TAMKANG JOURNAL OF MATHEMATICS
Volume 33, Number 3, Autumn 2002

BEST LP-APPROXIMATION OF GENERALIZED BIAXIALLY
SYMMETRIC POTENTIALS OVER CARATHEODORY DOMAINS
IN CN HAVING SLOW GROWTH

DEVENDRA KUMAR

Abstract. Let F be a real valued generalized biaxially symmetric potentials (GBASP) defined
on the Carathéodory domain on CN. Let L7 (D) be the class of all functions F' holomorphic on D
such that || F' ||p,p= [fD | F|P du]%. Where p is the positive finite, Boral measure with regular
asymptotic distribution on CV. For F € L% (D), set EY(F) = inf{|| F — P |[p,p: P € Hyn}, Hn
consist of all real biaxisymmetric harmonic polynomials of degree at most 2n. The paper deals
with the growth of entire function GBASP in terms of approximation error in Lﬁ—norm on D.
The analysis utilizes the Bergman and Gilbert integral operator method to extend results from
classical function theory on the best polynomial approximation of analytic functions of several
complex variables. Finally we prove a generalized decomposition theorem in a new way. The
paper is the generalization of the concepts of generalized growth parameters to entire functions

on Carathéodory domains on C™V (instead of entire holomorphic functions on C) for slow growth.

1. Introduction

If f has a unique expansion of the form f = 77 / P,(z), where P,(z) are homoge-
neous polynomials of degree at most 2n on CV and e* denotes the vector (1,0,...,0) in
RN then for u € C, there exists a unique entire function f* on C such that f*(u) =
flue*) = 07 Po(ue*) = 300 Pu(e*)u®™. Let f*(2) = Yoo, Pa(e*)z?", this power
series converges for all real and hence all complex z so f* is entire function. The unique-
ness is also clear, since entire functions that agree on the real axis are identical. This
fact has been used to deduce theorems for entire functions on CV from classical results
about entire functions on C.

Let F' = F(x,y) be real valued regular solution to the generalized biaxially symmetric
potential equation
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F =0, Oé>6>—§, (1.1)
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subject to the Cauchy data F,(0,y) = Fy(z,0) = 0, along the singular lines in Z%”B :
lz >+ |y |2< R?, the open hypersphere of radius R, where | z |= (23 +23+- - +2%)"/?,
Ly 1= (yF + 45+ +y3)2

These solutions, called the generalized biaxially symmetric potentials (GBASP) can
be expanded in E%ﬁ uniquely as

(oo}
y) =Y a;R;’ (x,y)
j=0
in terms of complete set

(@ —y?)

($2+y) /Paﬁ() j:071727"-7

R (z,y) = (a® +y*) P°

of biaxisymmetric harmonic potentials and P]f"’ﬁ are Jacobi polynomials ([1],[11]).
Let the operator mapping unique associated even analytic functions

o0
= Z P, (e
n=0

on to GBASP

oo

ZPn YRYP(z,0)

where F*(z,0) = F(ze*,0) and Pn(e*) = ay, such that no element of the sequence
{an}22, is zero.

The above mapping defined as in ([8], [9]) from Koornwinder’s integral for Jacobi
polynomials. For details (see [1]). The local function elements F* and f* are continued
harmonically /analytically by contour deformation using the Envelope Method[2]. The
Envelope Method([2], [3]) establishes that the GBASP is regular in the hypersphere if
and only if its associate is analytic in the polydisc. On the singular lines y = 0, the
identity.

f(ze") = F(ze",0), |z |<R

can be analytically continued even associate as
[ (z) = f(ze*) = F(ze*,0) = F*(2,0), |z]|<R.

The GBASP are natural extension of harmonic or analytic functions. Hence we anticipate
properties similar to those of the harmonic functions found from associated analytic even
f on CV, by taking Ref, the real part of f.

The maximum module of GBASP and associate are defined as in complex function
theory [10].

M(f ) = max | £(2)].

M(Fr) = max | Fa.y)|.
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Let B denote a Carathéodory domain that is a bounded simply connected domain
such that the boundary of B coincides with the boundary of the domain lying in the
complement of the closure of B and containing the point co. In particular, a domain
bounded by a Jordan Curve is a Carathéodory domain. Let LF (B) and I},(B), 1 <p < o0
denote the class of GBASP F' and its associate f holomerphic on B such that

17155 =[ [ 1FCOP ] <.

1= [ [ 15 P ) <o

where these norms are understood to be sup.cp | F'(2,0) |, sup,cp | f | for p = 0o and
|| . [|5,p denotes the LP norm and [}-norm for F' and f, respectively. For f € I£(B), we
define b!,s called the Fourier Coefficients of f as

bnz/Bf(Z)pn(z,u)du- (1.1)

Also 0y, = [ Pn(2, W)Pm (2, w)dp,

where 6! = 1 for m = n and 4;;, = 0 otherwise. Since if we consider the monomials
{2} to be ordered lexicographically. By ([7], Prop 1), we may apply the Gram. Schmidt
orthogonalization procedure to monomials and obtains orthonormal polynomials denoted
by pn(z) = pn(z,1). So {pn(z,p)} is a complete orthonormal sequence of polynomials.
pn(2z) being real even polynomial of degree at most 2n. It is known ([7] Corollary of
Lemma 5) that f € [)(B) is entire if and only if

lim | b, |*=0.

n—o0

Moreover, f*(z) = Y o bupn(2) holds in CV.
Now for p = oo, the best polynomial approximation error for F (GBASP) and its
associate f is defined as

en(f) = en(f, B) =if{|| f =7 [, € hn}, n=0,1,...,

where
| f = ||= sup{| f(z) — =(2) [}= € RV,
r€EB
and
E.(F) = E,(F,B) =inf{|| F— P||,P € H,}, (1.2)
where

| F~Pll= sup | F(z¢",0) — P(ze",0) |.
ze*EB

The set h,, contains all real homogeneous polynomials of degree at most 2n and the set
H,, contains all real biasixymmetric harmonic polynomials of degree 2n. The operators
K, and K;g [8] establish one-one equivalence of the sets h,, and H,,.

Let L° denote the class of functions ¢(z) satisfying conditions (i) and (ii):
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(i) ¢(x) is defined on [a, 00); is positive, strictly increasing, differentiable and ¢(z) — oo
as T — 00.

(i) limn— oo ¢[$(}‘I:3($))] =1,
for every function ¢(x) such that p(r) — 0 as z — cc.
Let A be the class of function ¢(z) satisfying (i) and (iii):

(iil) limgy_yeo i((cj)) =1, for every 0 < ¢ < oo.
Let 2 be the class of functions ¢(z) satistying (i) and (iv):

(iv) There exists a d(z) € A and xg, K; and K> such that

d(¢(x))
0 <K= G5 (0g )

< Ky <oo, Vr>xg-

Also, let Q be the class of functions ¢(z) satisfying (i) and (v):
(v) limg—o0 % =K,0< K < .
The generalized growth parameters of an entire function GBASP F™* are defined as

swp  a(logM(F*,r))  pla,a, F¥)

lim I ,
r—>00
inf a(logr) Ma, a, F¥)

where a(z) belongs to either © or Q.

Definition. An entire function F* is said to be regular growth if 1 < A«,a, F*) =
pla, o, F*) < oo.

Following the reasoning of McCoy|8], it can be shown that generalized orders of entire
GBASP and its associate are same. McCoy([8], [9]) has characterized classical order and
type of entire GBASP in terms of approximation error in LP-norm on [-1,1] in single
complex variable. In this paper we extend the results of McCoy to arbitrary domains
and generalized growth parameters in C. We identify those GBASP, F* € LE(B) that
harmonically continue as an entire function GBASP. The characteristic feature follows
from the rate of convergence of a sequence of best GBASP polynomial approximates to
F*in L% (B) and sup norms. The generalized growth parameters of an entire GBASP F*
have been characterized in terms of the approximation error Ef (F*) in L¥, and sup norms
on Carathéodory domains in CV. In the last we prove the generalized decomposition
theorem in a new way. Our results apply satisfactorily to entire GBASP of slow growth
and these results are the generalization of the concepts of generalized growth parame-
ters to entire functions on Carathéodory domains in CV (instead of entire holomorphic
functions on C).

We shall use the following notations throughout the paper.

1. 9,(z) = max(1,¢) if a(z) € Q,

=n+¢ ifalz) €,
we shall write ¥(&) for ¥ (£).
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2. G[z,c] = a tca(z)], c is a positive constant.

2. Auxiliary Results

Let B* be the component of the compliment of the closure of the Carathéodory
domain B that contains the point oco. Set B, = {z :| ¢(z) |= r,r > 1}, where the
function w = ¢(z) maps B* conformally on to | w |> 1 such that ¢(c0) = oo and
¢'(c0) > 0.

Lemma 1. If F* be entire function GBASP having generalized growth parameters
pla,a, F*) and Mo, o, F*). Then

a(log M(F*,r))

li = F
m Sup == o) pla,a, F7)
log M (F*
and lim infw = Na,a, F*)?,

r—00 a(logr)
where M (F*,r) = max.cp, | F*(z,0) |-

Proof. By (6], Lemma 1) the lemma follows for the associate f*. Using the reasoning
of McCoy][8], it can be easily seen that generalized orders of entire GBASP F* are same
as f*. Hence the proof is completed.

Lemma 2. If F*(z,0) be a real valued entire function GBASP defined as earlier.
Then

p=(a,a, F*) =9(H) and \(«, o, F*) = (¥), where (2.1)

H =limsup a(v(r)
oo a(logr)

and 6 =liminf o(v(r))
r—oo a(logr)

’

and v(r) denote the rank of mazimum term of F* on B.
Proof of this lemma follows on the lines of ([5], Thm.3).

Lemma 3. If F* € LE(B), 1 < p < oo be the restriction to B of an entire function
GBASP having generalized growth parameters p(«, «, F*) and M«, «, F*). Then, g(z) =
> o bnz®™, by,s are given by (1.1) is also an entire function.

Further, we have

pla, o, F*) = pa, a, g) and Ao, a, F*) = Ma, a, g).
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Lemma 4. If F* € LE(B), 1 < p < 0o be the restriction to B of an entire function
GBASP having generalized growth parameters p(a, a, F*) and Ao, a, F*). Then, ¢'(z) =
oo o EE(F*)z" is also an entire function.

Further, we have

pla, o, F*) = p(a, o, g") and Mo, o, F*) = Mo, a, ¢').

Proof of Lemmas 3 and 4. By the application of ([8], Thm.1) we can see that
F* is entire if and only if its associate f* is entire. These lemmas follows in the same
manner as ([6], Lemma 2, 3) for the associate f* and hence holds for F™*.

3. Main Results

Theorem 1. If F* € L% (B), 1 < p < oo be the restriction to B of an entire function

GBASP having generalized order p(a,a, F*) and generalized lower order A a, a, F*).
Then

(i) ple,a, F7) = 9(L)
(i) ple, a, F*) = 9(L7),

where L = lim sup a(n)

w5 (g B () BR(E)

a(n)

and L* = limsup
n—00 a( — %logEﬁ(F*))

(iii) Ma, a, F*) > ("), where

a(n)

I' =liminf .
noo a( - %logEﬁ(F*))
(iv) If we take a(z) = ala) on (—oo,a), then N a,a, F*) > ¢

(@),

a(n)

[* = liminf

n—00 a(log(Eﬁ_l(F*)/Eg(F*)))'

Theorem 2. If F* € L}(B), 1 < p < 0o be the restriction to B of an entire function
GBASP having generalized order p(a,a, F*) and generalized lower order A\(«, «, F*). If
EP(F*)/EP_|(F*) is nondecreasing. Then

(i) plo, o, F*) = 9(L) = I(L*)
(i) Ao, o, F*) = 9(l") = 9(0*).



LP-APPROXIMATION OF GENERALIZED BIAXIALLY SYMMETRIC POTENTIALS 229

Theorem 3. If F* € L}(B), 1 < p < 0o be the restriction to B of an entire function
GBASP having generalized lower order \(a,a, F*). Then, (i) if a(z) € Q, we have

Ma, a, F*) = max[d¢(I")] (3.1)

{n&}
and, further, if we take a(x) = a(a) on (—o00,a), then

A(aa «, F*) = ?}2)}?[05(”*)]: (32)

where

_ o ea(ng—r)
§=¢&(n) —hkfgg}fma

1" =1"(ny) = liminf 1)
oo a( — nik log EX, (F*))

and " =liminf a(n_1) .
" (o log(BR,, (F*) /R, (7))

N —Nk—1

The mazimum in (3.1) and (3.2) is taken over all increasing sequence {ny} of positive
integers.

Further, if {n,,} is the sequence of principal indices of the entire function ¢'(z) =
S o EE(F*)z*" and a(ny,) & a(nmi1) as — oo, then (3.1) and (3.2) also hold for
a(r) € Q.

Proof of Theorems 1, 2, 3. These theorems follows easily from ([5], Thms 4-6,
Lemma 1) and Lemma 4 of this paper.

For F* € L}(B), 1 < p < oo, let {ny}, no = 0 be a sequence of positive integers such
that

EY (F*) > Eb (F7) and EL(F*) = EF _ (F7), for np_1 <n <ng. (3.3)

Ne—1 Ne—1
k=1,2,...

We now prove a theorem that shows how this sequence influences the growth of an entire
GBASP on CV.

Theorem 4. If F* € L}(B), 1 < p < 0o be the restriction to B of an entire function
GBASP and 0 and H be defined as in (2.1). Then
(rur,)

9 < Hliminf -
- k—o00 Oé(’nk+1)
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Proof. Let R = likm inf D‘(”’“)). If P > R, there exists a sequence {c(k)} such that
—00

o(Np41
a(neky) < Pa(neg)+1). Let ry be a value of r at which v(r) jumps from a value less than
or equal to n.(¢) to a value greater than or equal to n.(;)11. Since a(v(r;—0)) < a(ny)) <

Pa(ney+1) < Pa(v(ry+0)), we have § < lim sup alvlri=0)  plim sup alv(rit0) < pr

oo a(logr) o0 a(log r)
Since this inequality is true for every P > R, so we have § < PH. This proves the
theorem.
The following Corollaries follows easily from Theorem 4.

Corollary 1. If F* € LE(B), 1 < p < oo be the restriction to B of an entire
function GBASP having generalized growth parameters p(a, a, F*) and Ao, o, F*). Then
fora e,

(k)

(0]
Ma,a, F*) < p(a, a, F*) lim inf ———| 34
(@,0,F7) < plov, ) lyminf P (3.4
and for a €
(Mo o, F*) — 1) < (p(a, @, F*) — 1) lim inf —2) (3.5)

k— 00 Oz(nk+1) -

where ny, is defined by (3.3).

Corollary 2. If F* € LY(B), 1 < p < oo be the restriction to B of an entire
function GBASP with generalized regular growth having generalized order p(b < p < 00)
then a(ng) ~ a(ngy1) as k — 0o, b being defined asb=0, ifa € Q andb=1, ifa € Q.

Remark. (3.4) generalizes a result of Juneja, Kapoor and Bajpai [4]

Corollary 3. F* € L1(B), 1 < p < oo be the restriction to B of an entire function
GBASP having generalized order p. Let {ny} be the sequence of principal indices and
{&(nk)} be the jump points of the rank v(r).

Then p(a, o, F*) = 9(U), where

U = limsup o)

koo log(¢(mi)))

Now we prove a decomposition theorem.

Theorem 5. Decomposition Theorem. If F* € LF(B), 1 < p < oo, be the
restriction to B of an entire function GBASP having generalized growth parameters
pla,a, F*) and XN a, o, F*) and p* be a number such that A(a, a, F*) < p* < p(a, a, F*),
then F*(z,0) = g*(z,0) + h*(z,0) where generalized order of g*(z,0) in less than or equal
to p* and h*(z,0) = >_po, Pu(e*)z™ (P (e*) # 0 for all k) satisfies

... a(my)
Ma,a, F*) > p* liminf ————. 3.6
( ) 2 p” limin Y p— (3.6)
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Proof. Let g*(z,0) = > po,drz", and further dy = Py(e*) if log | Pe(e*) |<
—kG|k, c] where ¢ = ﬁ, A being equal to 1 if & € Q and 0 if & € . Then g*(z,0)
is an entire function. It follows easily that the generalized order p* of ¢g*(z,0) satisfies
p* =9(L) <I(u* — A) = p*. Now, let h*(z,0) = F*(2,0) — g*(2,0) = Y1, Pr(e*)2™*
and put Ay =| Pj(e*) |. Then,

log A > —mkG[mk,c], (37)
Let a € 2, then for r; < r < 741, by Cauchy inequality,
log M(F™*,r) > log A + my, logr, (3.8)

Choose logry, = 1+ G[my, c]. By (3.7) and (3.8) we get
log M(F*,r) > —mG[my, c] + mg(1 + G[my, c]) = my,.

Hence, log M(F*,r) >a™! Ea{IOg (%k)}]:
allog M(F*,r) _ Laflog(2))
a(logr) a(log(ryt1))’

a(log M(F*,r)) 1_a(mg)
a(log ) ca(meyr)”

Proceeding to limits we get A(a, o, F*) > u* likm inf
—00

or, in view of (iii),
a(my)
a(mp41)*

Now let a € Q. Then for r;, < r < rgyy, choose logry = ¢ exp{a(G[my,c])} +
G[mg,c]. By (3.7) and (3.8) we have

log M(F*,r) > —mG[my, c] + ¢ my exp{a(G[my, c])} + miG[my, c].
= ¢ my exp{a(G[my,])}.
=

a(log M (F*,r)) > alc my exp{G[my,c|}).

Since a € Q) we get a(log M (F*,r)) > alc my) + a{G[my, ]}z
da(z) |
d(log z) v=a*(m)

where ¢(my) < z* < ¢ my exp{a(G[my, c])},which gives

a(log M (F*,r)) S a(mg)(1+c)
a(logr) a(logresr)

Since a(log(ri+1)) ~ ca(myy1). Hence

a(log M(F*,r)) _ a(mg)(1l+c)
a(logr) ca(mpy41)

a(my)

= (u* +5)a(mk+1) .
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Proceeding to limits, we get A(a, a, F*) > p* liminf a?r(nm’“)). Hence the proof is com-
k—o0 kt1
pleted.
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