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A NOTE ON DRAGOMIR-MCANDREW'S TRAPEZOID INEQUALITIES

HENDRA GUNAWAN

Abstract. In [1], Dragomir and Mcandrew proved some trapezoid inequalities by involving a

Gr�uss' type inequality. In this note, we show that their trapezoid inequalities can actually be

obtained directly in a much simpler way. Some improvements will also be o�ered.

1. Introduction. A Direct Proof of Dragomir-Mcandrew's Results

Let f; g : [a; b] ! R be integrable. Write
R b
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R b

a
f(x)dx. Then, Dragomir and

Mcandrew [1] showed that the following Gr�uss' type inequality
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holds. Moreover, by taking f(x) = g(x) = sign(x � a+b
2
), they con�rmed that the

inequality is sharp.

From (1), they then derived the following trapezoid inequalities for functions f having

�rst derivative bounded, integrable, or q-integrable on (a; b):

���f(a) + f(b)

2
� 1

b� a

Z b

a

f
��� � b� a

4
sup

x2(a;b)

���f 0(x)� f(b)� f(a)
b� a

��� (2)

���f(a) + f(b)

2
� 1

b� a

Z b

a

f
��� � 1

2

Z b

a

���f 0(x)� f(b)� f(a)
b� a

���dx (3)

���f(a) + f(b)

2
� 1

b� a

Z b

a

f
��� � 1

2

h b� a
p+ 1

i1=phZ b

a

���f 0(x)� f(b)� f(a)
b� a

���qdx
i1=q

(4)

for 1 < p, q <1 with 1
p
+ 1

q
= 1. Note that (2) and (3) are the endpoint inequalities of

(4), which may be obtained from (4) by letting p! 1 and p!1 respectively.

As we shall show below, these inequalities can be obtained in a much simpler way

without using the Gr�uss' type inequality. Indeed, by integration by parts, we have
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Now since
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for any c 2 R. In particular, if we take c =
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, then
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The three inequalities (2)-(4) then follows immediately from this via H�older's inequality.

Notice here that
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for 1 � p <1, while supx2(a;b) jx� a+b

2
j =

b�a
2
.

2. Improved Inequalities

Since we can actually choose arbitrary values for c in (5), we ask ourself now: is

the choice of c =
f(b)�f(a)

b�a
best possible? Note that the average value c =

f(b)�f(a)

b�a

comes out automatically when one estimates the left hand side of (5) via the Gr�uss' type

inequality (1). From our direct proof, however, we see that there is no obligation for us

to use this value. Hence it is natural to ask whether we can improve the three trapezoid

inequalities by choosing a di�erent value for c.

An obvious way to improve them is, of course, by choosing c = c0 such that supx2(a;b)

jf 0(x)� cj or [
R b

a
jf 0(x)� cjqdx]1=q , for 1 � q <1, is minimized at c0. In the case where

f 0 is bounded, for instance, the existence of such c0 is guaranteed by the continuity of

the above expression in c.

Let us just consider the two endpoint inequalities here (we leave the intermediate

inequality to the reader to investigate):
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where c 2 R. The following examples indicate that the choice of c =
f(b)�f(a)

b�a
, both in

(6) and (7), is not best possible.

Example 1. Let f(x) = x3, x 2 [0; 2]. Then f 0(x) = 3x2 2 (0; 12), x 2 (0; 2). If c =
f(2)�f(0)

2�0
= 4, then f 0(x)�c = 3x2�4 2 (�4; 8), x 2 (0; 2), and hence supx2(0;2) jf 0(x)�cj
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= supx2(0;2) j3x2 � 4j = 8. However, if we choose c = 6 instead of 4, we will get

supx2(0;2) jf 0(x) � cj = supx2(0;2) j3x2 � 6j = 6. The value c = 6 is clearly the one that

minimizes supx2(0;2) jf 0(x)� cj.

Example 2. Again, let f(x) = x3, x 2 [0; 2]. Then, as before, f 0(x) = 3x2,

x 2 (0; 2). If c = f(2)�f(0)
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= 4, then we have
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calculus, one may check that the expression
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j3x2 � cjdx is minimized when c = 3.

Here
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Assuming that f 0 is bounded, one may observe that c = 1
2
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f 0(x)] will minimize supx2(a;b) jf 0(x) � cj. With this choice of c, we have the following

inequality:
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which is generally better than (2).

Meanwhile, to �nd the value of c that minimizes
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assumption on f 0. In particular, if f 0(x) � f 0(a+b
2
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2
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for a < x < a+b
2

< y < b [e.g. if f 0 is monotone on (a; b)], then we have the following

improvement of (3):
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This inequality is best possible in the sense that if we replace f 0(a+b
2
) by a di�erent value,

then we will obtain a worse estimate. Indeed, if we alter it by � 6= 0, then we will gain

�1 = (b� a)j�j=2 on one sub-interval and lose �2 � (b� a)j�j=2 on another sub-interval,

so that in total our estimate increases by �1 � �2, which is nonnegative.

3. Concluding Remarks

The classical Gr�uss' inequality says that if �;  : [a; b] ! R are integrable and

bounded, with k � �(x) � K and m �  (x) �M for all x 2 [a; b], then
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(see [2], p. 296). If we take �(x) = x� a+b
2

and  (x) = f 0(x), then we obtain
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which is worse than (8) [and is no better than (2) either].
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Meanwhile, by calculating the right-hand side of (9), the inequality (9) can be sim-

pli�ed to ���f(a) + f(b)
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In the case where f 0(x) � f 0(a+b
2
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2
< y < b [e.g. when f 0 is

increasing on (a; b)], we obtain
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which is the classical Hadamard's inequality (see [2], p. 10).

As in [1], the improved inequalities (8) and (9) may be applied to some special means

(e.g. arithmetic, geometric, or logarithmic means). We leave the computation to the

reader.
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