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On strongly starlike functions related to the

Bernoulli lemniscate

Vali Soltani Masih, Ali Ebadian and Janusz Sokó l

Abstract. Let S∗L(λ) be the class of functions f , analytic in the unit disc ∆ = {z :
|z| < 1}, with the normalization f(0) = f ′(0)− 1 = 0, which satisfy the condition

zf ′(z)

f(z)
≺ (1 + z)

λ
,

where ≺ is the subordination relation. The class S∗L(λ) is a subfamily of the known
class of strongly starlike functions of order λ. In this paper, the relations between
S∗L(λ) and other classes geometrically defined are considered. Also, we obtain some
characteristics such as, bounds for coefficients, radius of convexity, the Fekete-Szegö
inequality, logarithmic coefficients and the second Hankel determinant inequality
for functions belonging to this class. The univalent functions f which satisfy the
condition

<
{

1 +
zf ′′(z)

f ′(z)

}
< 1 +

λ

2
, (z ∈ ∆)

are also considered here.
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1 Introduction and preliminary

LetH denote the class of holomorphic functions in the open unit disc ∆ = {z : z ∈ C and |z| < 1}
on the complex plane C, and let A denote the subclass of functions f ∈ H of the form

f(z) = z +

∞∑
n=2

anz
n (z ∈ ∆) . (1.1)

The subclass of A consisting of all univalent functions f in ∆, is denoted by S. Robert-
son [14], Brannan and Kirwan [4], introduced the classes ST (β), CV(β), and SS(α) of starlike
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and convex functions of order 0 ≤ β < 1, and strongly starlike function of order 0 < α ≤ 1,
respectively, which are defined by

ST (β) =

{
f ∈ A : <

{
zf ′(z)

f(z)

}
> β, z ∈ ∆

}
,

CV(β) =

{
f ∈ A : <

{
1 +

zf ′′(z)

f ′(z)

}
> β, z ∈ ∆

}
,

and

SS(α) =

{
f ∈ A :

∣∣∣∣Arg{zf ′(z)f(z)

}∣∣∣∣ < π

2
α, z ∈ ∆

}
.

We also note that SS(1) = ST (0) = ST and CV(0) = CV are the well-known classes of all
normalized starlike and convex functions in ∆, respectively. Let S(a, b) denote the class of
functions f ∈ A which satisfy the inequality

a < <
{
zf ′(z)

f(z)

}
< b (z ∈ ∆) ,

for some real number a; (0 ≤ a < 1) and some real number b; (b > 1) (See [8]).

Definition 1 ([5]). Let f and g be analytic in ∆. Then the function f is said to be subordinate
to g in ∆, written by

f(z) ≺ g(z), (1.2)

if there exists a function ω(z) ∈ B such that f(z) = g(ω(z)); (z ∈ ∆), where B is the family of
all Schwarz functions

ω(z) =

∞∑
n=1

wnz
n (|ω(z)| < 1, z ∈ ∆) . (1.3)

From the definition of subordinations, it is easy to show that the subordination (1.2) implies
that

f(0) = g(0) and f(∆) ⊂ g(∆). (1.4)

In particular, if g(z) is univalent in ∆, then the subordination (1.2) is equivalent to the condi-
tion(1.4).

Definition 2 ([12]). Let G(α) denote the class of locally univalent normalized analytic functions
f in ∆ satisfying the condition

<
{

1 +
zf ′′(z)

f ′(z)

}
< 1 +

α

2
(z ∈ ∆) ,

for some 0 < α ≤ 1.

Definition 3. In 1976, Noonan and Thomas [11] defined the qth Hankel determinant of the
Taylor’s coefficients of function f ∈ A of the from (1.1) for natural numbers n and q, as follows

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q

...
...

. . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1) . (1.5)
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The Hankel determinants H2(1) = a3−a2
2 and H2(2) = a2a4−a2

3 are well-known as Fekete-Szegö
and second Hankel determinant functionals respectively. Further, Fekete and Szegö introduced
the generalized functional a3 − δa2

2, where δ is some real number. We will give the sharp upper
bound for the second Hankel determinant |H2(2)|, when f has lemniscate of Bernoulli domain.

Definition 4. Let P be a class of the analytic functions p of the form

p(z) = 1 +

∞∑
n=1

pnz
n (z ∈ ∆) . (1.6)

satisfying <{p(z)} > 0 in the unit disc∆.

Lemma 1.1 ([15]). Let q(z) =
∑∞
n=1Bnz

n be analytic and convex univalent in ∆. If p(z) =∑∞
n=1Anz

n is analytic in ∆ and satisfies the subordination p(z) ≺ q(z), then

|An| ≤ |B1| (n = 1, 2, . . . ) .

Lemma 1.2. [6, p.254] If the function ω ∈ B given by (1.3). Then

w2 = ξ
(
1− w2

1

)
,

w3 =
(
1− w2

1

) (
1− |ξ|2

)
ζ − w1

(
1− w2

1

)
ξ2,

for some complex number ξ, ζ with |ξ| ≤ 1 and |ζ| ≤ 1.

Lemma 1.3. [7, p.10] If the function ω ∈ B given by (1.3), then∣∣w2 − µw2
1

∣∣ ≤ max {1, |µ|} .

Let us denote by Q the class of functions f that are analytic and injective on ∆ \ E(f),
where

E(f) =

{
ζ : ζ ∈ ∂∆ and lim

z→ζ
f(z) =∞

}
,

and are such that

f ′(ζ) 6= 0 for ζ ∈ ∂∆ \ E(f).

Lemma 1.4. [10, p.24] Let q ∈ Q with q(0) = 1 and let p(z) = 1 + p1z + · · · be analytic in ∆
with p(z) 6= 1. If p 6≺ q in ∆ then there exits points z0 ∈ ∆ and ζ ∈ ∂∆ \ E(q) and there exits a
real number m ≥ 1 for which

p(|z| < |z0|) ⊂ q(∆), p(z0) = q(ζ), z0p
′(z0) = mζq′(ζ).

The purpose of this work is to define a new subfamily of P related to a domain bounded by

LB(λ) =

{
ρeiϕ : ρ =

(
2 cos

ϕ

λ

)λ
, −λπ

2
< ϕ ≤ λπ

2

}
.

We present a new resolution to get the univalence from class functions LB(λ). The curve LB(λ)
is composed of a base pattern symmetrical about real axis obtained for −λπ/2 < ϕ ≤ λπ/2. The
classes S∗L(λ) is introduced and its properties and its relevance to other classes presented. In the
sequel, we get the extremal functions of class S∗L(λ). Also, some examples are presented.
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2 The class S∗L(λ) and its properties

This section provides a detailed exposition of an analytic function that maps the unit disk onto
a domain bounded by a lemniscate of Bernoulli and contained in a right halfplane.

Let

qλ(z) = (1 + z)
λ ≡ eλ ln(1+z) (0 < λ < 1) ,

where the branch of the power is chosen to be qλ(0) = 1; more explicitly,

qλ(z) = 1 +

∞∑
k=1

λ(λ− 1) · · · (λ− k + 1)

k!
zk = 1 +

∞∑
k=1

Bkz
k (2.1)

= 1 + λz +
λ(λ− 1)

2
z2 +

λ(λ− 1) (λ− 2)

6
z3 + · · · (z ∈ ∆) .

We note that the set qλ(∆) lies in the region bounded by the right loop of the lemniscate of
Bernoulli given by

LB(λ) =

{
ρeiϕ : ρ =

(
2 cos

ϕ

λ

)λ
, −λπ

2
ϕ ≤ λπ

2

}
.

Since by take z = eiθ; (θ ∈ (−π, π)), we have

qλ
(
eiθ
)

=
(
1 + eiθ

)λ
=

(
2 cos

θ

2

)λ
ei

λθ
2 =

(
2 cos

θ

2

)λ(
cos

λθ

2
+ i sin

λθ

2

)
.

Hence

<
{
qλ
(
eiθ
)}

=

(
2 cos

θ

2

)λ
cos

λθ

2
= Q(θ) (−π < θ < π) .

So we can see that Q(θ) is well defined also for θ = π. The function Q(θ); (−π < θ ≤ π) attains
its minimal value when θ = π, and maximum value when θ = 0.

If we take qλ
(
eiθ
)

= ρeiϕ, simple calculations show that ϕ = λθ/2 and ρ =
(
2 cos θ2

)λ
.

Therefore its boundary qλ
(
eiθ
)

in the polar coordinates will be as follows

qλ
(
eiθ
)

=

{
w = ρeiϕ : ρ =

(
2 cos

ϕ

λ

)λ
, −λπ

2
< ϕ ≤ λπ

2

}
. (2.2)

Thus from (2.2) we have
∣∣Arg {qλ(eiθ)}∣∣ < λπ/2. Additionally, the right loop of the lemniscate

of Bernoulli LB(λ) is a boundary of the domain qλ(∆). Also note that qλ(D) is a domain which
is symmetric about the real axis, starlike with respect to the point qλ(0) = 1, and satisfies
q′λ(0) = λ > 0. Also, LB(λ) has tangential radial vector ϕ = ±λπ/2 (see Fig. 1.).

Lemma 2.1. The functions qλ(z) are convex univalent in ∆ for each 0 < λ < 1. Moreover
gλ(z) = (qλ(z)− 1)/λ ∈ CV((1 + λ)/2). Also, if |z| = r < 1, then

min
|z|=r

|qλ(z)| = qλ(−r) and max
|z|=r

|qλ(z)| = qλ(r).

Proof. Let us consider

gλ(z) = (qλ(z)− 1)/λ (z ∈ ∆) .
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Figure 1: image of unit circle under qλ(z) for λ = 1
2 . (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

Then, we have

<
{

1 +
zg′′λ(z)

g′λ(z)

}
= <

{
1 + λz

1 + z

}
>
λ+ 1

2
,

so gλ ∈ CV((λ+ 1) /2) ⊂ ST , so qλ(z) are convex univalent too for each 0 < λ < 1. In order to
prove the second part of lemma, let θ ∈ [0, 2π), then the function

Q(θ) =
∣∣qλ(reiθ)

∣∣ =
∣∣1 + reiθ

∣∣λ =
(
1 + r2 + 2r cos θ

)λ
2 (0 < r < 1) ,

attains its minimum at θ = π and maximum at θ = 0. This ends the proof.

Theorem 2.1. Let p(z) ∈ H with p(0) = 1. If

p(z) ≺ qλ(z), (z ∈ ∆) ,

then

|Arg {p(z)}| < λπ

2
, 0 < <{p(z)} < 2λ, (z ∈ ∆) , (2.3)

and ∣∣∣p 1
λ (z)− 1

∣∣∣ < 1, (z ∈ ∆) . (2.4)

Conversely, if p ∈ P with |Arg {p}| < (λπ)/2 and p satisfies (2.4), then p ≺ qλ in ∆.
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Proof. The subordination p ≺ qλ with p(0) = qλ(0), and the geometric properties of qλ(∆) from
Section 1, yield (2.3).

In order to prove the second part of theorem, since p(z) ≺ qλ(z); (z ∈ ∆), then

p(z) = (1 + ω(z))
λ
, (z ∈ ∆) , (2.5)

where ω ∈ B. From (2.5), we get

ω(z) = p
1
λ (z)− 1, |ω(z)| < 1, (z ∈ ∆) ,

and finally assertion (2.4) as follows.

Conversely, for p ∈ P satisfy the condition (2.4), then we easily show that p = ρeıϕ lies in a
domain bounded by lemniscate of Bernoulli LB(λ). It completes the proof.

Definition 5. Let S∗L(λ) denote the class of analytic functions f ∈ A satisfying the condition

zf ′(z)

f(z)
≺ qλ(z), (z ∈ ∆) . (2.6)

Geometrically, the condition (2.6) means that the quantity zf ′(z)/f(z) lies in the region
bounded by the right loop of the lemniscate of Bernoulli LB(λ). Since a domain qλ(∆) is
contained in a right half-plane, we deduce that S∗L(λ) is a proper subset of a class of a starlike
functions ST . Additional properties of qλ(∆) yield:

S∗L(λ) ⊂ SS(α) for λ ≤ α ≤ 1,

S∗L(λ) ⊂ S(0, b) for b ≥ 2λ.

Re A = Re B = 2 cos
π

2 λ + 2

λ
cos

π λ

2 λ + 2

γ : ρ = 2 cos
φ

λ

λ

φ =
π λ

2

Im A = - Im B = 2 cos
π

2 λ + 2

λ
sin

π λ

2 λ + 2

A

B
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Figure 2: The lemniscate of Bernoulli ρ =
(
2 cos ϕλ

)λ
and the circle ρ = 2λ cosϕ for

λ = 1
3 . (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Also, we have LB(λ) ⊂
{
w :

∣∣w − 2λ−1
∣∣ < 2λ−1

}
. The right-half of the lemniscate of

Bernoulli γ1 and the circle γ2 :
(
x− 2λ−1

)2
+ y2 = 4λ−1 are presented in Fig. 2. Thus for

M ≥ 2λ−1, we have

(1 + z)
λ ≺ M +Mz

M − (M − 1) z
, (z ∈ ∆) .
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Since the function M+Mz
M−(M−1)z is univalent in ∆, then

S∗L(λ) ⊂
{
f ∈ A :

∣∣∣∣zf ′(z)f(z)
−M

∣∣∣∣ < M, for all z ∈ ∆

}
.

The structural formula for functions in the class S∗L(λ) is as follows:

g ∈ S∗L(λ)⇐⇒ g(z) = z exp

(∫ z

0

p(t)− 1

t
dt

)
for some p ≺ qλ. (2.7)

This above representation gives many examples of functions in class S∗L(λ). The function Fλ,n
with definition

Fλ,n(z) = z exp

(∫ z

0

qλ(tn)− 1

t
dt

)
(2.8)

= z +
λ

n
zn+1 +

λ2(n+ 2)− nλ
4n2

z2n+1

+
λ
((

2n2 + 9n+ 6
)
λ2 −

(
6n2 + 9n

)
λ+ 4n2

)
36n3

z3n+1 + · · · (z ∈ ∆) ,

for n = 1, 2, . . . is extremal function for several problems in the class S∗L(λ). For n = 1 we have

Fλ(z) = Fλ,1(z) = z exp

(∫ z

0

qλ(t)− 1

t
dt

)
(2.9)

= z + λz2 +

(
3λ2 − λ

4

)
z3 +

(
17λ3 − 15λ2 + 4λ

36

)
z4 + · · · .

Theorem 2.2. If a function f belongs to the class G(λ), then f ′ ≺ qλ in ∆. Also, f is univalent
function in ∆.

Proof. Suppose that f ′(z) 6≺ qλ(z) in ∆. Then by Lemma 1.4 there exist z0 ∈ ∆ and ζ ∈ ∂∆;
(ζ 6= −1) such that

f ′(z0) = qλ(ζ), z0f
′′(z0) = mζq′λ(ζ),

for some m ≥ 1. Hence

<
{

1 +
z0f
′′(z0)

f ′(z0)

}
= 1 +mλ<

{
ζ

1 + ζ

}
= 1 +

mλ

2
≥ 1 +

λ

2
,

which contradicts the hypothesis f ∈ G(λ). Thus, we conclude that f ′(z) ≺ qλ(z) for all z ∈ ∆.
From condition (2.3) we have <{f ′(z)} > 0. Therefore f is univalent.

From (2.7) and from Theorem 2.2 and , we get the following corollary.

Corollary 2.3. Let f ∈ G(λ) for 0 < λ < 1. Then the function

g(z) = z exp

(∫ z

0

f ′(t)− 1

t
dt

)
belongs to S∗L(λ).

Example 1. The function f(z) = z exp(−Az) belongs in class S∗L(λ) if |A| ≤ λ
2+λ .
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From the results in [9], equation (2.9), and Lemma 2.1, we have the following sharp estimates
for function f ∈ S∗L(λ).

Theorem 2.4. If f ∈ S∗L(λ) and |z| = r < 1, then

−Fλ(−r) ≤ |f(z)| ≤ Fλ(r),

F ′λ(−r) ≤ |f ′(z)| ≤ F ′λ(r),

|Arg {f(z)/z}| ≤ max
|z|=r

Arg {Fλ(z)/z} .

Equality holds for some z 6= 0 if and only if f is a rotation of Fλ. Also, If f ∈ S∗L(λ), then either
f is a rotation of Fλ or

{w ∈ C : |w| ≤ −Fλ(−1)} ⊂ f(∆).

Here −Fλ(−1) is understood to be the limit of −Fλ(−r) as r tends to 1.

For the special case λ = 1/2, results for functions belonging to the class S∗L = S∗L(1/2)
defined by

S∗L =
{
ρeiϕ : ρ2 < 2 cos(2ϕ) , −π

4
< ϕ <

π

4

}
and its generalizations can be found in [1, 2, 3, 13, 16, 17, 18, 19, 20].

3 Logarithmic coefficient inequality for the function f(z)

Associated with each f ∈ S (see [5]) is well defined function

log
f(z)

z
=

∞∑
n=1

2γnz
n (z ∈ ∆) ,

and γn are called logarithmic coefficients of the function f .

Theorem 3.1. Let f ∈ S∗L(λ). Then the logarithmic coefficients of f satisfy

|γn| ≤
λ

2n
(n ≥ 1) .

All the inequalities are sharp.

Proof. Let f ∈ S∗L(λ). From Definition 5, we have

z

(
log

f(z)

z

)′
≺ q(z)− 1, (z ∈ ∆) . (3.1)

The subordination relation (3.1) implies that

∞∑
n=1

2nγnz
n ≺

∞∑
n=1

Bnz
n,

where Bn given by (2.1). Applying Lemma 1.1, we get the inequality 2n |γn| ≤ |B1| = λ. To
deduce the sharpness, by the definition Fλ,n(z) and qλ(z), we have

z

(
log

Fλ,n(z)

z

)′
= qλ(zn)− 1⇐⇒

∞∑
k=1

2kγkz
k =

∞∑
m=1

Bm(zn)m, (3.2)

where γk; (k = 1, 2, . . . ) is logarithmic coefficients of Fλ,n and Bm given in (2.1). Form (3.2),
equating coefficients gives 2nγn = B1 = λ.
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4 Fekete-Szegö and second Hankel determinant problems
for the function class S∗L(λ)

In this section, we find the sharp bounds of Fekete-Szegö functional a3 − µa2
2 and second Hankel

determinant functional a2a4 − a2
3 defined for f ∈ S∗L(λ) given by (1.1).

Theorem 4.1. let f ∈ S∗L(λ) given by (1.1). Then∣∣a2a4 − a2
3

∣∣ ≤ λ2

4
.

The inequalities are sharp.

Proof. Let the function f given by (1.1) be in the class S∗L(λ). Then there exists a function
ω ∈ B, such that

zf ′(z)

f(z)
= (1 + ω(z))

λ
. (4.1)

Form (4.1), equating coefficients gives, after simplification
a2 = λw1,

a3 = λ
2

(
w2 + 3λ−1

2 w2
1

)
,

a4 = λ
3

(
w3 +

(
5λ−2

2

)
w1w2 +

(
17λ2−15λ+4

12

)
w3

1

)
.

(4.2)

Form (1.5) and (4.2) we have∣∣a2a4 − a2
3

∣∣ =
λ2

12

∣∣∣∣w1w3 − 3w2
2 + (λ− 1)w2

1w2 +

(
7− 13λ2 − 6λ

12

)
w4

1

∣∣∣∣ .
Using Lemma 1.2, we write the expression w2 and w3 in terms of w1 and without loss of generality
assume that x = w1 with 0 ≤ x ≤ 1. Then from triangular inequality, we obtain

∣∣a2a4 − a2
3

∣∣ ≤ λ2

12

{∣∣∣∣13λ2 + 6λ− 7

12

∣∣∣∣x4 + |λ− 1|x2
(
1− x2

)
|ξ|

+ 3
(
1− x2

)2 |ξ|2 + 4x
(
1− x2

) (
1− |ξ|2

)
+ 4x2

(
1− x2

)
|ξ|2
}

= g(|ξ|) .

A function g(|ξ|) is increasing on the interval [0, 1]. Thus g(|ξ|) attains its maximum at |ξ| = 1,
i.e. g(|ξ|) ≤ g(1). Consequently∣∣a2a4 − a2

3

∣∣ ≤ λ2

12

{
3− (λ+ 1)x2 +

(
λ− 2 +

∣∣∣∣−13λ2 − 6λ+ 7

12

∣∣∣∣ )x4

}
,

also,

∣∣a2a4 − a2
3

∣∣ ≤


λ2

12

{
3− (λ+ 1)x2 −

(
13λ2−6λ+17

12

)
x4
}

: 0 < λ ≤ 7
13 ,

λ2

12

{
3− (λ+ 1)x2 −

(
−13λ2−18λ+31

12

)
x4
}

: 7
13 ≤ λ < 1,

≤ λ2

4
.

The function Fλ,2 in (2.8), shows that the bound λ2/4 is sharp.
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Theorem 4.2. let f ∈ S∗L(λ) given by (1.1). Then we have sharp inequalities

∣∣a3 − δa2
2

∣∣ ≤

−λ2

(
δ + 1−3λ

4λ

)
: δ < 3(λ−1)

4λ ,

λ
2 : 3(λ−1)

4λ ≤ δ ≤ 1+3λ
4λ ,

λ2
(
δ + 1−3λ

4λ

)
: δ > 1+3λ

4λ .

Proof. Form equations (4.2), we have

∣∣a3 − δa2
2

∣∣ =
λ

2

∣∣∣∣w2 −
(

4δλ− 3λ+ 1

2

)
w2

1

∣∣∣∣ .
Applying Lemma 1.3 with µ = (4δλ− 3λ+ 1) /2 gives the inequalities. Equality is attained in
the second inequality for f(z) = Fλ,2(z) given by (2.8), and by the function f(z) = Fλ(z) given
by (2.9) in other cases.

Let the function F be defined by

F (z) =
z

f(z)
= 1 +

∞∑
n=1

bnz
n (z ∈ ∆) , (4.3)

for f ∈ A given by (1.1).

Theorem 4.3. Let f ∈ S∗L(λ) and F (z) = z/f(z) given by (1.1) and (4.3), respectively. Then
we have sharp inequalities

∣∣b2 − δb21∣∣ ≤

−λ2

(
δ − λ+1

4λ

)
: δ < λ−1

4λ ,

λ
2 : λ−1

4λ ≤ δ ≤
λ+3
4λ ,

λ2
(
δ − λ+1

4λ

)
: δ > λ+3

4λ .

Proof. Let f ∈ S∗L(λ) given by (1.1) and F (z) = z/f(z) and a computation gives

F (z) =
z

f(z)
= 1− a2z +

(
a2

2 − a3

)
z2 + · · · (z ∈ ∆) . (4.4)

Form equations (4.3) and (4.4), we have{
b1 = −a2,

b2 = a2
2 − a3.

(4.5)

Form equations (4.2) and (4.5), we have

∣∣b2 − δb21∣∣ =
λ

2

∣∣∣∣w2 −
w2

1

2
(λ+ 1− 4δλ)

∣∣∣∣ .
Applying Lemma 1.3 with µ = (λ+ 1− 4δλ) /2 gives the inequalities. The function f(z) =
Fλ,2(z) given by (2.8), and function f(z) = Fλ(z) given by (2.9), shows that the bounds λ/2 and
±λ2(δ − (λ+ 1) /(4λ) ) are sharps, respectively.
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Let the function f−1 be defined by

f−1(w) = w +

∞∑
n=2

Anw
n (|w| < r0(f)) , (4.6)

where r0(f) ≥ −Fλ(−1) is the radius of the Koebe domain of the function f in the class S∗L(λ).
Then

f−1(f(z)) = z; (z ∈ ∆) and f
(
f−1(w)

)
= w; (|w| < r0(f)) .

The inverse function f−1 is given by

f−1(w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (4.7)

Theorem 4.4. let f ∈ S∗L(λ) and f−1(z) given by (1.1) and (4.6), respectively. Then we have
sharp inequalities

∣∣A3 − δA2
2

∣∣ ≤

−λ2

(
δ − 5λ+1

4λ

)
: δ < 5λ−1

4λ ,

λ
2 : 5λ−1

4λ ≤ δ ≤ 5λ+3
4λ ,

λ2
(
δ − 5λ+1

4λ

)
: δ > 5λ+3

4λ .

Proof. Form (4.6) and (4.7), we have{
A2 = −a2,

A3 = 2a2
2 − a3.

(4.8)

Form (4.2) and (4.8), we have

∣∣A3 − δA2
2

∣∣ =
λ

2

∣∣∣∣w2 −
w2

1

2
(5λ+ 1− 4δλ)

∣∣∣∣ .
Applying Lemma 1.3 with µ = (5λ+ 1− 4δλ) /2 gives the inequalities. The inequality is sharp
for the function

f(z) =

{
Fλ,2(z) : 5λ−1

4λ ≤ δ ≤ 5λ+3
4λ ,

Fλ(z) : δ ∈
(
−∞, 5λ−1

4λ

)
∪
(

5λ+3
4λ ,∞

)
.

References

[1] R. M. Ali, N. E. Cho, N. K. Jain and V. Ravichandran, Radii of starlikeness and convexity
for functions with fixed second coefficient defined by subordination. Filomat 26(3), 553–561
(2012)
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