the geometric properties of qx(A) from
Section 1, yield (2.3).

In order to prove the second part of theorem, since p(z) < qx(2); (z € A), then
p(z) = (1+w(2), (2€4), (2.5)
where w € B. From (2.5), we get

ES

w(z) =p¥(x) -1, W)l <1, (€4,

and finally assertion (2.4) as follows.
Conversely, for p € P satisfy the condition (2.4), then we easily show that p = pe'# lies in a
domain bounded by lemniscate of Bernoulli LB()). It completes the proof. O

Definition 5. Let S;()A) denote the class of analytic functions f € A satisfying the condition

2f'(2)
f(z)
Geometrically, the condition (2.6) means that the quantity zf’(z)/f(z) lies in the region
bounded by the right loop of the lemniscate of Bernoulli LB(\). Since a domain gx(A) is
contained in a right half-plane, we deduce that Sj () is a proper subset of a class of a starlike
functions ST . Additional properties of q)(A) yield:
S;(\) CcSS(a) for AN<a<l,
S;(\) € 8(0,b) for b>2*.

=< qa(2), (z € A). (2.6)

1.0 |
b A
ReA:ReB:(Zcos 2A+2) s 55
0.5
A yip= (2 cos(—))
mA
)
0.0 u
B
-0.5
n . s
Im 4 ——lmB—(2cos m) smm
Qo N
0.0 0.5 1.0 1.5 2.0
. . . A .
Figure 2: The lemniscate of Bernoulli p = (2 oS %) and the circle for
A= % (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Also, we have LB(A) C {w: |w—2*"'| <271}, The right-half of the lemniscate of

Bernoulli v and the circle v5: (gc — 2’\_1)2 + y? = 421 are presented in Fig. 2. Thus for
M > 2*1. we have
M+ Mz

(1+Z)>\ < m,

(z € A).
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Since the function % is univalent in A, then
!/
Si(\) C {fGA: ZJ{((j) M‘ < M, for alleA}.
z

The structural formula for functions in the class S} () is as follows:

gGSZ()\):)g(z):zexp</OZp(t)t_1dt) for some p < q,. (2.7)

This above representation gives many examples of functions in class S (A). The function F) ,
with definition

2qa(t") — 1
Fyn(z) = zexp (/ % dt) (2.8)
0
=24 ézn-ﬁ—l + )\2(’[’L+2) - n)\z2n+1
n 4n?
2 2 2 2
N AM(2n% 4 9n 4 6) A2 — (6n® +9n) A+ 4n )23n+1 L zen),
36n3
for n =1,2,... is extremal function for several problems in the class S} (). For n =1 we have
? t)—1
Fi(z) = Fx1(2) = zexp (/ n® -1 dt) (2.9)
0 t
3AZ— A 17A3 — 15M% + 4\
:z+)\z2+(4 )z3+( 36 s )2’4-1--”.

Theorem 2.2. If a function f belongs to the class G(\), then ' < qx in A. Also, [ is univalent
function in A.

Proof. Suppose that f'(z) 4 qx(z) in A. Then by Lemma 1.4 there exist zg € A and ( € 9A;
(¢ # —1) such that

f'(z0) = ax(Q),  20f"(20) = m¢ai(C),

for some m > 1. Hence

%{1+M}:1+m/\m{<}:1+m>1+A,

f'(z0) 1+¢ 2 2
which contradicts the hypothesis f € G(A). Thus, we conclude that f/(z) < qx(z) for all z € A.
From condition (2.3) we have R {f’(z)} > 0. Therefore f is univalent. O

From (2.7) and from Theorem 2.2 and , we get the following corollary.

Corollary 2.3. Let f € G(A) for 0 < A < 1. Then the function

g(z)zzexp(/ozf/(t)t_ldt)

Example 1. The function f(z) = zexp(—Az) belongs in class Sf (A) if |A] < 2%\

belongs to St (A).
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From the results in [9], equation (2.9), and Lemma 2.1, we have the following sharp estimates
for function f € S5 (A).

Theorem 2.4. If f € §;(A\) and |z| =7 < 1, then
—Fx(=r) < [f(2)] < Fa(r),
Fi(=r) < 1f'(2)] < Fi(r),
|Arg{f(2)/2}] < max Arg {Fa(z2)/2}-
Equality holds for some z # 0 if and only if f is a rotation of Fx. Also, If f € S7(\), then either
f is a rotation of F or
{weC: |w| <-=F\(-1)}C f(A).
Here —Fy(—1) is understood to be the limit of —Fx(—r) as r tends to 1.

For the special case A = 1/2, results for functions belonging to the class S; = S5(1/2)
defined by
S; = {pei“": p* < 2cos(2¢), f% <p< %}
and its generalizations can be found in [1, 2, 3, 13, 16, 17, 18, 19, 20].

3 Logarithmic coefficient inequality for the function f(z)

Associated with each f € S (see [5]) is well defined function
log == =% 27,2" €A),
0g — n§:1 T2 (z€4)

and +y, are called logarithmic coefficients of the function f.

Theorem 3.1. Let f € S§(A\). Then the logarithmic coefficients of f satisfy

A

All the inequalities are sharp.

Proof. Let f € S (\). From Definition 5, we have
/
z<log f(;)) < q(z) — 1, (e A). (3.1)

The subordination relation (3.1) implies that

o0 oo
Z 2nypz" < Z B,z",
n=1 n=1

where B,, given by (2.1). Applying Lemma 1.1, we get the inequality 2n |v,| < |B1] = A. To
deduce the sharpness, by the definition F) ,,(z) and qx(z), we have

z(log F’\Z(z)) =q(:") - 1= Zriykzk = Z B, (z")™, (3.2)

k=1
where vi; (k=1,2,...) is logarithmic coefficients of F), and B,, given in (2.1). Form (3.2),
equating coefficients gives 2ny, = By = . O
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4  Fekete-Szego and second Hankel determinant problems
for the function class S;()\)

In this section, we find the sharp bounds of Fekete-Szegd functional az — pa% and second Hankel
determinant functional asas — a3 defined for f € S;(\) given by (1.1).
Theorem 4.1. let f € S} () given by (1.1). Then
2
‘a2a4 — a%‘ < Ve

The inequalities are sharp.

Proof. Let the function f given by (1.1) be in the class S7(\). Then there exists a function
w € B, such that

zf'(2) A
=(1+w(z))". 4.1
T~ 1+ ue) (11)
Form (4.1), equating coefficients gives, after simplification
az = )‘wla
as =3 (w2 + F5twi), (4.2)

DY — 172215744 3
ay —3(w3+( 5 )wlwg—k(iu )wl)

Form (1.5) and (4.2) we have
2

A
12

7 —13)\2 — 6)
wiwz — 3ws 4+ (X — 1) wiwy + () 1

12 wq| -

’a2a4 — ag‘

Using Lemma 1.2, we write the expression wy and ws in terms of wy and without loss of generality
assume that = w; with 0 <2 < 1. Then from triangular inequality, we obtain

)\2{‘13>\2+6)\—7
a2a4fa3| T —

<1 B ‘m4+)\1|x2(1x2) €]
+3(1—22) ¢ + 42 (1 — 2%) (1 — |€?) + 422 (1 — 2?) §I2} = g(1¢]) -

A function g(|£|) is increasing on the interval [0,1]. Thus g(|€]) attains its maximum at || = 1,
ie. g(J¢]) < g(1). Consequently

A2 —13A2 —6A 47
’a2a4—a§’ Sm{3—(/\+1)x2+<)\—2+‘12‘)1:4},

also,

a2a4—ad| <
{3_ A+ 1)a? — (—13/\2;218>\+31>x4} . 113 <A<,

IN

{ %{3_(>\+ 1)z _(13A2—lg>\+17)x4} L 0< A< 17‘37
A2
4
8),

The function F) 5 in (2.8), shows that the bound A?/4 is sharp. O
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Theorem 4.2. let f € S7(\) given by (1.1). Then we have sharp inequalities

1—3\ . 3(A—1)
—/\2(5—#74)\ ) D0 < =
’ag - 5&%‘ < % : Li;l) <6< —113)‘,
1-3\ . 143X
A2 (0+152) D0 > LA

Proof. Form equations (4.2), we have

A
‘%—5@%‘2‘11}2—( 5 wi| -

45/\—3>\+1) )
2

Applying Lemma 1.3 with g = (46\ — 3X + 1) /2 gives the inequalities. Equality is attained in
the second inequality for f(z) = Fi2(z) given by (2.8), and by the function f(z) = Fx(z) given
by (2.9) in other cases. O

Let the function F' be defined by

z

7z

F(z)= 1+ i bp2" (z € A), (4.3)

for f € A given by (1.1).

Theorem 4.3. Let f € S;(\) and F(z) = z/f(z) given by (1.1) and (4.3), respectively. Then
we have sharp inequalities

SN0 2 o< ARt
b2 —0bT] < q 3 DAk <0< A,
N2 (8- 252 § > 28

Proof. Let f € S () given by (1.1) and F(z) = z/f(z) and a computation gives

z

F(z) = =l—asz+ (a3 —a3)2®+--- (2 €A). (4.4)
f(2)
Form equations (4.3) and (4.4), we have
b1 = —axq,
' ’ (4.5)
bg = a% — as.

Form equations (4.2) and (4.5), we have

A 2
b — 03| = 5 wg—%(A+1—46)\) .

Applying Lemma 1.3 with p = (A4+1—46)\) /2 gives the inequalities. The function f(z) =
F 2(2) given by (2.8), and function f(z) = Fi(2) given by (2.9), shows that the bounds A\/2 and
+22(§ — (A +1) /(4))) are sharps, respectively. O
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Let the function f~! be defined by
FrHw)=w+ Y Ay (Jw] <ro(f)), (4.6)
n=2

where ro(f) > —Fj\(—1) is the radius of the Koebe domain of the function f in the class S} (\).
Then

AR =2 (zed) and f(fH(w) =w; (lw] <ro(f)).

The inverse function f~! is given by
fHw) = w — axw® + (243 — a3) w® — (5a3 — basas + as) wh + - - . (4.7

Theorem 4.4. let f € S;(\) and f~(2) given by (1.1) and (4.6), respectively. Then we have
sharp inequalities

(o) ¢ o< R,
s3] <{ 3 . mocsenp
PE-BE) e

Proof. Form (4.6) and (4.7), we have

Ay = —aq,

? ? (4.8)

Ag = 20,% — as.
Form (4.2) and (4.8), we have

A w?

|As — 6A3| = 5 ’wg - 7(5A+ 1 —46)0)].

Applying Lemma 1.3 with g = (5A + 1 — 4dA) /2 gives the inequalities. The inequality is sharp

for the function 5A—1 5A+3
i) = { Fro(z) 0 2550 <0< 257,

Fa(z) o de (=00, 55 U (352, 0)

O
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