On strongly starlike functions related to the Bernoulli lemniscate

Vali Soltani Masih, Ali Ebadian and Janusz Sokół

Abstract

Let $\mathcal{S}_{L}^{*}(\lambda)$ be the class of functions f, analytic in the unit disc $\Delta=\{z$: $|z|<1\}$, with the normalization $f(0)=f^{\prime}(0)-1=0$, which satisfy the condition $$
\frac{z f^{\prime}(z)}{f(z)} \prec(1+z)^{\lambda},
$$ where \prec is the subordination relation. The class $\mathcal{S}_{L}^{*}(\lambda)$ is a subfamily of the known class of strongly starlike functions of order λ. In this paper, the relations between $\mathcal{S}_{L}^{*}(\lambda)$ and other classes geometrically defined are considered. Also, we obtain some characteristics such as, bounds for coefficients, radius of convexity, the Fekete-Szegö inequality, logarithmic coefficients and the second Hankel determinant inequality for functions belonging to this class. The univalent functions f which satisfy the condition $$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<1+\frac{\lambda}{2}, \quad(z \in \Delta)
$$

are also considered here.
Keywords. Univalent functions, Subordination, Strongly starlike, Strongly convex

1 Introduction and preliminary

Let \mathcal{H} denote the class of holomorphic functions in the open unit disc $\Delta=\{z: z \in \mathbb{C}$ and $|z|<1\}$ on the complex plane \mathbb{C}, and let \mathcal{A} denote the subclass of functions $f \in \mathcal{H}$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \Delta) . \tag{1.1}
\end{equation*}
$$

The subclass of \mathcal{A} consisting of all univalent functions f in Δ, is denoted by \mathcal{S}. Robertson [14], Brannan and Kirwan [4], introduced the classes $\mathcal{S T}(\beta), \mathcal{C} \mathcal{V}(\beta)$, and $\mathcal{S S}(\alpha)$ of starlike
and convex functions of order $0 \leq \beta<1$, and strongly starlike function of order $0<\alpha \leq 1$, respectively, which are defined by

$$
\begin{aligned}
\mathcal{S T}(\beta) & =\left\{f \in \mathcal{A}: \Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta, \quad z \in \Delta\right\}, \\
\mathcal{C} \mathcal{V}(\beta) & =\left\{f \in \mathcal{A}: \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta, \quad z \in \Delta\right\},
\end{aligned}
$$

and

$$
\mathcal{S S}(\alpha)=\left\{f \in \mathcal{A}:\left|\operatorname{Arg}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|<\frac{\pi}{2} \alpha, \quad z \in \Delta\right\}
$$

We also note that $\mathcal{S S}(1)=\mathcal{S T}(0)=\mathcal{S T}$ and $\mathcal{C} \mathcal{V}(0)=\mathcal{C} \mathcal{V}$ are the well-known classes of all normalized starlike and convex functions in Δ, respectively. Let $\mathcal{S}(a, b)$ denote the class of functions $f \in \mathcal{A}$ which satisfy the inequality

$$
a<\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<b \quad(z \in \Delta)
$$

for some real number a; $(0 \leq a<1)$ and some real number b; $(b>1)$ (See [8]).
Definition 1 ([5]). Let f and g be analytic in Δ. Then the function f is said to be subordinate to g in Δ, written by

$$
\begin{equation*}
f(z) \prec g(z), \tag{1.2}
\end{equation*}
$$

if there exists a function $\omega(z) \in \mathcal{B}$ such that $f(z)=g(\omega(z)) ;(z \in \Delta)$, where \mathcal{B} is the family of all Schwarz functions

$$
\begin{equation*}
\omega(z)=\sum_{n=1}^{\infty} w_{n} z^{n} \quad(|\omega(z)|<1, z \in \Delta) . \tag{1.3}
\end{equation*}
$$

From the definition of subordinations, it is easy to show that the subordination (1.2) implies that

$$
\begin{equation*}
f(0)=g(0) \quad \text { and } \quad f(\Delta) \subset g(\Delta) . \tag{1.4}
\end{equation*}
$$

In particular, if $g(z)$ is univalent in Δ, then the subordination (1.2) is equivalent to the condition(1.4).

Definition 2 ([12]). Let $\mathcal{G}(\alpha)$ denote the class of locally univalent normalized analytic functions f in Δ satisfying the condition

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<1+\frac{\alpha}{2} \quad(z \in \Delta)
$$

for some $0<\alpha \leq 1$.
Definition 3. In 1976, Noonan and Thomas [11] defined the $q^{\text {th }}$ Hankel determinant of the Taylor's coefficients of function $f \in \mathcal{A}$ of the from (1.1) for natural numbers n and q, as follows

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \tag{1.5}\\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right| \quad\left(a_{1}=1\right)
$$

The Hankel determinants $H_{2}(1)=a_{3}-a_{2}^{2}$ and $H_{2}(2)=a_{2} a_{4}-a_{3}^{2}$ are well-known as Fekete-Szeg \ddot{o} and second Hankel determinant functionals respectively. Further, Fekete and Szegö introduced the generalized functional $a_{3}-\delta a_{2}^{2}$, where δ is some real number. We will give the sharp upper bound for the second Hankel determinant $\left|H_{2}(2)\right|$, when f has lemniscate of Bernoulli domain.

Definition 4. Let \mathcal{P} be a class of the analytic functions p of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \quad(z \in \Delta) \tag{1.6}
\end{equation*}
$$

satisfying $\Re\{p(z)\}>0$ in the unit disc Δ.
Lemma 1.1 ([15]). Let $q(z)=\sum_{n=1}^{\infty} B_{n} z^{n}$ be analytic and convex univalent in Δ. If $p(z)=$ $\sum_{n=1}^{\infty} A_{n} z^{n}$ is analytic in Δ and satisfies the subordination $p(z) \prec q(z)$, then

$$
\left|A_{n}\right| \leq\left|B_{1}\right| \quad(n=1,2, \ldots)
$$

Lemma 1.2. [6, p.254] If the function $\omega \in \mathcal{B}$ given by (1.3). Then

$$
\begin{aligned}
& w_{2}=\xi\left(1-w_{1}^{2}\right) \\
& w_{3}=\left(1-w_{1}^{2}\right)\left(1-|\xi|^{2}\right) \zeta-w_{1}\left(1-w_{1}^{2}\right) \xi^{2}
\end{aligned}
$$

for some complex number ξ, ζ with $|\xi| \leq 1$ and $|\zeta| \leq 1$.
Lemma 1.3. [7, p.10] If the function $\omega \in \mathcal{B}$ given by (1.3), then

$$
\left|w_{2}-\mu w_{1}^{2}\right| \leq \max \{1,|\mu|\}
$$

Let us denote by \mathcal{Q} the class of functions f that are analytic and injective on $\bar{\Delta} \backslash E(f)$, where

$$
E(f)=\left\{\zeta: \zeta \in \partial \Delta \quad \text { and } \quad \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and are such that

$$
f^{\prime}(\zeta) \neq 0 \quad \text { for } \quad \zeta \in \partial \Delta \backslash E(f)
$$

Lemma 1.4. [10, p.24] Let $q \in \mathcal{Q}$ with $q(0)=1$ and let $p(z)=1+p_{1} z+\cdots$ be analytic in Δ with $p(z) \neq 1$. If $p \nprec q$ in Δ then there exits points $z_{0} \in \Delta$ and $\zeta \in \partial \Delta \backslash E(q)$ and there exits a real number $m \geq 1$ for which

$$
p\left(|z|<\left|z_{0}\right|\right) \subset q(\Delta), \quad p\left(z_{0}\right)=q(\zeta), \quad z_{0} p^{\prime}\left(z_{0}\right)=m \zeta q^{\prime}(\zeta)
$$

The purpose of this work is to define a new subfamily of \mathcal{P} related to a domain bounded by

$$
L B(\lambda)=\left\{\rho e^{i \varphi}: \quad \rho=\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda}, \quad-\frac{\lambda \pi}{2}<\varphi \leq \frac{\lambda \pi}{2}\right\}
$$

We present a new resolution to get the univalence from class functions $L B(\lambda)$. The curve $L B(\lambda)$ is composed of a base pattern symmetrical about real axis obtained for $-\lambda \pi / 2<\varphi \leq \lambda \pi / 2$. The classes $\mathcal{S}_{L}^{*}(\lambda)$ is introduced and its properties and its relevance to other classes presented. In the sequel, we get the extremal functions of class $\mathcal{S}_{L}^{*}(\lambda)$. Also, some examples are presented.

2 The class $\mathcal{S}_{L}^{*}(\lambda)$ and its properties

This section provides a detailed exposition of an analytic function that maps the unit disk onto a domain bounded by a lemniscate of Bernoulli and contained in a right halfplane.

Let

$$
\mathfrak{q}_{\lambda}(z)=(1+z)^{\lambda} \equiv \mathrm{e}^{\lambda \ln (1+z)} \quad(0<\lambda<1),
$$

where the branch of the power is chosen to be $\mathfrak{q}_{\lambda}(0)=1$; more explicitly,

$$
\begin{align*}
\mathfrak{q}_{\lambda}(z) & =1+\sum_{k=1}^{\infty} \frac{\lambda(\lambda-1) \cdots(\lambda-k+1)}{k!} z^{k}=1+\sum_{k=1}^{\infty} B_{k} z^{k} \tag{2.1}\\
& =1+\lambda z+\frac{\lambda(\lambda-1)}{2} z^{2}+\frac{\lambda(\lambda-1)(\lambda-2)}{6} z^{3}+\cdots \quad(z \in \Delta) .
\end{align*}
$$

We note that the set $\mathfrak{q}_{\lambda}(\Delta)$ lies in the region bounded by the right loop of the lemniscate of Bernoulli given by

$$
L B(\lambda)=\left\{\rho e^{i \varphi}: \rho=\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda}, \quad-\frac{\lambda \pi}{2} \varphi \leq \frac{\lambda \pi}{2}\right\} .
$$

Since by take $z=e^{i \theta} ;(\theta \in(-\pi, \pi))$, we have

$$
\mathfrak{q}_{\lambda}\left(e^{i \theta}\right)=\left(1+e^{i \theta}\right)^{\lambda}=\left(2 \cos \frac{\theta}{2}\right)^{\lambda} e^{i \frac{\lambda \theta}{2}}=\left(2 \cos \frac{\theta}{2}\right)^{\lambda}\left(\cos \frac{\lambda \theta}{2}+i \sin \frac{\lambda \theta}{2}\right) .
$$

Hence

$$
\Re\left\{\mathfrak{q}_{\lambda}\left(e^{i \theta}\right)\right\}=\left(2 \cos \frac{\theta}{2}\right)^{\lambda} \cos \frac{\lambda \theta}{2}=Q(\theta) \quad(-\pi<\theta<\pi) .
$$

So we can see that $Q(\theta)$ is well defined also for $\theta=\pi$. The function $Q(\theta) ;(-\pi<\theta \leq \pi)$ attains its minimal value when $\theta=\pi$, and maximum value when $\theta=0$.

If we take $\mathfrak{q}_{\lambda}\left(e^{i \theta}\right)=\rho e^{i \varphi}$, simple calculations show that $\varphi=\lambda \theta / 2$ and $\rho=\left(2 \cos \frac{\theta}{2}\right)^{\lambda}$. Therefore its boundary $\mathfrak{q}_{\lambda}\left(e^{i \theta}\right)$ in the polar coordinates will be as follows

$$
\begin{equation*}
\mathfrak{q}_{\lambda}\left(e^{i \theta}\right)=\left\{w=\rho e^{i \varphi}: \quad \rho=\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda}, \quad-\frac{\lambda \pi}{2}<\varphi \leq \frac{\lambda \pi}{2}\right\} . \tag{2.2}
\end{equation*}
$$

Thus from (2.2) we have $\left|\operatorname{Arg}\left\{\mathfrak{q}_{\lambda}\left(e^{i \theta}\right)\right\}\right|<\lambda \pi / 2$. Additionally, the right loop of the lemniscate of Bernoulli $L B(\lambda)$ is a boundary of the domain $\mathfrak{q}_{\lambda}(\Delta)$. Also note that $\mathfrak{q}_{\lambda}(\mathbb{D})$ is a domain which is symmetric about the real axis, starlike with respect to the point $\mathfrak{q}_{\lambda}(0)=1$, and satisfies $\mathfrak{q}_{\lambda}^{\prime}(0)=\lambda>0$. Also, $L B(\lambda)$ has tangential radial vector $\varphi= \pm \lambda \pi / 2$ (see Fig. 1.).

Lemma 2.1. The functions $\mathfrak{q}_{\lambda}(z)$ are convex univalent in Δ for each $0<\lambda<1$. Moreover $g_{\lambda}(z)=\left(\mathfrak{q}_{\lambda}(z)-1\right) / \lambda \in \mathcal{C} \mathcal{V}((1+\lambda) / 2)$. Also, if $|z|=r<1$, then

$$
\min _{|z|=r}\left|\mathfrak{q}_{\lambda}(z)\right|=\mathfrak{q}_{\lambda}(-r) \quad \text { and } \quad \max _{|z|=r}\left|\mathfrak{q}_{\lambda}(z)\right|=\mathfrak{q}_{\lambda}(r) .
$$

Proof. Let us consider

$$
g_{\lambda}(z)=\left(\mathfrak{q}_{\lambda}(z)-1\right) / \lambda \quad(z \in \Delta)
$$

Figure 1: image of unit circle under $\mathfrak{q}_{\lambda}(z)$ for $\lambda=\frac{1}{2}$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Then, we have

$$
\Re\left\{1+\frac{z g_{\lambda}^{\prime \prime}(z)}{g_{\lambda}^{\prime}(z)}\right\}=\Re\left\{\frac{1+\lambda z}{1+z}\right\}>\frac{\lambda+1}{2},
$$

so $g_{\lambda} \in \mathcal{C} \mathcal{V}((\lambda+1) / 2) \subset \mathcal{S T}$, so $\mathfrak{q}_{\lambda}(z)$ are convex univalent too for each $0<\lambda<1$. In order to prove the second part of lemma, let $\theta \in[0,2 \pi)$, then the function

$$
Q(\theta)=\left|\mathfrak{q}_{\lambda}\left(r e^{i \theta}\right)\right|=\left|1+r e^{i \theta}\right|^{\lambda}=\left(1+r^{2}+2 r \cos \theta\right)^{\frac{\lambda}{2}} \quad(0<r<1),
$$

attains its minimum at $\theta=\pi$ and maximum at $\theta=0$. This ends the proof.
Theorem 2.1. Let $\mathfrak{p}(z) \in \mathcal{H}$ with $\mathfrak{p}(0)=1$. If

$$
\mathfrak{p}(z) \prec \mathfrak{q}_{\lambda}(z), \quad(z \in \Delta),
$$

then

$$
\begin{equation*}
|\operatorname{Arg}\{\mathfrak{p}(z)\}|<\frac{\lambda \pi}{2}, \quad 0<\Re\{\mathfrak{p}(z)\}<2^{\lambda}, \quad(z \in \Delta) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mathfrak{p}^{\frac{1}{\lambda}}(z)-1\right|<1, \quad(z \in \Delta) \tag{2.4}
\end{equation*}
$$

Conversely, if $\mathfrak{p} \in \mathcal{P}$ with $|\operatorname{Arg}\{\mathfrak{p}\}|<(\lambda \pi) / 2$ and \mathfrak{p} satisfies (2.4), then $\mathfrak{p} \prec \mathfrak{q}_{\lambda}$ in Δ.

Proof. The subordination $\mathfrak{p} \prec \mathfrak{q}_{\lambda}$ with $\mathfrak{p}(0)=\mathfrak{q}_{\lambda}(0)$, and the geometric properties of $\mathfrak{q}_{\lambda}(\Delta)$ from Section 1, yield (2.3).

In order to prove the second part of theorem, since $p(z) \prec \mathfrak{q}_{\lambda}(z) ;(z \in \Delta)$, then

$$
\begin{equation*}
p(z)=(1+\omega(z))^{\lambda}, \quad(z \in \Delta) \tag{2.5}
\end{equation*}
$$

where $\omega \in \mathcal{B}$. From (2.5), we get

$$
\omega(z)=p^{\frac{1}{\lambda}}(z)-1, \quad|\omega(z)|<1, \quad(z \in \Delta)
$$

and finally assertion (2.4) as follows.
Conversely, for $\mathfrak{p} \in \mathcal{P}$ satisfy the condition (2.4), then we easily show that $\mathfrak{p}=\rho \mathrm{e}^{1 \varphi}$ lies in a domain bounded by lemniscate of Bernoulli $L B(\lambda)$. It completes the proof.

Definition 5. Let $\mathcal{S}_{L}^{*}(\lambda)$ denote the class of analytic functions $f \in \mathcal{A}$ satisfying the condition

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec \mathfrak{q}_{\lambda}(z), \quad(z \in \Delta) \tag{2.6}
\end{equation*}
$$

Geometrically, the condition (2.6) means that the quantity $z f^{\prime}(z) / f(z)$ lies in the region bounded by the right loop of the lemniscate of Bernoulli $L B(\lambda)$. Since a domain $\mathfrak{q}_{\lambda}(\Delta)$ is contained in a right half-plane, we deduce that $\mathcal{S}_{L}^{*}(\lambda)$ is a proper subset of a class of a starlike functions $\mathcal{S T}$. Additional properties of $\mathfrak{q}_{\lambda}(\Delta)$ yield:

$$
\begin{aligned}
& \mathcal{S}_{L}^{*}(\lambda) \subset \mathcal{S S}(\alpha) \quad \text { for } \quad \lambda \leq \alpha \leq 1, \\
& \mathcal{S}_{L}^{*}(\lambda) \subset \mathcal{S}(0, b) \quad \text { for } \quad b \geq 2^{\lambda} \text {. }
\end{aligned}
$$

Figure 2: The lemniscate of Bernoulli $\rho=\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda}$ and the circle $\rho=2^{\lambda} \cos \varphi$ for $\lambda=\frac{1}{3}$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Also, we have $L B(\lambda) \subset\left\{w:\left|w-2^{\lambda-1}\right|<2^{\lambda-1}\right\}$. The right-half of the lemniscate of Bernoulli γ_{1} and the circle $\gamma_{2}:\left(x-2^{\lambda-1}\right)^{2}+y^{2}=4^{\lambda-1}$ are presented in Fig. 2. Thus for $M \geq 2^{\lambda-1}$, we have

$$
(1+z)^{\lambda} \prec \frac{M+M z}{M-(M-1) z}, \quad(z \in \Delta) .
$$

Since the function $\frac{M+M z}{M-(M-1) z}$ is univalent in Δ, then

$$
\mathcal{S}_{L}^{*}(\lambda) \subset\left\{f \in \mathcal{A}:\left|\frac{z f^{\prime}(z)}{f(z)}-M\right|<M, \quad \text { for all } z \in \Delta\right\} .
$$

The structural formula for functions in the class $\mathcal{S}_{L}^{*}(\lambda)$ is as follows:

$$
\begin{equation*}
g \in \mathcal{S}_{L}^{*}(\lambda) \Longleftrightarrow g(z)=z \exp \left(\int_{0}^{z} \frac{p(t)-1}{t} \mathrm{~d} t\right) \quad \text { for some } p \prec \mathfrak{q}_{\lambda} . \tag{2.7}
\end{equation*}
$$

This above representation gives many examples of functions in class $\mathcal{S}_{L}^{*}(\lambda)$. The function $F_{\lambda, n}$ with definition

$$
\begin{align*}
F_{\lambda, n}(z) & =z \exp \left(\int_{0}^{z} \frac{\mathfrak{q}_{\lambda}\left(t^{n}\right)-1}{t} \mathrm{~d} t\right) \tag{2.8}\\
& =z+\frac{\lambda}{n} z^{n+1}+\frac{\lambda^{2}(n+2)-n \lambda}{4 n^{2}} z^{2 n+1} \\
& +\frac{\lambda\left(\left(2 n^{2}+9 n+6\right) \lambda^{2}-\left(6 n^{2}+9 n\right) \lambda+4 n^{2}\right)}{36 n^{3}} z^{3 n+1}+\cdots(z \in \Delta),
\end{align*}
$$

for $n=1,2, \ldots$ is extremal function for several problems in the class $\mathcal{S}_{L}^{*}(\lambda)$. For $n=1$ we have

$$
\begin{align*}
F_{\lambda}(z)=F_{\lambda, 1}(z) & =z \exp \left(\int_{0}^{z} \frac{\mathfrak{q}_{\lambda}(t)-1}{t} \mathrm{~d} t\right) \tag{2.9}\\
& =z+\lambda z^{2}+\left(\frac{3 \lambda^{2}-\lambda}{4}\right) z^{3}+\left(\frac{17 \lambda^{3}-15 \lambda^{2}+4 \lambda}{36}\right) z^{4}+\cdots .
\end{align*}
$$

Theorem 2.2. If a function f belongs to the class $\mathcal{G}(\lambda)$, then $f^{\prime} \prec \mathfrak{q}_{\lambda}$ in Δ. Also, f is univalent function in Δ.

Proof. Suppose that $f^{\prime}(z) \nprec \mathfrak{q}_{\lambda}(z)$ in Δ. Then by Lemma 1.4 there exist $z_{0} \in \Delta$ and $\zeta \in \partial \Delta$; $(\zeta \neq-1)$ such that

$$
f^{\prime}\left(z_{0}\right)=\mathfrak{q}_{\lambda}(\zeta), \quad z_{0} f^{\prime \prime}\left(z_{0}\right)=m \zeta \mathfrak{q}_{\lambda}^{\prime}(\zeta),
$$

for some $m \geq 1$. Hence

$$
\Re\left\{1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\}=1+m \lambda \Re\left\{\frac{\zeta}{1+\zeta}\right\}=1+\frac{m \lambda}{2} \geq 1+\frac{\lambda}{2},
$$

which contradicts the hypothesis $f \in \mathcal{G}(\lambda)$. Thus, we conclude that $f^{\prime}(z) \prec \mathfrak{q}_{\lambda}(z)$ for all $z \in \Delta$. From condition (2.3) we have $\Re\left\{f^{\prime}(z)\right\}>0$. Therefore f is univalent.

From (2.7) and from Theorem 2.2 and, we get the following corollary.
Corollary 2.3. Let $f \in \mathcal{G}(\lambda)$ for $0<\lambda<1$. Then the function

$$
g(z)=z \exp \left(\int_{0}^{z} \frac{f^{\prime}(t)-1}{t} \mathrm{~d} t\right)
$$

belongs to $\mathcal{S}_{L}^{*}(\lambda)$.
Example 1. The function $f(z)=z \exp (-A z)$ belongs in class $\mathcal{S}_{L}^{*}(\lambda)$ if $|A| \leq \frac{\lambda}{2+\lambda}$.

From the results in [9], equation (2.9), and Lemma 2.1, we have the following sharp estimates for function $f \in \mathcal{S}_{L}^{*}(\lambda)$.
Theorem 2.4. If $f \in \mathcal{S}_{L}^{*}(\lambda)$ and $|z|=r<1$, then

$$
\begin{gathered}
-F_{\lambda}(-r) \leq|f(z)| \leq F_{\lambda}(r), \\
F_{\lambda}^{\prime}(-r) \leq\left|f^{\prime}(z)\right| \leq F_{\lambda}^{\prime}(r), \\
|\operatorname{Arg}\{f(z) / z\}| \leq \max _{|z|=r} \operatorname{Arg}\left\{F_{\lambda}(z) / z\right\} .
\end{gathered}
$$

Equality holds for some $z \neq 0$ if and only if f is a rotation of F_{λ}. Also, If $f \in \mathcal{S}_{L}^{*}(\lambda)$, then either f is a rotation of F_{λ} or

$$
\left\{w \in \mathbb{C}: \quad|w| \leq-F_{\lambda}(-1)\right\} \subset f(\Delta) .
$$

Here $-F_{\lambda}(-1)$ is understood to be the limit of $-F_{\lambda}(-r)$ as r tends to 1 .
For the special case $\lambda=1 / 2$, results for functions belonging to the class $\mathcal{S}_{L}^{*}=\mathcal{S}_{L}^{*}(1 / 2)$ defined by

$$
\mathcal{S}_{L}^{*}=\left\{\rho e^{i \varphi}: \quad \rho^{2}<2 \cos (2 \varphi), \quad-\frac{\pi}{4}<\varphi<\frac{\pi}{4}\right\}
$$

and its generalizations can be found in $[1,2,3,13,16,17,18,19,20]$.

3 Logarithmic coefficient inequality for the function $f(z)$

Associated with each $f \in \mathcal{S}$ (see [5]) is well defined function

$$
\log \frac{f(z)}{z}=\sum_{n=1}^{\infty} 2 \gamma_{n} z^{n} \quad(z \in \Delta)
$$

and γ_{n} are called logarithmic coefficients of the function f.
Theorem 3.1. Let $f \in \mathcal{S}_{L}^{*}(\lambda)$. Then the logarithmic coefficients of f satisfy

$$
\left|\gamma_{n}\right| \leq \frac{\lambda}{2 n} \quad(n \geq 1)
$$

All the inequalities are sharp.
Proof. Let $f \in \mathcal{S}_{L}^{*}(\lambda)$. From Definition 5, we have

$$
\begin{equation*}
z\left(\log \frac{f(z)}{z}\right)^{\prime} \prec q(z)-1, \quad(z \in \Delta) \tag{3.1}
\end{equation*}
$$

The subordination relation (3.1) implies that

$$
\sum_{n=1}^{\infty} 2 n \gamma_{n} z^{n} \prec \sum_{n=1}^{\infty} B_{n} z^{n},
$$

where B_{n} given by (2.1). Applying Lemma 1.1, we get the inequality $2 n\left|\gamma_{n}\right| \leq\left|B_{1}\right|=\lambda$. To deduce the sharpness, by the definition $F_{\lambda, n}(z)$ and $\mathfrak{q}_{\lambda}(z)$, we have

$$
\begin{equation*}
z\left(\log \frac{F_{\lambda, n}(z)}{z}\right)^{\prime}=\mathfrak{q}_{\lambda}\left(z^{n}\right)-1 \Longleftrightarrow \sum_{k=1}^{\infty} 2 k \gamma_{k} z^{k}=\sum_{m=1}^{\infty} B_{m}\left(z^{n}\right)^{m} \tag{3.2}
\end{equation*}
$$

where $\gamma_{k} ;(k=1,2, \ldots)$ is logarithmic coefficients of $F_{\lambda, n}$ and B_{m} given in (2.1). Form (3.2), equating coefficients gives $2 n \gamma_{n}=B_{1}=\lambda$.

4 Fekete-Szegö and second Hankel determinant problems for the function class $\mathcal{S}_{L}^{*}(\lambda)$

In this section, we find the sharp bounds of Fekete-Szegö functional $a_{3}-\mu a_{2}^{2}$ and second Hankel determinant functional $a_{2} a_{4}-a_{3}^{2}$ defined for $f \in \mathcal{S}_{L}^{*}(\lambda)$ given by (1.1).

Theorem 4.1. let $f \in \mathcal{S}_{L}^{*}(\lambda)$ given by (1.1). Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{\lambda^{2}}{4}
$$

The inequalities are sharp.
Proof. Let the function f given by (1.1) be in the class $\mathcal{S}_{L}^{*}(\lambda)$. Then there exists a function $\omega \in \mathcal{B}$, such that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=(1+\omega(z))^{\lambda} \tag{4.1}
\end{equation*}
$$

Form (4.1), equating coefficients gives, after simplification

$$
\left\{\begin{array}{l}
a_{2}=\lambda w_{1} \tag{4.2}\\
a_{3}=\frac{\lambda}{2}\left(w_{2}+\frac{3 \lambda-1}{2} w_{1}^{2}\right) \\
a_{4}=\frac{\lambda}{3}\left(w_{3}+\left(\frac{5 \lambda-2}{2}\right) w_{1} w_{2}+\left(\frac{17 \lambda^{2}-15 \lambda+4}{12}\right) w_{1}^{3}\right)
\end{array}\right.
$$

Form (1.5) and (4.2) we have

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{\lambda^{2}}{12}\left|w_{1} w_{3}-3 w_{2}^{2}+(\lambda-1) w_{1}^{2} w_{2}+\left(\frac{7-13 \lambda^{2}-6 \lambda}{12}\right) w_{1}^{4}\right| .
$$

Using Lemma 1.2, we write the expression w_{2} and w_{3} in terms of w_{1} and without loss of generality assume that $x=w_{1}$ with $0 \leq x \leq 1$. Then from triangular inequality, we obtain

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{\lambda^{2}}{12}\left\{\left|\frac{13 \lambda^{2}+6 \lambda-7}{12}\right| x^{4}+|\lambda-1| x^{2}\left(1-x^{2}\right)|\xi|\right. \\
& \left.+3\left(1-x^{2}\right)^{2}|\xi|^{2}+4 x\left(1-x^{2}\right)\left(1-|\xi|^{2}\right)+4 x^{2}\left(1-x^{2}\right)|\xi|^{2}\right\}=g(|\xi|) .
\end{aligned}
$$

A function $g(|\xi|)$ is increasing on the interval $[0,1]$. Thus $g(|\xi|)$ attains its maximum at $|\xi|=1$, i.e. $g(|\xi|) \leq g(1)$. Consequently

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{\lambda^{2}}{12}\left\{3-(\lambda+1) x^{2}+\left(\lambda-2+\left|\frac{-13 \lambda^{2}-6 \lambda+7}{12}\right|\right) x^{4}\right\},
$$

also,

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| & \leq \begin{cases}\frac{\lambda^{2}}{12}\left\{3-(\lambda+1) x^{2}-\left(\frac{13 \lambda^{2}-6 \lambda+17}{12}\right) x^{4}\right\} & : 0<\lambda \leq \frac{7}{13} \\
\frac{\lambda^{2}}{12}\left\{3-(\lambda+1) x^{2}-\left(\frac{-13 \lambda^{2}-18 \lambda+31}{12}\right) x^{4}\right\} & : \frac{7}{13} \leq \lambda<1,\end{cases} \\
& \leq \frac{\lambda^{2}}{4}
\end{aligned}
$$

The function $F_{\lambda, 2}$ in (2.8), shows that the bound $\lambda^{2} / 4$ is sharp.

Theorem 4.2. let $f \in \mathcal{S}_{L}^{*}(\lambda)$ given by (1.1). Then we have sharp inequalities

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq \begin{cases}-\lambda^{2}\left(\delta+\frac{1-3 \lambda}{4 \lambda}\right) & : \quad \delta<\frac{3(\lambda-1)}{4 \lambda} \\ \frac{\lambda}{2} & : \frac{3(\lambda-1)}{4 \lambda} \leq \delta \leq \frac{1+3 \lambda}{4 \lambda} \\ \lambda^{2}\left(\delta+\frac{1-3 \lambda}{4 \lambda}\right) & : \delta>\frac{1+3 \lambda}{4 \lambda}\end{cases}
$$

Proof. Form equations (4.2), we have

$$
\left|a_{3}-\delta a_{2}^{2}\right|=\frac{\lambda}{2}\left|w_{2}-\left(\frac{4 \delta \lambda-3 \lambda+1}{2}\right) w_{1}^{2}\right| .
$$

Applying Lemma 1.3 with $\mu=(4 \delta \lambda-3 \lambda+1) / 2$ gives the inequalities. Equality is attained in the second inequality for $f(z)=F_{\lambda, 2}(z)$ given by (2.8), and by the function $f(z)=F_{\lambda}(z)$ given by (2.9) in other cases.

Let the function F be defined by

$$
\begin{equation*}
F(z)=\frac{z}{f(z)}=1+\sum_{n=1}^{\infty} b_{n} z^{n} \quad(z \in \Delta) \tag{4.3}
\end{equation*}
$$

for $f \in \mathcal{A}$ given by (1.1).
Theorem 4.3. Let $f \in \mathcal{S}_{L}^{*}(\lambda)$ and $F(z)=z / f(z)$ given by (1.1) and (4.3), respectively. Then we have sharp inequalities

$$
\left|b_{2}-\delta b_{1}^{2}\right| \leq \begin{cases}-\lambda^{2}\left(\delta-\frac{\lambda+1}{4 \lambda}\right) & : \quad \delta<\frac{\lambda-1}{4 \lambda} \\ \frac{\lambda}{2} & : \quad \frac{\lambda-1}{4 \lambda} \leq \delta \leq \frac{\lambda+3}{4 \lambda} \\ \lambda^{2}\left(\delta-\frac{\lambda+1}{4 \lambda}\right) & : \quad \delta>\frac{\lambda+3}{4 \lambda}\end{cases}
$$

Proof. Let $f \in \mathcal{S}_{L}^{*}(\lambda)$ given by (1.1) and $F(z)=z / f(z)$ and a computation gives

$$
\begin{equation*}
F(z)=\frac{z}{f(z)}=1-a_{2} z+\left(a_{2}^{2}-a_{3}\right) z^{2}+\cdots \quad(z \in \Delta) \tag{4.4}
\end{equation*}
$$

Form equations (4.3) and (4.4), we have

$$
\begin{cases}b_{1} & =-a_{2} \tag{4.5}\\ b_{2} & =a_{2}^{2}-a_{3}\end{cases}
$$

Form equations (4.2) and (4.5), we have

$$
\left|b_{2}-\delta b_{1}^{2}\right|=\frac{\lambda}{2}\left|w_{2}-\frac{w_{1}^{2}}{2}(\lambda+1-4 \delta \lambda)\right| .
$$

Applying Lemma 1.3 with $\mu=(\lambda+1-4 \delta \lambda) / 2$ gives the inequalities. The function $f(z)=$ $F_{\lambda, 2}(z)$ given by (2.8), and function $f(z)=F_{\lambda}(z)$ given by (2.9), shows that the bounds $\lambda / 2$ and $\pm \lambda^{2}(\delta-(\lambda+1) /(4 \lambda))$ are sharps, respectively.

Let the function f^{-1} be defined by

$$
\begin{equation*}
f^{-1}(w)=w+\sum_{n=2}^{\infty} A_{n} w^{n} \quad\left(|w|<r_{0}(f)\right), \tag{4.6}
\end{equation*}
$$

where $r_{0}(f) \geq-F_{\lambda}(-1)$ is the radius of the Koebe domain of the function f in the class $\mathcal{S}_{L}^{*}(\lambda)$. Then

$$
f^{-1}(f(z))=z ; \quad(z \in \Delta) \quad \text { and } \quad f\left(f^{-1}(w)\right)=w ; \quad\left(|w|<r_{0}(f)\right) .
$$

The inverse function f^{-1} is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{4.7}
\end{equation*}
$$

Theorem 4.4. let $f \in \mathcal{S}_{L}^{*}(\lambda)$ and $f^{-1}(z)$ given by (1.1) and (4.6), respectively. Then we have sharp inequalities

$$
\left|A_{3}-\delta A_{2}^{2}\right| \leq \begin{cases}-\lambda^{2}\left(\delta-\frac{5 \lambda+1}{4 \lambda}\right) & : \delta<\frac{5 \lambda-1}{4 \lambda} \\ \frac{\lambda}{2} & : \frac{5 \lambda-1}{4 \lambda} \leq \delta \leq \frac{5 \lambda+3}{4 \lambda}, \\ \lambda^{2}\left(\delta-\frac{5 \lambda+1}{4 \lambda}\right) & : \delta>\frac{5 \lambda+3}{4 \lambda}\end{cases}
$$

Proof. Form (4.6) and (4.7), we have

$$
\left\{\begin{align*}
A_{2} & =-a_{2}, \tag{4.8}\\
A_{3} & =2 a_{2}^{2}-a_{3}
\end{align*}\right.
$$

Form (4.2) and (4.8), we have

$$
\left|A_{3}-\delta A_{2}^{2}\right|=\frac{\lambda}{2}\left|w_{2}-\frac{w_{1}^{2}}{2}(5 \lambda+1-4 \delta \lambda)\right| .
$$

Applying Lemma 1.3 with $\mu=(5 \lambda+1-4 \delta \lambda) / 2$ gives the inequalities. The inequality is sharp for the function

$$
f(z)=\left\{\begin{array}{lll}
F_{\lambda, 2}(z) & : & \frac{5 \lambda-1}{4 \lambda} \leq \delta \leq \frac{5 \lambda+3}{4 \lambda}, \\
F_{\lambda}(z) & : & \delta \in\left(-\infty, \frac{5 \lambda-1}{4 \lambda}\right) \cup\left(\frac{5 \lambda+3}{4 \lambda}, \infty\right) .
\end{array}\right.
$$

References

[1] R. M. Ali, N. E. Cho, N. K. Jain and V. Ravichandran, Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination. Filomat 26(3), 553-561 (2012)
[2] M. K. Aouf, J. Dziok and J. Sokół, On a subclass of strongly starlike functions. Appl. Math. Comput. 24(1), 27-32 (2011)
[3] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane. Appl. Math. Comput. 218(11), 6557-6565 (2012)
[4] D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions. J. London Math. Soc. 2(1), 431-443 (1969)
[5] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259. Springer, New York (1983)
[6] R. J. Libera and E. J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in \mathcal{P}, Proc. Amer. Math. Soc. $87(2)(1983)$ 251-257.
[7] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 20(1), 8-12 (1969)
[8] K. Kuroki and S. Owa, Notes on new class for certain analytic functions. Adv. Math. Sci. J. 1(2), 127-131 (2012)
[9] W. Ma and D. Minda, A unied treatment of some special classes of univalent functions, in Proc. Conf. on Complex Analysis, Tianjin, 1992, Conference Proceedings and Lecture Notes in Analysis, Vol. 1 (International Press, Cambridge, MA, 1994) 157-169.
[10] S. S. Miller and P. T. Mocanu, Differential subordinations: theory and applications, in: Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York, Basel, (2000)
[11] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions. Trans. Amer. Math. Soc. 223, 337-346 (1976)
[12] M. Obradović, S. Ponnusamy and K. J. Wirths, Coefficient characterizations and sections for some univalent functions. Sib. Math. J. 54(4), 679-696 (2013)
[13] E. Paprocki and J. Sokół, The extermal problems in some subclasses of strongly functions. Folia Scient. Univ. Tech. Resoviensis 20, 89-94 (1996)
[14] M. I. Robertson, On the theory of univalent functions. Appl. Math. 374-408 (1936)
[15] W. Rogosinski, On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 2(1), 48-82 (1945)
[16] J. Sokół, On application of certain sufficient condition for starlikeness. J. Math. Appl. 30, 131-135 (2008)
[17] J. Sokół, On some subclass of strongly starlike functions. Demonstr. Math. 31(1), 81-86 (1998)
[18] J. Sokół, Coefficient Estimates in a Class of Strongly Starlike Functions. Kyungpook Math. J. 49(2), 349-353 (2009)
[19] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions. Folia Scient. Univ. Tech. Resoviensis 19, 101-105 (1996)
[20] J. Sokół and D. K. Thomas, Further Results on a Class of Starlike Functions Related to the Bernoulli Leminscate. Houston J. Math. 44, 83-95 (2018)

Vali Soltani Masih Department of Mathematics, Payame Noor University, Tehran, Iran
E-mail: masihvali@gmail.com

Ali Ebadian Department of Mathematics, Faculty of science, Urmia University, Urmia, Iran E-mail: ebadian.ali@gmail.com

Janusz Sokół College of Mathematics and Natural Sciences, University of Rzeszów, Prof. Pigonia Street 1, 35-310 Rzeszów, Poland

E-mail: jsokol@ur.edu.pl

