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S-CLUSTER SETS IN FUZZY TOPOLOGICAL SPACES

A. A.NOUH AND M. E. EL-SHAFEI

Abstract. In this paper the concept of S-cluster fuzzy sets, of fuzzy functions and fuzzy mul-
tifunctions between fuzzy topological spaces is introduced. As an application, characterizations
of fuzzy Hausdorff and SQ.-closed fuzzy topological spaces are achieved via such cluster fuzzy
sets.

1. Introduction

The theory of cluster sets was developed long ago, and was initially aimed at the
investigations of real and complex function theory. A comprehensive collection of works in
this direction can be found in the classical book of Collingwood and Lohwater [4]. Weston
[14] was the first to initiate the corresponding theory for functions between topological
spaces basically for studyng compactness. The present paper is intended for to introduce
the concept of S-cluster fuzzy sets of fuzzy functions and fuzzy multifunctions, which
provides a new technique for studying S@),-closedness of fuzzy topological spaces. It
is shown that such cluster fuzzy sets of suitable fuzzy function can characterize fuzzy
Hausdorffness. Finally, we achieve, as our prime motivation, certain characterizations of
S@Q4-closed space.

Let X be a set of points and I be the unit interval [0,1]. A fuzzy set p in X is a
mapping from X into I. The class of all fuzzy sets on X denoted by IX. For z € X and

€ (0,1], a fuzzy set x, defined by

_ja : y=x
ma(y)_{o . y;éilf

is called a fuzzy point in X. The class of all fuzzy points of X denoted by FP(X). Let
O0x and 1x be, respectively, the constant fuzzy sets taking 0 and 1 on X. For A C X, 14
denotes the characteristic mapping of A. For every z, € FP(X) and p € IX, we write
Xy € piff a < p(z). For every p € LX, denote supp(p) = {x € X : u(z) > 0}, called it
the support of u. For any set A C X, we denote the cardinality of A by |A|. If |A] =1,
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say A = {z}, then A is called degenerate. A fuzzy set y is called finite (resp. degenerate)
if |supp(p)| is finite (resp. |supp(p) = 1). A fuzzy set p is called quasi-coincident with a
fuzzy set p,denoted by ugp [12], iff there exists # € X such that p(z) + p(z) > 1. If pis
not quasi-coincident with p, then we write ugp.

In what follows, we use the concept of a fuzzy topological space (fts, for short) as
introduced by Chang [3]. A fuzzy set u € IX is called semi-open [9] if for some open
fuzzy set n, n < p < ¢f(n), where cf(n) denotes the fuzzy closure of 5 in X. The
complements of semi-open fuzzy sets are called semi-closed. Let z, € FP(X) and
p € I*, by N, Ngﬂ, SONEQ and 1x \ ¢ = p', we mean, the open neighbourhood
system of u, open @Q-neighbourhood (@Q-nbd, for short) system of x,, the semi-open
@-neighbourhood (S.Q-nbd, for short) system of z, and the pseudo-complement of p.
For any fuzzy set pu € IX, the 6-closure [9] (f-semiclosure [9]) of x, denoted by 6.cl(p)
(resp. 0S.cl(p)), is defined by zo € 6.cl(p) (vesp. zq € 0S.cl(p)) iff for every n € NS
(resp. n € SONE)), cl(n)qu. The fuzzy set p is called 6-closed [9] (f-semiclosed [9]) if
w=0.cl(u) (resp. p = 6S.cl(p)). It is known [9] that 6.cf(p) need not be #-closed, but
it is so if p is open.

Theorem 1.1.([12]) Let {u; : j € J} C IX and z, € FP(X). Then:

(1) zagq V pi iff (3jo € J)(zaqujo).
jed

(i) Ifxaqg A wj, then (V; € J)(zaqp;). The converse is true if J is finite.
jed
Definition 1.2.([2]) A fuzzy grill on X is a nonempty subset  C IX such that:
(i) p € Q and n < p implies n € Q.
(ii) pVn € Q implies p € Qorn € Q.

Definition 1.3.([11]) A fuzzy filterbase on X is a nonempty subset 3 C IX such
that:
(i) Ox & 5.
(i) If 1, po € B, then Jus € B such that puz < pg A po.
The fuzzy filter F generated by 3 is difined by F = {u € IX : 5y < p for some 7 € (}.
A fuzzy filterbase F on a fts (X, 7) is said to 8S-adhere at a fuzzy point z, € FP(X),
denoted as x, € 0S.adh(F) if (Vn € SONZ)(YA € F)(cl(n)g)). A fuzzy grill Q on
X is said to #S-converge to a fuzzy point z, € FP(X), if for each pu € SONEQQ, there
corresponds some A\ €  with A < c¢l(u).

Each mapping f : I — IY considered in this paper is induced from a crisp mapping
f:X = Y asusual, ie forpeIX, nel¥, € X andy € Y, we define f(u)(y) =
V{u(z) :z € X, f(z) =y} and f~*(n)(z) = n(f(z)).

2. S-cluster Fuzzy Set of Fuzzy Functions

Definition 2.1. Let f : IX — IY be a function and z, € FP(X). The S-cluster
fuzzy set of f at zo, denoted by S(f, ) is given by A{f.cl(f(cl(n))) : p € SONZ }.
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In the next theorem, we characterize the S-cluster fuzzy set of a function at some
fuzzy point between fuzzy topological spaces.

Theorem 2.2. For any function f : IX — IY and y, € FP(Y), the following
statements are equivalent:
(i) yo € S(f,za)-
(ii) The fuzzy filterbase ffl(cf(Nﬁ)) 0S-adheres at x,.
(iii) There is a fuzzy grill Q@ on X such that Q 6S-converges to xo and y, € N{0.cC(f (1))
tp € Q).

Proof. (i) = (ii): Let y, € S(f,zo). Then for each p € SONE and each n €
Nﬁ, cl(n)qf(cl(p)). So, for each p € SONZ and each n € Nﬁ, f(cl(n))gqu and so
F7Hel(n) A p# 0. It is easy to verify that the family {f~!(cf(n)) : 9 € N2} is a fuzzy
filterbase on X #S-adheres at x,.

(i) = (iii): Let F be the fuzzy filter on X generated by the fuzzy filterbase
f_l(cé(Nﬁ)). Then Q = {u € I'* : ugA for each \ € F} is a fuzzy grill on X. By
(ii), for each p € SONE and each n € Nﬁ, cl(p)qf = (cl(n)). Hence Agcl(p) for each
A € F and each p € SONEQQ. Consequently, cf(p) € Q for all p € SON;QQ, which proves
that 2 6S-converges to z,. Now, the definition of Q yields that f(u)gcl(n) for all n € Nﬁ
and all g € Q. Then y, € 0.cf(f(n)) for all p € Q. Hence y, € A{0.cl(f(p)) : p € Q}.

(iii) = (i): Let 2 be a fuzzy grill on X such that Q@ 6S-converges to zo, and
Yo € NMO.cl(f(p) : p € Q}. Then {cl(p) : p € SONE} C Q and y, € 0.cl(f(N))
for each A € Q. Hence, in particular, y, € 8.cf(f(cl(p))) for all p € SONZ . So
Yo € N{0.cl(f(cl(p))) : p € SONE } = S(f,a).

Definition 2.3. A fts (X, 1) is called fuzzy Hausdorft space (F'T», for short) iff
(Vza,yo € FP(X), o #y)(3u € N2 )(3n € N2 ) (nan).

In what follows, we show that S-cluster fuzzy sets of a function at some fuzzy point
between fuzzy topological spaces may be used to assertain the fuzzy Hausdorffness of the
codomain space.

Theorem 2.4. Let f : IX — IY be a function on a fts (X, 7) onto a fts (Y,A). Then
(Y,A) is FTy if S(f,xq) is degenerate for each o, € FP(X).

Proof. Let yl,y2 € FP(X) such that y' # y>. As f is a surjection, there are z.,
r2 € FP(X) such that ' # z? and f(z%) = y® for i = 1,2. Now, since S(f,z,) is

v

degenerate for each z, € FP(X), y2 = f(22) & S(f,z.). Thus, there are n € N;%
and p € SONE1 such that cf(n)gf(cl(pn)) and so f(cl(w)) < 1y \ c¢f(n). Then n €
N9, 1y \ cl(n) € Nﬁ and ng(ly \ ¢f(n)) which proves that (Y, A) is FT.

v3’
Definition 2.5.([7]) A function f : I* — IY is called a fuzzy 0S-irresolute iff for

each =, € FP(X) and each n € SON]?(%), there is p € SONE such that f(cl(u)) < n.
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Theorem 2.6. Let f : IX — IY be a fuzzy 0S-irresolute function with (Y,A) a
FTy-space. Then S(f,xq) is degenerate for each x, € FP(X).

Proof. Let z, € FP(X). As f is fuzzy 6S-irresolute, for any 1 € SONJ?(%), there is
1 € SONE such that f(cl(n)) <n. Then S(f,za) = A{B.cl(f(cl(p))) : p € SONE } C
Nb.cb(n) : n € SON?’E%)}. Let yo € FP(Y) with y # f(z). As (Y,A) is FT5, then
there are p; € N‘,ﬁ and ps € NJ?(%) such that p;dps. Obviously, as p1Gcl(p2), Yo &
cl(ps) = 0.cl(ps). As ps € Ng,  C SONP_ . yo & AB.cl(n) : n € SONJ, |} and
hence yo & S(f,za). Thus S(f,zq) = {f(za)}-

Combining the lase two results, we get the following characterization for the fuzzy
Hausdorffness of the codomain space of a kind of function in terms of the degeneracy of
its S-cluster fuzzy set.

Theorem 2.7. f: IX = IV be a fuzzy 0S-irresolute function on a fts (X,T) onto a
fts (Y, A). Then (Y,A) is FTs iff S(f,zq) is degenerate for each z, € FP(X).

We have just seen that degeneracy of the S-cluster fuzzy set of an arbitrary fuzzy
function is a sufficient condition for the fuzzy Hausdorffness of the codomain space. We
thus like to examine some other situations when the S-cluster fuzzy sets are degenerate,
thereby ensuring the fuzzy Hausdorffness of the codomain space of the fuzzy function
concerned. To this end, we recall the following definition.

Definition 2.8.([9]) A fts (X, 7) is called fuzzy almost regular (FFAR,, for short)
iff (Voo € FP(X))(VA € RCF(X,7))(xz- € N(@3n € NZ)3p € Ni)(ngp), where
RCF(X,7) denotes the class of all regular closed fuzzy sets in (X, 7).

Theorem 2.9.([9]) In any FARs-space (X, 1), 0.cl(u) is 8-closed fuzzy set for each
peIx.

Definition 2.10.([7]) A funciton f : I’* — IV is called fuzzy 6-closed if the image of
each 6-closed fuzzy set of a fts (X, 7) is a #-closed fuzzy set of a fts (Y, A).

Theorem 2.11. Let f : I — IY be a fuzzy 8-closed function from a FAR-space
(X, 1) into a fts (Y,A). If f~1(y,) is O-closed in (X, T) for ally, € FP(Y), then S(f,z.)
is degenerate for each x, € FP(X).

Proof. Since, cl(n) < 6.cl(u) for each p € IX, then S(f,x,) = A{0.cl(f(cl(p))) :
p€ SONE } < A{0.cl(f(B.cl(p))) : p € SONL }. As (X,7) is FAR,, 0.cl(p) is 6-closed
for all p € SONE . Since f is a fuzzy 6-closed function, 6.cC(f(6.cl(u))) = f(8.cl(n)) for
each € SONY . Thus S(f,za) < A{f(0.cl(p)) : p € SONE }. Now, let y, € FP(Y)
such that y # f(z). Then since f~!(y,) is f-closed and z, & f*(y,), there is some
p € N2 such that cl(p)qf " (yv). So, yu & f(cl(p)) = f(6.cl(p)) (as p is an open fuzzy
set) and hence y, & A{f(0.cl(p)) : p € SONZ }. Thus, we conclude that y, & S(f,za),
which proves that S(f, z,) is degenerate.
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Theorem 2.12. Let f : IX — IY be a fuzzy 0-closed injection funciton, where (X,T)
is a FARy and FTs-space. Then S(f,z,) is degenerate for each z, € FP(X).

Proof. Since the fts (X, 7) is FAR» and the mapping f is a fuzzy 6-closed, we have
8.cl(f(0.cl(p))) = f(B.cl(p)) for any p € SONE. and, hence

S(f,wa) = MB.cl(f(cl(p))) : p € SONE }
< A{B.cl(f(0.cl(n)) : p € SONS }
= A f(0-cl(p)) : p € SONE }. (%)

For each z} € FP(X) with = # 2', f(za) # f(zl) as f is injective. By the fuzzy
Hausdorflness of (X, 1), there are u € Ng and n € Nfl such that pgn. Obviously,
pgel(n). So zl, & 0.cl(p) and hence f(xzl) & f(6.cl(n)). Since N& C SONE, then
p € SONE and hence by equation (x), we have f(z}) & S(f,zs). Thus, S(f,zq) is
degenerate for each z, € FP(X).

Definition 2.13.([9]) A fts (X, 1) is called fuzzy regular (F R,, for short) iff (Vz, €
FP(X))(YA € T')(za € \)(3n € N& )(3p € N»)(ngp), where 7' represents the class of all
closed fuzzy sets in (X, 7).

Now, Theorem 2.12., is equivalent to the following apparently weaker result when
(X,7) is FR,.

Theorem 2.14. If f : I — IY is a fuzzy 0-closed injection, where (X,7) is a
FRy-space, then S(f,z4) is degenerate for each z, € FP(X).

Proof. It is known that in a F Ry-space (X, 7), 6.cl(n) = cl(u) for any p € IX. Since
(X,7)is FT5 and f is a fuzzy 6-colsed injection, {f(zs)} < S(f,za) = A{f(cl(p)) : p €
SONZ } < A f(cl(w)) - n € N2} = {f(za)}. Thus S(f,za) = {f(za)}-

Note that the above result is indeed equivalent to that of Theorem 2.9 follows from the
following considerations: For any fuzzy set u € I in a fts (X, 1), 6-closure of pin (X, 7)
is the same as that in (X, 75), where (X, 75) denotes the fuzzy semiregularization space [9]
of (X, 7). Moreover, it is known [9] that (X, 7) is FTy (FAR,) iff (X,7s) is FT» (FR»).
Now, since SO(X,1s) < SO(X, 1), it follows that S(f,zo) = S(f : (X,7) = Y,z4) <
S(f: (X,7s) = Y,z4). So, S(f,z,) is degenerate for each z, € FP(X) if (X, 7) is an
FAR, and FTy space and f : IX — IV is a nonempty fuzzy #-closed injection.

3. S-cluster Sets of Fuzzy Multifunctions and SQ.-closedness

Definition 3.1.([10]) Let (X,T) be a topological space in the classical sense and
(Y,A)beafts. Amap F : X — IV is called a fuzzy multifunction iff for each z € X, F(x)
is a nonempty fuzzy set in Y.

In the following, unless otherewise is stated, by F : X — IY we will mean that F
is a fuzzy multifunction from a classical topological space (X,T) to a fts (Y,A). Let
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(X,T) be a classical topological space, z € X and A C X, by N, (resp. Na) and SON,
(resp. SON,4), we mean, the open neighbourhood system of x (resp. of A) and the
semi-open neighbourhood system of = (resp. of A).

Definition 3.2.([10]) For a fuzzy multifunction F : X — I, the lower inverse F'~ (1)
of a fuzzy set n in Y is defined as: F~(n) = {x € X : F(z)qn}.

Definition 3.3. Let F : X — IY be a fuzzy multifunction and € X. Then the S-
cluster fuzzy set of F' at , denoted by S(F, x) is defined to be the set A{0.cC(F(cl(U))) :
U e SON,}.

Definition 3.4.([8]) Let (X,7) be a fts, a € (0,1] and u € IX. Then

(i) The familly 4 = {n; : j € J} C SO(X,7) is called a semi-open Q,-cover of p iff
(Vz € X with p(z) > «)(3j € J)(zagqn;)-
(ii) A subfamilly Uy of an Q,-cover U of u, which is also a Q-cover of p, is called an
Q o-subcover of .
(iii) A fuzzy set p is called SQ,-closed if each semi-open @),-cover U of u there exists a
finite subfamily Uy of U such that {cl(n) : n € Up} is an Q4-cover of .
(iv) A fts (X, 7) is called SQq-closed iff 1x is SQ-closed.

We now turn our attention to the characterizations of SQ,-closedness via S-cluster
fuzzy sets. We need the following two lemmas for this purpose.

Lemma 3.5. A fuzzy set p in a fts (X,7) is an SQq-closed iff for every fuzzy
filterbase F on X such that A An(x) > « for all X\ € F and for all n € SONf?“, then
uA0S.adh(F)(z) > a for somex € X.

Proof. Let p € IX be an SQ,-closed and F be a fuzzy filterbase on X and assume
that uA6S.adh(F)(z) < a for each z € X. Then, for all , € u, we have z, & 6S.adh(F)
and so (In,, € SONL )3\, € F)(cl(ns, )@ z.). The family U = {n,, : o € p}is a
semi-open Qy-cover of pu. By the SQ,-closedness of u, there exists a finite subset pu* of
w such that the family Uy = {cl(n,,) : Xo € p*} is an Q4-cover of p. Choose A € F with
A< A Ao € Frag € p*}. Put p=\/{ns. € SONE :z4 € p*}. Then n € SONE and
cl(n)@A. Since z, € p, Toqn and cl(n)g, then A(z) < 1x \ c¢l(n)(z) < a < u(z) for each
x € X. Hence (up A XN)(x) < a for each z € X, a contradiction. Conversely, suppose that
w is not SQqo-closed. Then there exists a semi-open Qq4-cover U = {n; : j € J} of u such
that for every finite subset Jy of J, the family Uy = {cl(n;) : j € Jo} is not Qa-cover
of . Then, there exists z, € p such that for all c¢l(n;) € Up} we have z,Gcl(n;) and

so oG V cl(n;). Hence zo € A (1x \cl(n;)) and so A ((1x \ cl(n;)) A p)(z) > «
Jj€Jo J€Jo J€Jo

for some z € X. So, F = {uA (1x \ cl(n;)) : j € Jo} is a fuzzy filterbase on u. By
hypothesis, we have z, € p A 6S.adh(F). Assume, n; € SONE and let Jo = {j}.
Since, x4 € 0S.adh(F), then cl(n;)q(p A (1x \ n;)) and so cl(n;)q(1x) \ ¢(n;)) which is
impossible.
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Lemma 3.6.([8]) For any fts (X,7) and a € (0,1] we have:

(i) A fts (X, 1) is SQu-closed iff every fuzzy filterbase 6S-adheres in X.
(ii) Any 6-semiclosed fuzzy set of an SQ.-closed space is SQq-closed.

Definition 3.7. For a fuzzy multifunction F' : X — I¥ and a subset A of X, the
notation S(F, A) stands for the set V{S(F,z) : x € A}.

Theorem 3.8. For any topological space (X,T) and a € (0,1], the following state-
ments are equivalent:

(i) 1x is SQqa-closed.
(ii) S(F,A) D A{0.cL(F(U)) :U € SON4} for each 0-semiclosed subset A of X, for each
fts (Y, A) and each fuzzy multifunction F : X — IY.
(iii) S(F,A) D A{8S.cl(F(U)) : U € SON4} for each 0-semiclosed subset A of X, for
each fts (Y,A) and each fuzzy multifunction F : X — IY.

Proof. (i) = (ii): Let A be any #-semiclosed subset of X. Since, 1x is SQ,-closed,
then by Lemma 3.6(ii), 14 is SQ,-closed. Now, let zo, € A{O.cl(F(W)) : W € SON4}.
Then for all n € N and for each U € SON4, cl(n)gF (U) and so F~(cl(n)) NU # 0.
Thus F = {F~(cl(n)) : n € N2} is clearly a fuzzy filterbase on X, satisfying the
condition of Lemma 3.5. Hence (14 A 8S.adh(F))(xz) > a. Then z € A, and for all
U € SON, and each n € N2, cl(1y)qF (cl(n)), ie., F(ct(U))gcl(n) and so z, €
S(F,z) C S(F,A).

(ii) = (iii): Obvious.

(iii) = (i): In order to show that 1x is SQ,-closed, it is enough to prove, by virtue
of Lemma 3.6(i), that every fuzzy filterbase F on X 6S-adheres at some z, € FP(X).
Let F be a fuzzy filterbase on X. Take y° ¢ X, and construct Y = X U {y°}. Define
A={nel¥ yomlu{nerl¥ :y%mn, X\ <nforsome\ € F}. By Theorem 1.1, it is easy
to verify that A is a fuzzy topoloty on Y. Consider the function ¥ : X — Y by ¥(z) = x.
In order to avoid possible confusion, let us denote the closure and 6S-closure of a fuzzy
set u in X (Y), respectively, by X.cl(u)(Y.cl(p)) and X.0S.cl(p)(Y.0S.cl(p)). As X is
f-semiclosed in X, by the given codition, S(¥,z) O A{Y.0S.c((¥(U)) : U € SONx} =
MY .0S.cl(U) : U € SONx} = Y.0S.cl(X). We consider y3 € FP(Y) and py € SONZ.
There is some n € A such that n < po < Y.el(n). If y°gn, then n < 1x and hence
Y.cl(n)qlx. If on the other hand, y%¢n, then there is some X\ € F such that A < n and
hence Y.cl(\) < Y.cl(n). So 1xqY.cl(n). So, in any case, 1x¢Y.cl(n) and, consequently,
as Y.cl(n) = Y.cl(po), 1xqY.cl(po). Thus y° € Y.0S.cl(X). So, y° € S(¥,x) for some
x € X. Consider any V € SON, and A € F. Then AV {y2} € A and %Y \ (A A {y2}).
Thus Y \ (AV {y2}) € A, which proves that Y.c¢(AV {y2}) = AV {y°}. Now, since
Yiel(AV y2)q¥(X.cl(V)), then X.cl(V)gA V y8 which implies that X.cl(V)g\. Thus,
Zo € 0S.adh(F).
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