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τ -Atomicity and Quotients of Size Four

Richard Erwin Hasenauer and Bethany Kubik

Abstract. Given a ring R, an ideal I of R, and an element a ∈ I , we say a = λb1 · · · bk is a
τI-factorization of a if λ is any unit and b1 ≡ · · · ≡ bk (mod I). In this paper, we investigate
the τI-atomicity of PIDs with ideals whereR/I has size four.

1 Introduction

Originally introduced by [1], τ -factorization is a generalized form of factorization in which all
factors of the factorizationmust satisfy a relation. One of themost natural relations is to insist that
all factors of a factorization be equivalent modulo a fixed ideal I , which is called τI-factorization.
The first appearance in the literature in on τ -factorization can be found in [3]. It is further studied
in [2, 4, 5, 8, 10]. In this paper, we ask, given any PID, what is the smallest quotient such thatR/I

fails to be τI-atomic. We show that it is possible to construct a PID, R with an ideal I , such that
|R/I| = 4 and R fails to be τI-atomic. We also show that one can find particular PIDs R and
ideals I ⊂ R such R is τI-atomic regardless of the size of the quotient. We begin with the more
general definition of τI-factorization.

Let R is a commutative domain with nonzero identity and I an ideal of R, for a ∈ R we
say a = λb1 · · · bk is a τI -factorization of a if b1 ≡ · · · ≡ bk (mod I) and λ is any unit from
the domain. Recall, λ ∈ R is a unit if there exists a λ′ ∈ R such that λλ′ = 1. We say that a
is a τI -atom if all τI-factorizations of a are length one, that is, all τI-factorizations of a are of the
form a = λ(λ−1a) where λ is a unit in R. We say R is τI -atomic if every non-zero non-unit has
a τI-factorization into a finite product of τI-atoms. For example, if we consider R = Z with the
principal ideal I = (2), then 20 = 2 · 10 is a τI-factorization, whereas 20 = 4 · 5 is not since 4
and 5 are of different parity. Moreover 20 = 2 · 10 is an τI-atomic factorization of 20, as both 2
and 10 are τI-atoms. More information about τI-factorizations in Z can be found in [4, 5]. It is
in this spirit that we extend the study of τI-factorization to any PID.
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On the surface, τ -factorization may seem like just another generalization of factorization.
This however, is far from the truth, as most if not all factorization being studied can be thought of
in terms of τ -factorization. For example if one takes I = R, then τI-atomic factorization is just
the traditional factorization of elements into atoms or primes. Other forms of factorization, such
as comaximal factorization (studied in [6]) is also generalized by τ -factorization.

We are interested to know what effect the size of R/I has, if any, on τI-factorization. In
particular, we are focusing on the smallest size of R/I such that R is not necessarily τI-atomic.
This occurs when |R/I| = 4. We leave to the reader to verify that if |R/I| = 2, or 3, then R is
always τI-atomic. The only quotient rings that are commutative with unity and are of size 2 and
3 are Z2 and Z3 respectively. The arguments are simple variations of the lemmas we present. At
the end of the paper we show thatR/I can have varying sizes and still be τI-atomic. In particular
|R/I| can be infinite.

In the problems and solutions section of theOctober 1964 edition of theAmericanMathemat-
ical Monthly [11], it was proven that there are 11 rings with four elements. Of these 11, there are
four commutative rings with identity. These rings areZ4, F4,Z2[x]/(x

2+x), andZ2[x]/(x
2+1).

These four rings correspond to the four cases that require our scrutiny.

2 Main Results

For this paper, we focus on the instances whereR is a PID and I is an ideal ofR with |R/I| = 4.
We show that under very specific circumstances it is possible for R to not be τI atomic. The
interplay between units ofR andR/I requires much attention as we will see. We will also see that
having equivalence classes void of primes fromR will also play a crucial role. The exact theorem
we prove is presented below followed by several lemmas leading to the result.

Theorem 2.1. Let R be a PID and I and ideal of R with |R/I| = 4. R is τI -atomic if and only if
R/I fails to satisfy all of the following conditions:

1. R/I ∼= F4;

2. the only units of R are contained in the 1̄ class of R/I ; and

3. R contains a prime in the two classes different from the 0̄ and 1̄ classes.

We begin with a brief note about units.

Remark 1. Let R be a ring with unity and let I ⊂ R be a proper ideal of R. If λ ∈ R is a unit of
R, then I + λ is a unit ofR/I . Note that the converse of this statement is not true in general (e.g.
-3 is a unit in Z4 but is not a unit in Z).
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Care must be taken because we can have an element a ∈ R/I and multiply by a unit λ ∈ R

and have a and λa in different classes of R/I . To tackle this problem in the following lemmas,
we apply the following fact. If I + λ is not a unit in R/I , then λ is not a unit in R (meaning that
there are no units in the I + λ class). We show that in the first three lemmas are true regardless
of the unit group ofR.

Lemma 2.1. Let R be a PID and I an ideal of R. If R/I ∼= Z4, then R is τI -atomic.

Proof. Since we are assuming R is a PID and 1 ̸= 0, R must have units in 1̄ and 3̄ classes. The
factorization of a that we write puts no restrictions on k, l, and s, meaning that we are not assum-
ing there is a prime in every nonzero class of the quotient. This will be the same in the next two
lemmas. Also we know there are no primes in 0̄ class, as R/I is not a domain. This will also be
the same in the next two lemmas.

Let a ∈ R and let
a = p1 · · · pkq1 · · · qlr1 · · · rs

be the unique factorization ofa into primes such thatwehave p1, . . . , pk ≡ 1 (mod I), q1, . . . , ql ≡
2 (mod I), and r1, . . . , rk ≡ 3 (mod I). Since I is principal andR/I is not an integral domain,
there are no primes congruent to 0 modulo I . This will be true in the next two lemmas as well.
Also, as 2̄ ∈ Z4 is a zero divisor, there are no units inR congruent to 2 modulo I .

Then for any qi ≡ 2 (mod I), multiplication by a unit does not change the class, that is, for
any λ ∈ R, we have λqi ≡ 2 (mod I). Also, note that since there are no units inR congruent to
2 modulo I , it is not possible to multiply pi or ri by a unit and change the class to 2 modulo I .

Case 1: Suppose a ≡ 0, or 2 (mod I), then l ≥ 1. If l = 1, then a is already a τI-atom. If
l > 1, then

q1 · · · ql−1(qlp1 · · · pkr1 · · · rs)

is a τI-atomic factorization of a, with all factors being atoms congruent to 2modulo I . To see that
qlp1 · · · pkr1 · · · rs is an atom, note that if it factored one of the factors would need to contain ql,
meaning this factor would need to be congruent to 2 modulo I . The fact that we can not factor
out a unit λ ∈ R from any pk or rk, such that λ−1pk ≡ 2 (mod I) or λ−1rk ≡ 2 (mod I) shows
that whatever remaining factors are not congruent to 2 modulo I , hence it must be the case that
qlp1 · · · pkr1 · · · rs is a τI-atom.

Case 2: If a ≡ 1, or 3 (mod I), then l = 0. Thus a = p1 · · · pkr1 · · · rs, and

a = (−1)sp1 · · · pk(−r1) · · · (−rs)

is a τI-atomic factorization of a, with all factors being atoms congruent to 1 modulo I .



224 R. E. Hasenauer and B. Kubik

Note here that we are using the tools from Remark 1 here. In particular, we observe that
ri ≡ 3 (mod I) and multiplication by the unit −1 yields −ri ≡ 1 (mod I). Based on the fact
that all units in R/I live in the equivalence classes of 1 or 3, we observe that for any a ≡ 1, or 3
(mod I), multiplication by any unit λ ∈ R/I yields λa ≡ 1, or 3 (mod I). Lastly, it should
be clear that all factors in the factorization are τI-atoms as they are prime in R and cannot be
factored.

Lemma 2.2. Let R be a PID and I an ideal of R. If R/I ∼= Z2[x]/(x
2 + x), then R is τI -atomic.

Proof. For the benefit of the reader, we provide a Cayley table describing multiplication inR/I .

1 x 1 + x

1 1 x 1 + x

x x x 0
1 + x 1 + x 0 1 + x

Since the x and 1+x are zero divisors, all units ofR/I must live in the equivalence class of 1; see
Remark 1. Therefore, in this case, we need not worry about multiplication by a unit causing an
element to change class. We are also aided by the fact that x and 1 + x are idempotent.

Let a be a non-zero element in the ring. We write the factorization of a as follows:

a = p1 · · · pkq1 · · · qlr1 · · · rs

where p1, . . . , pk ≡ 1 (mod I), q1, . . . , ql ≡ x (mod I), and r1, . . . , rs ≡ 1 + x (mod I).
There are two main cases to consider.

Case 1: Suppose a ∈ I . Then l > 0 and s > 0. If l > s, we have the τI-atomic fac-
torization a = (q1r1) · · · (qs−1rs−1)(qsrsp1 · · · pkqs+1 · · · ql). Note here that if s = 1, then
a = q1r1p1 · · · pkq2 · · · ql is already a τI-atom. If l < s, we have the τI-atomic factorization

a = (q1r1) · · · (ql−1rl−1)(qlrlp1 · · · pkrl+1 · · · rs).

Note here that if l = 1, then a = q1r1p1 · · · pkr2 · · · rs is already a τI-atom. And if l = s, we have
the τI-atomic factorization

a = (q1r1) · · · (qs−1rs−1)(qsrsp1 · · · pk).

In all three cases, the atoms in the factorizations are equivalent to 0 (mod I).

To see that (qsrsp1 · · · pkqs+1 · · · ql) is an atom, note that any factorization would have to
contain a factor congruent to 0 modulo I (if it contained both a factor from the x̄ and x+ 1

classes. But then it would be impossible for the other factors to be equivalent to 0 modulo I.
Similarly, any other factorization would necessarily contain a factor in the x̄ class and a factor
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in the x+ 1 class, which would not be a τI-factorization. The lack of units outside the 1̄ class is
important in these arguments. Similar observations allows us to see the other ”longer” factors are
indeed τI-atoms.

Case 2: Suppose a ̸∈ I . Then either s = 0 or l = 0. If s = 0, we have the τI-atomic
factorization

a = (p1q1) · · · (pkqk)(qk+1) · · · (ql) if k < l;

a = (p1q1) · · · (pl−1ql−1)(qlp1 · · · pk) if k > l; and

a = (p1q1) · · · (plql) if k = l.

The case where l = 0 is similar. ThusR is τI-atomic.

Lemma 2.3. Let R be a PID and I an ideal of R. If R/I ∼= Z2[x]/(x
2 + 1), then R is τI atomic.

Proof. For the benefit of the reader, we provide a Cayley table describing multiplication inR/I .

1 x 1 + x

1 1 x 1 + x

x x 1 1 + x

1 + x 1 + x 1 + x 0

Since 1 + x is zero divisors, all units of R/I must live in the equivalence classes of 1 or x; see
Remark 1. Then for any element in the class of 1 + xmodulo I , multiplication by a unit does not
change the class.

Let a = p1 · · · pkq1 · · · qlr1 · · · rs be the unique factorization of a into primes such that
p1, . . . , pk ≡ 1 (mod I), q1, . . . , ql ≡ x (mod I), and r1, . . . , rs ≡ 1 + x (mod I).

Case 1: Now if a ≡ 0, we must have s ≥ 2, as 1 + x is the only zero divisor in the quotient.
Then a = r1 · · · rs−1(rsp1 · · · pkq1 · · · ql) is a τI-atomic factorization of awith all elements in the
product atoms congruent to 1 + x (mod I). Note anything times something in the x+ 1 class
is in the x+ 1 class. And two elements outside the x+ 1 class cannot multiply to be in the x+ 1

class.

Case 2: If a ≡ 1 + x (mod I), then s = 1 and hence a is a τI-atom. If a ≡ 1 or x
(mod I), then s = 0 and a = q1 · · · ql−1(qlp1 · · · pk) is a τI-atomic factorization of a with ev-
ery element in the product an atom equivalent to x modulo I , provided that there are no units
λ ≡ x (mod I). If there exists a unit λ ≡ x (mod I), then we can multiply each element qi
by λ and we have a τI-factorization where every element is equivalent to 1 modulo I . That is
a = λ−sp1 · · · pk(λq1) · · · (λql) is a τI-factorization of a. Note we could have also multiplied the
pi by λ to make them congruent to the qi.
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The following theorem shows that if R/I has a unit in every nonzero class, then R is always
τI-atomic.

Theorem 2.2. LetR be a PID, andM ⊂ R be a maximal ideal such thatR/M has a unit in every
non-zero class. Then R is τM -atomic.

Proof. First note that we are not assuming anything special about M be maximal, this is forced
by the condition that there is a unit in every nonzero class, henceR/M is a field implying thatM
is maximal.

Now, since R is a PID, we haveM = (p) for some prime p ∈ R. Suppose a ≡ 0 (mod M).
Then a = pkl for some positive integer k and some l /∈ M . Now ahas the τM -atomic factorization
a = p · · · p(pl) which is a τM -atomic factorization of length k with all factors congruent to zero
moduloM. Note it is important thatM is amaximal (hence prime) ideal so that we can be assured
that l cannot factor into a product that is inM .

Now suppose a ̸≡ 0 (mod M). Then we can write a = p1p2 · · · pk as a product of primes,
none of which are zero modulo M. Now, as R/M is a field with a unit in every nonzero class,
we can find a unit λi in the p−1

i class. Hence λipi ≡ 1 (mod M). Now we can have the follow-
ing τM -atomic factorization of a = (λ1 · · ·λk)

−1(λ1p1)(λ2p2) · · · (λkpk), where all factors are
equivalent to 1moduloM .

This situation can happen with the quotient isomorphic to F4. To see this, set α = 1+
√
5

2 .
Now the ring Z[α] is a PID with a unit group generated by -1 and α. Thus, its unit group is
isomorphic to Z2 ⊕ Z. Note −1 + α = α−1. Now the prime 2 remains inert in this extension,
thus Z[α]/2Z[α] ∼= F4. Thinking of Z[α]/2Z[α] = {ā + b̄α : ā, b̄ ∈ Z2}, it is easy to see that
−1, α, and α−1 are all units inR with each one in a different non-zero class.

Lemma 2.4. Let R be a PID with I an ideal of R such that R/I has a prime in every class. If
R/I ∼= F4 with all units of R in the 1̄ class, then R is not τI -atomic.

Proof. If we label the four elements ofF4 as 0, 1, a, b, then we have the following Cayley table with
respect to multiplication.

1 a b

1 1 a b

a a b 1
b b 1 a
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Now there exists primes p and q with p ≡ a (mod I) and q ≡ b (mod I). Consider d = p2q.
There does not exist a unit λ ∈ R with λp ≡ q (mod I) or equivalently λq ≡ p (mod I) as
this would imply λ ̸≡ 1 (mod I). Thus the only τI-factorization is d = (p2)q. But p2 is not
a τI-atom, as p2 = pp which is a nontrivial τI factorization of p2. Thus R is not τI-atomic. It
should be pointed out that if there was a unit outside of the 1̄ class, then there is a unit in every
nonzero class ofR/I allowing us to apply the previous theorem.

An example of such a ring is R = Z2[x] with I = (x2 + x + 1). This has the quotient
R/I ∼= F4 and fails to be τI-atomic. R has a prime in every class, namely x2+x+1, x4+x+1, x,

and 1 + x are primes in the 0, 1, x, and 1 + x classes respectively. Also, it is straight forward to
see that 1 is the only unit inR

To finish the proof of the theorem we need one final lemma

Lemma 2.5. Suppose that R/I ∼= F4 with all units of R in the 1̄ class. Suppose further R does not
contain a prime in both the ā and b̄ classes, then R is τI -atomic.

Proof. Let w ∈ R with w = pkq1q2 · · · qsr1r2 · · · rt be a prime factorization with I = (p),
qi ≡ 1 (mod I), and all ri ≡ a (mod I) or all ri ≡ b (mod I). If k ̸= 0, it is clear that
w = pp · · · (pq1q2 · · · qsr1r2 · · · rt) is a τI-atomic factorization of w regardless of the values of s
and t. If k = 0, then w = (r1q1)(r2q2) · · · (rtqt · · · qs) is a τI-atomic factorization of w when
t ≤ s and w = (r1q1)(r2q2) · · · (rsqs)rs+1 · · · rt is a τI-atomic factorization of w when t > s.
Note that these factorizations work if t = 0 or s = 0, hence we are not insisting there be a prime
outside the 0̄ class. ThusR is τI-atomic in this case.

This completes the proof of the main result and shows all conditions are necessary and suffi-
cient.

To see the previous lemma in action, consider the ring R = F4[[x]], the power series ring
over F4. This is a PID with only one prime x. If we let I = (x), thenR/I ∼= F4. Moreover, since
any power series with a non-zero constant term is a unit, we have for f ∈ R, f = xng where g
has a non-zero constant term. Since g is a unit, this is a τI-atomic factorization of length n with
every atom congruent 0 modulo I . This example can be generalized to any field. For example let
R = Q[[x]] and I = (x), thenR/I ∼= Q and is τI-atomic.

One application of this result is that the Gaussian integers are τ(2)-atomic. Similar questions
could be explored in rings with larger quotients, although the number of cases to consider would
grow dramatically. Studying how the complexity increases as the size of the quotient grows would
make for an interesting project. The factorizations in this paper can be highly non-unique. This
indicates that another natural area of study is τI-elasticity which could produce some interesting
results.
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