

Symmetries of Sasakian Generalized Sasakian-Space-Form Admitting Generalized Tanaka-Webster Connection

Jay Prakash Singh and Chawngthu Lalmalsawma

Abstract. The object of this paper is to study certain symmetric properties of Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection. We studied semi-symmetry and Ricci semi-symmetry of Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection. Further we obtain results for Ricci pseudosymmetric and Ricci-generalized pseudosymmetric Sasakian generalized Sasakian-space-form.

1 Introduction

In a Riemannian manifold, a curvature tensor given by K(X,Y) = R(X,Y,Y,X) for an orthonormal pair of vectors (X,Y), is known as the sectional curvature. A Riemannian manifold with constant sectional curvature c is called a real-space-form, and its curvature tensor R satisfies

$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\}.$$

A Sasakian manifold with constant ϕ -sectional curvature c is called a Sasakian-space-form and its curvature tensor R is given by

$$R(X,Y)Z = \frac{c+3}{4} [g(Y,Z)X - g(X,Z)Y]$$

$$+ \frac{c-1}{4} [g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z]$$

$$+ \frac{c-1}{4} [\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X$$

$$+ g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi].$$
(1.1)

Key words and phrases. Sasakian manifolds, generalized Sasakian-space-form, generalized Tanaka-Webster connection, Semi-symmetric manifolds, Ricci Semi-symmetric manifolds, Ricci-generalized pseudosymmetric manifold, Ricci-pseudosymmetric manifold.

Corresponding author: Jay Prakash Singh.

²⁰¹⁰ Mathematics Subject Classification. 53B15, 53C25.

In 2004, Alegre et al. [2] generalized the Sasakian-space-form by replacing the constant quantities $\frac{c+3}{4}$ and $\frac{c-1}{4}$ with differentiable functions. Such space is called generalized Sasakian-space-form.

The generalized Sasakian-space-form have been studied by many authors such as Sarkar and De ([17, 10, 11]), Singh ([18, 19]), De and Majhi ([8, 9, 12]), Kishor et al. [15], Alegre and Carriazo [3, 4], Akbar and Sarkar [1], Sular and Ozgur [20, 21] and many others.

In 2008, Alegre and Carriazo studied structures on generalized Sasakian-space-form [4] and studied generalized Sasakian-space-form admitting trans-Sasakian structure. In this paper we studied generalized Sasakian-space-form admitting Sasakian structure and we called such manifold as Sasakian generalized Sasakian-space-form

In 1989, Tanno [23] defined the generalized Tanaka-Webster connection for contact metric manifolds, which generalized the connection given by Tanaka [22] and Webster [24]. The generalized Tanaka-Webster connection have been studied by De [7], de Dios Pérez [16] and others.

A manifold is said to be semi-symmetric and Ricci semi-symmetric [26, 27] if the Riemannian curvature tensor R and Ricci tensor S satisfies R.R=0 and R.S=0 respectively. That is

$$R(X,Y).R(U,V)W = 0 (1.2)$$

and

$$R(X,Y).S(U,V) = 0$$
 (1.3)

for all $X, Y, U, V, W \in \chi(M)$.

There are two notions of pseudosymmetric manifolds which are defined by Chaki in 1987 [6] and Deszcz in 1992 [13]. Throughout the paper we consider pseudosymmetric manifolds defined by Deszcz. An n-dimensional Riemannian manifold M, n>2, is called pseudosymmetric manifolds if R.R and Q(g,R) are are linearly dependent, i.e.,

$$R.R = FQ(g,R), \tag{1.4}$$

holds on the set $U_R = \{x \in M : Q(g,R) \neq 0 \text{ at } x\}$, where F is some function on U_R .

And the manifold is called Ricci pseudosymmetric and Ricci-generalized pseudosymmetric manifold if

$$R.S = f'Q(g, S) \tag{1.5}$$

and

$$R.R = fQ(S,R) \tag{1.6}$$

holds on the set $U_S = \{x \in M : Q(g,S) \neq 0 \text{ at } x\}$ and $U_R = \{x \in M : Q(g,R) \neq 0 \text{ at } x\}$ respectively, where f' and f are some function on U_S and U_R .

In this paper we studied symmetries of Sasakian generalized Sasakian-space-form admitting generalized Tanaka-Webster connection. After introduction in preliminaries section, we showed some known relation in Sasakian manifold and generalized Sasakian-space-form. In the third section, we have given the expression for curvature tensor with respect to genaralized Tanaka-Webster connection in generalized Sasakian-space-form. The next section is dedicated for the study of semi-symmetry and Ricci semi-symmetry. In the last two sections we studied Ricci pseudosymmetric and Ricci-generalized pseudosymmetric manifolds.

2 Preliminaries

An n-dimensional smooth manifold M is said to be an almost contact metric manifold if it admits an almost contact metric structure (ϕ, ξ, η, g) consisting of a tensor field ϕ of type (1, 1), a vector field ξ , a 1-form η and a Riemannian metric g satisfying [5]

$$\phi^2 = -I + \eta \otimes \xi, \qquad \eta(\xi) = 1, \qquad \phi \xi = 0, \qquad \eta \circ \phi = 0,$$

and

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y). \tag{2.1}$$

On such a manifold, the fundamental Φ of M is defined as

$$\Phi(X,Y) = g(\phi X,Y), \qquad X,Y \in \Gamma(TM).$$

An almost contact metric manifold is called a Sasakian manifold if and only if [25]

$$(\nabla_X \phi) Y = g(X, Y) \xi - \eta(Y) X, \quad \nabla_X \xi = -\phi X. \tag{2.2}$$

On a Sasakian manifold M, the following relations are held [25]

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y,\tag{2.3}$$

$$R(X,\xi)Y = \eta(Y)X - g(X,Y)\xi,\tag{2.4}$$

$$\eta(R(X,Y)Z) = \eta(X)g(Y,Z) - \eta(Y)g(X,Z), \tag{2.5}$$

$$\eta(R(X,Y)\xi) = 0, \tag{2.6}$$

$$S(X,\xi) = (n-1)\eta(X),$$
 (2.7)

$$Q\xi = (n-1)\xi,\tag{2.8}$$

$$(\nabla_X \eta) Y = g(X, \phi Y). \tag{2.9}$$

In a generalized Sasakian-space-form the following properties holds [2]

$$R(X,Y)Z = f_{1}[g(Y,Z)X - g(X,Z)Y]$$

$$+ f_{2}[g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z]$$

$$+ f_{3}[\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi$$

$$- g(Y,Z)\eta(X)\xi],$$
(2.10)

$$S(X,Y) = [(n-1)f_1 + 3f_2 - f_3]g(X,Y) - [3f_2 + (n-2)f_3]\eta(X)\eta(Y),$$
(2.11)

$$QX = [(n-1)f_1 + 3f_2 - f_3]X - [3f_2 + (n-2)f_3]\eta(X)\xi,$$
(2.12)

$$S(X,\xi) = (n-1)(f_1 - f_3)\eta(X), \tag{2.13}$$

$$Q\xi = (n-1)(f_1 - f_3)\xi, \tag{2.14}$$

$$R(X,Y)\xi = (f_1 - f_3)\{\eta(Y)X - \eta(X)Y\},\tag{2.15}$$

$$R(\xi, Y)Z = (f_1 - f_3) \{ g(Y, Z)\xi - \eta(Z)Y \}, \tag{2.16}$$

$$R(\xi, Y)\xi = (f_1 - f_3)\{\eta(Y)\xi - Y\}. \tag{2.17}$$

$$r = n(n-1)f_1 + 3(n-1)f_2 - 2(n-1)f_3, (2.18)$$

where $r = \sum_{i=1}^{n} S(e_i, e_i)$ is the scalar curvature.

3 Generalized Tanaka-Webster connection

Tanno [23], defined the generalized Tanaka-Webster connection $\tilde{\nabla}$ for contact metric manifolds by

$$\tilde{\nabla}_X Y = \nabla_X Y + (\nabla_X \eta)(Y)\xi - \eta(Y)\nabla_X \xi - \eta(X)\phi(Y) \tag{3.1}$$

for all $X, Y \in \chi M$, and ∇ is the Riemannian connection.

Let R and \tilde{R} denotes the Riemannian curvature tensors of Sasakian manifold with respect to ∇ and $\tilde{\nabla}$ respectively. A relation between R and \tilde{R} is given by [7]

$$\tilde{R}(X,Y)Z = R(X,Y)Z + [g(X,Z)\eta(Y) - g(Y,Z)\eta(X)]\xi$$

$$- g(Y,\phi Z)\phi X + g(X,\phi Z)\phi Y + 2g(Y,\phi X)\phi Z$$

$$- \eta(Y)\eta(Z)X + \eta(X)\eta(Z)Y. \tag{3.2}$$

Contracting (3.2) we obtain

$$\tilde{S}(Y,Z) = S(Y,Z) - q(Y,Z) - (n-3)\eta(X)\eta(Y). \tag{3.3}$$

Using (2.10) and (2.11) in the above equations we have

$$\tilde{R}(X,Y)Z = (f_{1}-1)[g(Y,Z)X - g(X,Z)Y]
+ f_{2}[g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z]
+ f_{3}[\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi
- g(Y,Z)\eta(X)\xi] - g(Y,\phi Z)\phi X + g(X,\phi Z)\phi Y
+ 2g(Y,\phi X)\phi Z - \eta(Y)\eta(Z)X + \eta(X)\eta(Z)Y,$$
(3.4)

and

$$\tilde{S}(Y,Z) = [(n-1)f_1 + 3f_2 - f_3]g(X,Y)
- [3f_2 + (n-2)f_3]\eta(X)\eta(Y)
- g(Y,Z) - (n-3)\eta(X)\eta(Y).$$
(3.5)

Now we have

$$\tilde{R}(X,Y)\xi = (f_1 - f_3 - 1)\{\eta(Y)X - \eta(X)Y\},\tag{3.6}$$

$$\tilde{R}(\xi, X)Y = (f_1 - f_3 - 1)\{g(Y, Z)\xi - \eta(Z)Y\},\tag{3.7}$$

$$\tilde{R}(\xi, X)\xi = (f_1 - f_3)\{\eta(Y)\xi - Y\},\tag{3.8}$$

$$\tilde{S}(X,\xi) = (n-1)(f_1 - f_3 - 1)\eta(X),\tag{3.9}$$

$$\tilde{S}(\xi,\xi) = (n-1)(f_1 - f_3 - 1). \tag{3.10}$$

4 Semi-symmetric and Ricci semi-symmetric

Suppose that the Sasakian generalized Sasakian-space-form is semi-symmetric with respect to generalized Tanaka-Webster connection, then from (1.2) we get

$$\tilde{R}(X,Y).\tilde{R}(U,V)W = 0. \tag{4.1}$$

It is well known that

$$\tilde{R}(X,Y).\tilde{R}(U,V)W = \tilde{R}(X,Y)\tilde{R}(U,V)W - \tilde{R}(\tilde{R}(X,Y)U,V)W - \tilde{R}(U,\tilde{R}(X,Y)V)W - \tilde{R}(U,\tilde{R}(X,Y)V)W - \tilde{R}(U,\tilde{R}(X,Y)W).$$
(4.2)

Now setting $X = U = \xi$ in (4.1) and using (4.2) we get

$$(f_1 - f_3 - 1)^2 \{g(Y, W)V - g(V, W)Y\} + (f_1 - f_3 - 1)\tilde{R}(Y, V)W = 0,$$

which can be written as

$$\tilde{R}(Y,V)W = (f_1 - f_3 - 1)\{g(V,W)Y - g(Y,W)V\},\tag{4.3}$$

provided $f_1 - f_3 - 1 \neq 0$.

Thus we have

Theorem 4.1. In a semi-symmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection, we have

$$\tilde{R}(Y,V)W = (f_1 - f_3 - 1)\{g(V,W)Y - g(Y,W)V\},\$$

provided $f_1 - f_3 - 1 \neq 0$.

Now using (3.2) in (4.3) we get

$$R(Y,V)W = (f_{1} - f_{3} - 1)\{g(V,W)Y - g(Y,W)V\}$$

$$- [g(Y,W)\eta(Y) - g(V,W)\eta(Y)]\xi + g(V,\phi W)\phi Y$$

$$- g(Y,\phi W)\phi V - 2g(V,\phi Y)\phi W$$

$$+ \eta(V)\eta(W)Y - \eta(Y)\eta(W)V, \tag{4.4}$$

provided $f_1 - f_3 - 1 \neq 0$. Thus we can state that:

Theorem 4.2. In a semi-symmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection the Riemannian curvature tensor is given by (4.4), provided $f_1 - f_3 - 1 \neq 0$.

Again suppose that the Sasakian generalized Sasakian-space-form is Ricci semi-symmetric with respect to generalized Tanaka-Webster connection, then from (1.3) we get

$$\tilde{R}(X,Y).\tilde{S}(U,V) = 0. \tag{4.5}$$

It implies

$$\tilde{S}(\tilde{R}(X,Y).U,V) + \tilde{S}(U,\tilde{R}(X,Y)V) = 0. \tag{4.6}$$

Setting $X = U = \xi$ in (4.6) we get

$$(f_1 - f_3 - 1)\{(n-1)(f_1 - f_3 - 1)g(Y, V) - S(Y, V)\} = 0.$$

Which implies

$$S(Y,V) = (n-1)(f_1 - f_3 - 1)g(Y,V), (4.7)$$

provided $f_1 - f_3 - 1 \neq 0$.

We have

Theorem 4.3. A semi-symmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection is Einstein manifold provided $f_1 - f_3 - 1 \neq 0$.

5 Ricci-generalized pseudosymmetric manifold

Suppose that the Sasakian generalized Sasakian-space-form is Ricci-generalized pseudosymmetric with respect to generalized Tanaka-Webster connection, then from (1.6)

$$\tilde{R}(X,Y).\tilde{R}(U,V)W = fQ(\tilde{S},\tilde{R})(U,V,W;X,Y).$$

This is equivalent to

$$\tilde{R}(X,Y).\tilde{R}(U,V)W = f\{((X \wedge_{\tilde{S}} Y).\tilde{S})(U,V)\},\tag{5.1}$$

where $\left((X \wedge_{\tilde{S}} Y)\right)Z = \tilde{S}(Y,Z)X - \tilde{S}(X,Z)Y$ for all X,Y,Z.

Thus we get

$$\begin{split} \tilde{R}(X,Y).\tilde{R}(U,V)W &- \tilde{R}(\tilde{R}(U,V)X,Y)W - \tilde{R}(X,\tilde{R}(U,V)Y)W \\ -\tilde{R}(X,Y)\tilde{R}(U,V)W &= f\{(X \wedge_{\tilde{S}} Y)\tilde{R}(U,V)W - \tilde{R}((X \wedge_{\tilde{S}} Y)U,V)W \\ &- \tilde{R}(U,(X \wedge_{\tilde{S}} Y)V)W - \tilde{R}(U,V)(X \wedge_{\tilde{S}} Y)W)\}. \end{split}$$

or

$$\begin{split} \tilde{R}(X,Y).\tilde{R}(U,V)W &- \tilde{R}(\tilde{R}(U,V)X,Y)W - \tilde{R}(X,\tilde{R}(U,V)Y)W \\ -\tilde{R}(X,Y)\tilde{R}(U,V)W &= f\{\tilde{S}(Y,\tilde{R}(U,V)W)X - \tilde{S}(X,\tilde{R}(U,V)W)Y \\ &- \tilde{S}(Y,U)\tilde{R}(X,V)W + \tilde{S}(X,U)\tilde{R}(Y,V)W \\ &- \tilde{S}(Y,V)\tilde{R}(U,X)W + \tilde{S}(X,V)\tilde{R}(U,Y)W \\ &- \tilde{S}(Y,W)\tilde{R}(U,V)X + \tilde{S}(X,W)\tilde{R}(U,V)Y\}. \end{split}$$
(5.2)

Setting $X = U = \xi$ in (5.2) we get

$$(f_{1} - f_{3} - 1)^{2} \quad \left\{ g(Y, W)V - g(V, W)Y \right\} + (f_{1} - f_{3} - 1)\tilde{R}(Y, V)W$$

$$= f \left[(n - 1)(f_{1} - f_{3} - 1) \left\{ \tilde{R}(Y, V)W - g(V, W)Y + g(Y, W)\eta(V)\xi + g(V, Y)\eta(W)\xi \right\} \right]$$

$$- \tilde{S}(Y, V)\eta(W)\xi - \tilde{S}(Y, W) \left\{ \eta(V)\xi - V \right\} \right]. \tag{5.3}$$

Again setting $V = \xi$ in (5.3) we get

$$f(f_1 - f_3 - 1) [g(Y, W)\xi - \eta(W)Y]$$

$$= f(f_1 - f_3 - 1)^2 [g(Y, W)\xi - \eta(W)Y].$$
(5.4)

We have either

$$(f_1 - f_3 - 1) = 0, (5.5)$$

or

$$(f_1 - f_3 - 1) = 1, (5.6)$$

provided $f \neq 0$.

Setting $W = \xi$ in (5.3) and using (5.5) we get

$$S(Y,V) = 0, (5.7)$$

for all $Y, V \in \chi M$, provided $f \neq 0$ and $f_1 - f_3 - 1 \neq 1$.

Thus we have

Theorem 5.1. A Ricci-generalized pseudosymmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection is Ricci flat provided $f \neq 0$ and $f_1 - f_3 - 1 \neq 1$.

Again setting $W = \xi$ in (5.3) and using (5.6) we get

$$S(Y, V) = (n-1)g(V, Y), (5.8)$$

for all $Y, V \in \chi M$, provided $f \neq 0$ and $f_1 - f_3 - 1 \neq 0$.

We have

Theorem 5.2. A Ricci-generalized pseudosymmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection is Einstein manifold provided $f \neq 0$ and $f_1 - f_3 - 1 \neq 0$.

6 Ricci-pseudosymmetric manifold

Suppose that the Sasakian generalized Sasakian-space-form is Ricci-pseudosymmetric with respect to generalized Tanaka-Webster connection, then from (1.5)

$$\tilde{R}(X,Y).\tilde{S}(U,V) = f'Q(g,\tilde{R})(U,V;X,Y).$$

This is equivalent to

$$\tilde{R}(X,Y).\tilde{S}(U,V) = f'\{((X \wedge_q Y).\tilde{S})(U,V)\},\tag{6.1}$$

where $((X \wedge_q Y))Z = g(Y, Z)X - g(X, Z)Y$ for all X, Y, Z.

Thus we get

$$\tilde{S}(\tilde{R}(X,Y).U,V) + \tilde{S}(U,\tilde{R}(X,Y)V) = f'\{\tilde{S}((X \wedge_g Y)U,V) + \tilde{S}(U,(X \wedge_g Y)V)\}.$$

or

$$\tilde{S}(\tilde{R}(X,Y).U,V) + \tilde{S}(U,\tilde{R}(X,Y)V) = f'\{g(Y,U)\tilde{S}(X,V) - g(X,U)\tilde{S}(Y,V) + g(Y,V)\tilde{S}(U,X) - g(X,V)\tilde{S}(U,Y)\}.$$
(6.2)

Setting $X = U = \xi$ in (6.2) we get

$$(f_1 - f_3 - f' - 1)\{S(Y, V) - (n - 1)(f_1 - f_3 - 1)g(Y, V)\} = 0.$$

Which implies

$$S(Y,V) = (n-1)(f_1 - f_3 - 1)g(Y,V), (6.3)$$

for all $Y, V \in \chi M$, provided $(f_1 - f_3 - f' - 1) \neq 0$.

We have

Theorem 6.1. A Ricci-pseudosymmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection is Einstein manifold provided $f_1 - f_3 - f' - 1 \neq 0$.

Now using Theorem 4.2 of [4] and (6.3) we get the following corollary

Corollary 6.2. An n-dimensional connected Sasakian generalized Sasakian-space-form, $(n \geq 5)$, which is Ricci-pseudosymmetric with respect to generalized Tanaka-Webster connection is Ricci flat provided $f' \neq 0$.

ACKNOWLEDGEMENT

The second author is thankful to the University Granta Commission, India for financial support in the form of JRF fellowship (award letter number 2061641132).

References

- [1] A. Akbar and A. Sarkar. Some results on a generalized Sasakian space forms admitting trans Sasakian structure with respect to generalized Tanaka Webster okumara connection, Romanian Journal of Mathematics and Computer Science **5(2)** (2015), 130–137.
- [2] P. Alegre, D.E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel journal of mathematics **141(1)** (2004), 157–183.
- [3] P. Alegre and A. Carriazo, Semi-Riemannian Generalized Sasakian Space Forms, Bulletin of the Malaysian Mathematical Sciences Society (2018), 1–14.
- [4] P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geometry and its Applications **26(6)** (2008), 656–666.
- [5] D. E. Blair, Contact manifolds in Riemannian geometry, Springer-Verlag Berlin, Heidelberg, (1976).
- [6] M. C. Chaki, On pseudosymmetric manifolds, An. S, tiint, Univ. AL.I. Cuza din Ia, si Sect. I-a Math. N.S. **33(1)** (1987), 53–58.
- [7] U. C. De and G. Ghosh, On generalized Tanaka-Webster connection in sasakian manifold, Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics. Series III **9(2)** (2016), 13pp.
- [8] U. C. De and P. Majhi, Certain curvature properties of generalized Sasakian-space-forms, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 83(2) (2013), 137–141.

- [9] U. C. De and P. Majhi, On the Q curvature tensor of a generalized Sasakian-space-form, Kragujevac Journal of Mathematics **43(3)** (2019), 333–349.
- [10] U. C. De, and A. Sarkar, On the conharmonic turvature tensor of generalized Sasakian-space-forms, ISRN Geometry, https://doi:10.5402/2012/876276,(2012).
- [11] U. C. De, and A. Sarkar, On the projective turvature tensor of generalized Sasakian-space-forms, Quaestiones Mathematicae **33(2)** (2010), 245–252.
- [12] U. C. De, and P. Majhi, ϕ -semisymmetric generalized Sasakian space-forms, Kragujevac Journal of Mathematics **21(1)** (2015), 170–178.
- [13] R. Deszcz, On pseudosymmetric spaces, Bull. Belg. Math. Soc., Ser. A 44 (1992), 1–34.
- [14] A. Friedmann and J. C. Schouten, Uber die Geometric der halbsymmetrischen Ubertragung, Math. Zeitschr. **21** (1924), 211–223.
- [15] S. Kishor, P. Verma and P. K. Gupt, On W_9 -Curvature Tensor of Generalized Sasakian-Space-Forms, Int. J. of Math. Appl 5 (2017), 103–112.
- [16] J. de Dios Pérez and Y. J. Suh, Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space, Monatshefte für Mathematik 177(4) (2015), 637–647.
- [17] A. Sarkar and U. C. De, Some curvature properties of generalized Sasakian-space-forms, Lobachevskii Journal of Mathematics **33(1)** (2012), 22–27.
- [18] J. P. Singh, Generalized Sasakian space forms with m-projective curvature tensor, Acta Math. Univ. Comenianae **85(1)** (2016), 135–146.
- [19] J. P. Singh, On a type of generalized Sasakian space forms, Journal of the Indian Math. Soc. **83(3-4)** (2016), 363–372.
- [20] S. Sular and C. Ozgur, Generalized Sasakian space forms with semi-symmetric metric connections, Annals of the Alexandru Ioan Cuza University-Mathematics, **60(1)** (2014), 145–156.
- [21] S. Sular and C. Ozgur, Generalized Sasakian space forms with semi-symmetric non-metric connections, Proceedings of the Estonian Academy of Sciences, **60(4)**(2011), 251–257.
- [22] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japanese journal of mathematics. New series, **2(1)** (1976), 131–190.
- [23] S. Tanno, Variational problems on contact Riemannian manifolds, Transactions of the American Mathematical society **314(1)** (1989), 349–379.

- [24] S. M. Webster, Pseudohermitian structures on a real hypersurface, J. Differ. Geom. **13** (1978), 25–41.
- [25] K. Yano and M. Kon, Structures on manifolds, World scientific, (1985).
- [26] Z.I. Szabo, Structure theorems on Riemannian spaces satisfying R(X,Y).R=0. I. The local version, J. Differential Geom. 17 (1982), 531–582.
- [27] Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y). R = 0. II. Global versions, Geometriae Dedicata **19(1)** (1985), 65–108.

Jay Prakash Singh Department of Mathematics and Computer Science, Mizoram University, Tanhril, Aizawl-796004, India.

E-mail: jpsmaths@gmail.com

Chawngthu Lalmalsawma Department of Mathematics and Computer Science, Mizoram University, Tanhril, Aizawl-796004, India.

E-mail: sweezychawngthu@gmail.com