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Characterization of a New Family of Distribution
Through Upper Record Values

Mohammad Izhar Khan

Abstract. In this paper, a new class of distribution has been characterized through the condi-
tional expectations, conditioned on a non- adjacent upper record value. Also an equivalence
between the unconditional and conditional expectation is used to characterize the new class
of distribution.

1 Introduction

An observation is called a record if its value is greater than (or analogously, less than) all the
preceding observations. Records arise naturally in many fields of studies such as climatology,
sports, science, engineering, medicine, traffic and industry among others. The development of
the general theory of statistical analysis of record values began with the work of Chandler [4]. For
more details and applications, see Arnold et al. [2], Ahsanullah [6] and Nevzorov [10].

Suppose {Xn, n ≥ 1} is a sequence of independent and identically distributed (iid) ran-
dom variables (r v) with distribution function (df) F (x) and probability density function (pdf)

f(x). Let Yn = max(min) {Xj | 1 ≤ j ≤ n} for n ≥ 1. We say Xj is an upper (lower) record
value of {Xn| n ≥ 1}, if Yj > (<)Yj−1, j > 1. By definition X1 is an upper as well as a
lower record value. The indices at which the upper record values occur are given by the record
times. {U (n) , n ≥ 1} , where U (n) = min{j|j > U (n− 1) , Xj > XU(n−1), n > 1}
and U (1) = 1.The record times of the sequence (Xn) n≥1 are the same as those for the sequence
(F (Xn)) n≥1.

The joint pdf f (x1, x2, . . . . . . , xr) of the r record valuesXU(1), XU(2), . . . . . . ., XU(r) is
given by

f (x1, x2, . . . . . . , xr) =
r−1∏
i=1

f (xr)
f (xi)

F (xi)
, −∞ < x1 < x2 < · · · < xr < ∞, (1.1)

where F (x) = 1− F (x) .
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The joint pdf ofXU(r) andXU(s) is

fU(r), fU(s) (x, y) =
1

Γ (r) Γ(s− r)
[−ln(F (x))]

r−1
[−ln(F (y)) + ln(F (x))]

s−r−1

× f(x)

F (x)
f (y) , −∞ < xr < xs < ∞ (1.2)

The conditional pdf ofXU(s) givenXU(r) = x, 1 ≤ r < s is

f(XU(s)|XU(r) = x) =
1

Γ(s− r)
[−ln(F (y)) + ln(F (x))]

s−r−1 f(y)

F (x)
(1.3)

Many authors utilized the concepts of record values in their works. Lee [8] characterized the ex-
ponential distribution by conditional expectations of record values. Lee et al.[9] characterized the
exponential distribution by order statistics and conditional expectations of record values. Athar
et al.[3] characterized the distribution through the linear regression of record values and order
statistics. Characterization of continuous distribution through record values presented by Khan
et al.[1] and Khan and Khan [5] characterized the modified Makeham distribution through the
generalized upper record values among others.

A random variable X is said to have shape- scale family (Maswadah and Faheem, [7]) if its
pdf is of the form

f (x) = αβgα−1(x)g
′
(x)exp(−βgα (x)), α, β, x > 0 (1.4)

with the corresponding df

F (x) = 1− exp(−βgα (x)), α, β, x > 0. (1.5)

The parameters α and β are shape and scale respectively.

For convenience we assume g(x) to be differentiable as well as strictly increasing function of
x, g (0+) = 0 and g (x) → ∞ as x → ∞.

Note that f (x) and F (x) satisfy the relation,

f(x) = αβgα−1(x)g
′
(x)F (x) . (1.6)

This family includes among others the most popular parameteric models in lifetime distributions
such as the Weibull extension model, modified Weibull model, Weibull distribution, Pareto dis-
tribution, Burr-type XII distribution, Lomax distribution and the Generalized Pareto distribution
according to the values of gα (x). Some important members of this family are shown in Table 1.
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2 CharacterizationTheorems

Theorem 2.1. LetX be a non-negative random variable having an absolutely continuous df F (x)

with F (0) = 0 and 0 ≤ F (x) ≤ 1 for all x > 0. Then for 1 ≤ r < s

E
[
gα(XL(s)|XL(r) = x)

]
= gα (x) +

s− r

β
(2.1)

if and only if
F (x) = 1− exp(−βgα (x)), α, β, x > 0. (2.2)

Proof. From (1.3), we have

E
[
gα(XL(s)|XL(r) = x)

]
=

1

Γ(s− r)

∫ ∞

x
gα (y) [−ln(F (y)) + ln(F (x))]

s−r−1 f(y)

F (x)
dy.

=
1

Γ(s− r)

∫ ∞

x
gα (y) [βgα (y)− βgα (x)]s−r−1αβgα−1 (y)g

′
(y) e

−[βgα(y)−βgα(x)]
dy.

(2.3)
Let

[βgα (y)− βgα (x)] = t.

Then (2.3) reduces to:

E
[
gα(XL(s)|XL(r) = x)

]
=

1

Γ(s− r)

∫ ∞

0
[gα (x) +

t

β
][t]s−r−1e−tdt. (2.4)

After simplification (2.4), we get

E
[
gα(XL(s)|XL(r) = x)

]
= gα (x) +

s− r

β
. (2.5)

This proves the necessary part.

For the sufficiency part, we consider:

gs|r (x) = gα (x) +
s− r

β

1

Γ(s− r)

∫ ∞

x
gα (y)

[
−ln(F (y)) + ln(F (x))

]s−r−1
f(y)dy = gs|r (x)F (x). (2.6)

Differentiating (2.6) both sides with respect to x

− 1

Γ (s− r − 1)

∫ ∞

x
gα (y)

[
−ln(F (y)) + ln(F (x))

]s−r−2 f (x)

F (x)
f (y) dy
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= g
′

s|r (x)F (x)− f(x)gs|r(x)

−gs|r+1(x) = g
′

s|r (x)
F (x)

f(x)
− gs|r(x)

g
′

s|r (x)
F (x)

f(x)
= gs|r(x) −gs|r+1(x)

f(x)

F (x)
=

g
′

s|r (x)

[gs|r(x) −gs|r+1(x)]
=

αgα−1(x)g
′
(x)[(

gα (x) + s−r
β

)
−
(
gα (x) + s−r−1)

β

)]
f(x)

F (x)
= αβgα−1(x)g

′
(x)

f (x) = αβgα−1(x)g
′
(x) F (x)

and hence theTheorem.

Theorem 2.2. Under the conditions as given in Theorem 2.1 and for 1 ≤ r ≤ s < t

E
[
gα(XL(t) −XL(s)|XL(r) = x)

]
=

(t− s)

β
(2.7)

if and only if
F (x) = 1− exp(−βgα (x)), α, β, x > 0. (2.8)

Proof. Necessary part can be proved on the line of Theorem 2.1.

Now, for the sufficiency part, let c = (t−s)
β

1

Γ(t− r)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]t−r−1
f(y)dy

− 1

Γ(s− r)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]s−r−1
f (y) dy = cF (x). (2.9)

Differentiating both sides of the equation (2.9) with respect to x,

(t− r − 1)

Γ(t− r)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]t−r−2 f(y)

F (x)
f(x)dy

−(s− r − 1)

Γ(s− r)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]s−r−2 f(y)

F (x)
f(x)dy = cf(x), f(x) > 0, ∀x

That is,
1

Γ(t− r − 1)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]t−r−2
f(y)dy

− 1

Γ(s− r − 1)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]s−r−2
f (y) dy = cF (x).
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Again differentiating both sides of the equation (2.9) with respect to x,

1

Γ(t− r − 2)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]t−r−3
f(y)dy

− 1

Γ(s− r − 2)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]s−r−3
f (y) dy = cF (x).

Similarly differentiating both sides of the equation (2.9) with respect to x upto (s− r) times, we
get,

1

Γ(t− s)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]t−s−1 f(y)

F (x)
dy = gα (x) + c. (2.10)

Integrating left hand side of (2.10) by parts and simplifying, we have

1

Γ(t− s− 1)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]t−s−2 f(y)

F (x)
dy

+
1

Γ(t− s)

∫ ∞

x
αgα−1 (y) g

′
(y)

[
−ln(F (y) ) + ln(F (x))

]t−s−1F (y)

F (x)
dy = gα (x)+c. (2.11)

In view of (2.10), reduces to

1

Γ(t− s)

∫ ∞

x
αgα−1 (y) g

′
(y)

[
−ln(F (y) ) + ln(F (x))

]t−s−1
F (y) dy =

F (x)

β
. (2.12)

Differentiating above equation with respect to x and simplifying for (t− s) times, we get

αgα−1 (x) g
′
(x)F (x) =

f (x)

β

f (x) = αβgα−1(x)g
′
(x) F (x) .

Hence the result is proved.

Remark 1. At r = sTheorem 2.2 reduces to Theorem 2.1.

Theorem 2.3. Under the conditions as given in Theorem 2.1 and for 1 ≤ r ≤ s < t,

E
[
gα(XL(t))− gα(XL(s))

]
+ gα(x) = E

[
gα(XL(t))|XL(s) = x

]
(2.13)

if and only if
F (x) = 1− exp(−βgα (x)), α, β, x > 0. (2.14)
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Proof. It is easy to see that (2.14) implies (2.13) and hence the necessary part is proved.

For the sufficiency part, we have:

E
[
gα(XL(t))− gα(XL(s))

]
+ gα(x)

=
1

Γ(t− s)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]t−s−1 f(y)

F (x)
dy. (2.15)

Integrating the right hand side of (2.15) by parts, we have

1

Γ(t− s− 1)

∫ ∞

x
gα (y)

[
−ln(F (y) ) + ln(F (x))

]t−s−2 f(y)

F (x)
dy

+
1

Γ(t− s)

∫ ∞

x
αgα−1 (y) g

′
(y)

[
−ln(F (y) ) + ln(F (x))

]t−s−1F (y)

F (x)
dy. (2.16)

In view of (2.15) and (2.16), we have

E
[
gα

(
XL(t)

)
− gα

(
XL(t−1)

)]
F (x)

=
1

Γ(t− s)

∫ ∞

x
αgα−1 (y) g

′
(y)

[
−ln(F (y) ) + ln(F (x))

]t−s−1
F (y) dy. (2.17)

Since

E
[
gα

(
XL(t)

)
− gα

(
XL(t−1)

)]
= 1

β , is independent of x, (2.17) can be written as

1

Γ(t− s)

∫ ∞

x
αgα−1 (y) g

′
(y)

[
−ln(F (y) ) + ln(F (x))

]t−s−1
F (y) dy =

F (x)

β
. (2.18)

Differentiating (2.18) with respect to x and simplifying for (t− s) times, we get

αgα−1 (x) g
′
(x)F (x) =

f (x)

β
.

Implying that

f (x) = αβgα−1(x)g
′
(x) F (x) .

This proves the Theorem.
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Table 1: Example based on df F (x) = 1− exp (−βgα (x)) , α, β, x > 0.

Distribution F (x) gα (x)

Weibull Extension 1− exp(−β (exp (xα)−1) ) exp (xα)−1

Modified Weibull 1− exp(−xαβexp(λx)) xαexp(λx)

Weibull 1− exp(−βxα) xα

Burr-type XII 1− (1 + xα)−β ln(1 + xα)

Lomax 1− (1 + x/α)−β ln(1 + x/α)

Generalized
Pareto

1− (1− x/α)β −ln(1 −
x/α)

Pareto-type I 1− (x/α)−β ln(x/α)

3 Conclusion

In this paper, we have derived the characterization results through the upper record values when
a sample is available from a new family of continuous distribution. It has been seen that this fam-
ily consists a list of continuous probability distributions as given in Table 1. Further, the results
provided in this paper will be a useful reference for the researchers in the field of record value
theory and its applications.
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