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ON COMPATIBLE MAPPINGS

SATISFYING AN IMPLICIT RELATION IN COMMON

FIXED POINT CONSIDERATION

SUSHIL SHARMA AND BHAVANA DESHPANDE

Abstract. In this paper, we prove some common �xed point theorems for compatible mappings

satisfying an implicit relation.

1. Introduction

Wang, Li, Gao and Iseki [14] proved some �xed point theorems on expansion mappings

which correspond to some contractive mappings. In a paper Rhoades [9] generalized

the results for pairs of mappings. Some theorems on unique �xed point for expansion

mappings are proved by Popa [6]. Popa [7] further extended results [6], [9] for compatible

mappings.

In 1999, Popa [8] proved some �xed point theorems for compatible mappings satisfying

an implicit relation.

Let S and T be two self mappings of a metric space (X; d). Sessa [10] de�nes S and

T to be weakly commuting if d(STx; TSx) � d(Tx; Sx) for all x in X . Jungck [1] de�nes

S and T to be compatible if limn!1 d(STxn; TSxn) = 0 whenever fxng is a sequence

in X such that limn!1 Sxn = limn!1 Txn = x for some x in X . Clearly, commuting

mappings are weakly commuting and weakly commuting mappings are compatible, but

implications are not reversible [11, Ex 1] and [1, Ex 2.2].

Many authors have proved common �xed point theorems for compatible mappings

for this we refer to Jungck [1], [2] and [3], Sessa, Rhoades and Khan [12], Kang, Cho and

Jungck [4], Kang and Ray [5] and Sharma and Patidar [13].

In this paper, we prove common �xed point theorems for compatible mappings in

Banach spaces, satisfying an implicit relation. We improve and generalize the results of

Popa [6], [7] and [8].

Lemma 1.([1]) Let S and T be compatible self mappings on a metric space (X; d): If

S(t) = T (t) for some t 2 X then ST (t) = TS(t).
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2. Implicit Relations

Let � be the set of all real continuous functions �(t1; t2; : : : ; t6) : R
6
+ ! R satifying

the following conditions:
�1 : � is non-increasing in variable t6,
�2 : there exists h 2 (0; 1) such that for every u; v � 0 with

(�a) : �(u; v; v; u; (1=2)(u+ v); 0) � 0

or
(�b) : �(u; v; u; v; (1=2)(u+ v); u+ v) � 0

we have u � hv:
�3 : �(u; u; 0; 0; 0; u) > 0 for all u > 0.

Example 1. �(t1; : : : ; t6) = t1�k maxft2; t3; t4; t5; (1=2)t6g, where k 2 (0; 1).
�1: Obviously.
�2: Let u > 0, �(u; v; v; u; (1=2)(u+ v); 0) = u� kmaxfv; v; u; (1=2)(u+ v); 0g � 0. If

u � v then u � ku < u, a contradiction. Thus u < v and u � kv = hv, where
h = k 2 (0; 1).
Similarly, if u > 0 then �(u; v; u; v; (1=2)(u+ v); u+ v) � 0 imply u � hv. If u = 0,
then u � hv.

�3: �(u; u; 0; 0; 0; u) = (1� k)u > 0, for all u > 0.

Example 2. �(t1; t2; : : : ; t6)= t21�aft
2
2�t6((1=2)(t3+t4)�t5)g, where a2(0; 1).

�1: Obviously.
�2: Let u > 0, �(u; v; v; u; (1=2)(u+v); 0) = u2�av2 � 0, which implies u � a1=2v = hv;

where h = a1=2 < 1.
Similarly, if u > 0 then �(u; v; u; v; (1=2)(u+ v); u+ v) � 0 imply u � hv. If u = 0,
then u � hv.

�3 : �(u; u; 0; 0; 0; u) = u2(1� a) > 0, for all u > 0.

Example 3. �(t1; : : : ; t6) = t21 � c1 maxft22; t
2
3; t

2
4g � c2 maxft3t5; (1=2)t4t6g, where

c1 > 0, c2 � 0, c1 + c2 < 1.
�1: Obviously.
�2: Let u > 0, �(u; v; v; u; (1=2)(u+v); 0) = u2�c1 maxfv2; v2; u2g�c2 maxfv(1=2)(u+

v); 0g � 0. If u � v then u2(1 � c1 � c2) � 0, which implies c1 + c2 � 1, a
contradiction. Thus u < v and u � (c1 + c2)

1=2v = hv, where h = (c1 + c2)
1=2 < 1.

Similarly, if u > 0 then �(u; v; u; v; (1=2)(u+ v); u+ v) � 0 imply u � hv. If u = 0,
then u � hv.

�3 : �(u; u; 0; 0; 0; u) = u2(1� c1) > 0, for all u > 0.

3. Main Results

Theorem 3.1. Let (X; k � k) be a Banach space and A;B; S; T :X ! X be four

mappings satisfying the conditions:

� (kAx�Byk; kSx� Tyk; kSx�Axk; kTy �Byk;

(1=2)(kSx�Axk+ kTy �Byk); kTy�Axk) � 0 (3.1)
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for all x; y in X, where � 2 �,

A(X) � T (X) and B(X) � S(X); (3.2)

one of A;B; S; T is continuous; (3.3)

fA;Sg and fB; Tg are compatible pairs: (3.4)

Then A;B; S and T have a unique common �xed point.

Proof. By (3.2), since A(X) � T (X), for an arbitrary point x0 2 X there exists a

point x1 2 X such that Ax0 = Tx1. Since B(X) � S(X), for this point x1 2 X , we

can choose a point x2 2 X such that Bx1 = Sx2 and so on. Inductively we can de�ne a

sequence fyng in X such that

y2n = Tx2n+1 = Ax2n and y2n+1 = Sx2n+2 = Bx2n+1

for every n = 0; 1; 2; : : : :

By (3.1), we have

� (kAx2n �Bx2n+1k; kSx2n � Tx2n+1k; kSx2n �Ax2nk; kTx2n+1 �Bx2n+1k;

(1=2)(kSx2n �Ax2nk+ kTx2n+1 �Bx2n+1k); kTx2n+1 �Ax2nk) � 0;

� (kAx2n �Bx2n+1k; kBx2n�1 �Ax2nk; kBx2n�1 �Ax2nk;

kAx2n �Bx2n+1k; (1=2)(kBx2n�1 �Ax2nk+ kAx2n �Bx2n+1k); 0) � 0:

By (�a), we have

kAx2n �Bx2n+1k � hkBx2n�1 �Ax2nk:

Similarly by (�b) and �1, we have

kAx2n �Bx2n�1k � hkAx2n�2 �Bx2n�1k:

and so

kAx2n �Bx2n�1k � h2nkAx0 �Bx1k for n = 0; 1; 2; : : :

.

By a routine calculation it follows that fyng is a Cauchy sequence in X and hence

it converges to a point z in X . Consequently, subsequences fAx2ng; fBx2n+1g; fSx2ng

and fTx2n+1g of fyng also converges to the point z.

Let us now suppose that S is continuous, so the sequence fSAx2ng converges to fSzg.

We have

kASx2n � Szk � kASx2n � SAx2nk+ kSAx2n � Szk:

Since S is continuous and A and S are compatible, letting n tends to in�nity, we state

that the sequence fASx2ng also converges to Sz. Using (3.1), we have

� (kASx2n �Bx2n+1k; kSSx2n � Tx2n+1k; kSSx2n �ASx2nk; kTx2n+1 �Bx2n+1k;

(1=2)(kSSx2n �ASx2nk+ kTx2n+1 �Bx2n+1k); kTx2n+1 �ASx2nk) � 0:
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Letting n tends to in�nity we have by the continuity of �,

�(kSz � zk; kSz � zk; 0; 0; 0; kz� Szk) � 0;

which is a contradiction to �3 if kz � Szk 6= 0. Thus Sz = z. Further by (3.1), we have

� (kAz �Bx2n+1k; kSz � Tx2n+1k; kSz �Azk; kTx2n+1 �Bx2n+1k;

(1=2)(kSz �Azk+ kTx2n+1 �Bx2n+1k); kTx2n+1 �Azk) � 0:

Letting n tends to in�nity we have by the continuity of �,

�(kAz � zk; 0; kz �Azk; 0; (1=2)kz� Azk; kz �Azk) � 0;

which implies by (�b), that Az = z. This means that z is in the range of A and since

A(X) � T (X), there exists a point u in X such that Tu = z.

Using (3.1), we have

� (kAz �Buk; kSz � Tuk; kSz� Azk; kTu�Buk;

(1=2)(kSz �Azk+ kTu�Buk); kTu�Azk) � 0

= �(kz �Buk; 0; 0; kz�Buk; (1=2)kz�Buk; 0) � 0;

which implies by (�a), that z = Bu.

Since Tu = Bu = z, by Lemma 1, it follows that BTu = TBu and so Bz = BTu =

TBu = Tz.

Thus from (3.1), we have

� (kAz �Bzk; kSz � Tzk; kSz�Azk; kTz �Bzk;

(1=2)(kSz �Azk+ kTz �Bzk); kTz �Azk) � 0

= �(kz � Tzk; kz� Tzk; 0; 0; 0; kTz� zk) � 0;

which is contradiction to �3 if jjTz � zk 6= 0. Thus Tz = z = Bz.

We have therefore, proved that z is a common �xed point of A;B; S and T . The same

result holds if T is continuous instead of S. Now suppose that A is continuous. Then

the sequence fASx2ng converges to Az we have

kSAx2n �Azk � kSAx2n �ASx2nk+ kASx2n �Azk:

Since A is continuous and A and S are compatible, letting n tends to in�nity we

obtain that fSAx2ng converges to Az. Using (3.1), we have

� (kAAx2n �Bx2n+1k; kSAx2n � Tx2n+1k; kSAx2n �AAx2nk; kTx2n+1 �Bx2n+1k;

(1=2)(kSAx2n �AAx2nk+ kTx2n+1 �Bx2n+1k); kTx2n+1 �AAx2n) � 0:

Letting n tends to in�nity, we have by continuity of �

�(kAz � zk; kAz � zk; 0; 0; 0; kz�Azk) � 0;
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a contradiction to �3 if z 6= Az. Thus z = Az.

This means that z is in the range of A and since A(X) � T (X), there exists a point

v in X such that Tv = z. Thus by (3.1), we have

� (kAAx2n �Bvk; kSAx2n � Tvk; kSAx2n �AAx2nk; kTv �Bvk;

(1=2)(kSAx2n �AAx2nk+ kTv �Bvk); kTv �AAx2nk) � 0:

Letting n tends to in�nity we get

�(kz �Bvk; 0; 0; kz �Bvk; (1=2)kz �Bvk; 0) � 0

and by (�a) it follows that z = Bv. Since Tv = Bv = z, by Lemma 1, it follows that

Bz = BTv = TBv = Tz. Thus from (3.1) we have

� (kAx2n �Bzk; kSx2n � Tzk; kSx2n �Ax2nk; kTz�Bzk;

(1=2)(Sx2n �Ax2nk+ kTz �Bzk); kTz�Ax2n) � 0:

Letting n tends to in�nity, we obtain

�(kz �Bzk; kz �Bzk; 0; 0; 0; kBz� zk) � 0;

which is contradiction to �3, it follows that z = Bz = Tz. This means that z is in the

range of B and since B(X) � S(X) there exists w 2 X such that Sw = z. Thus from

(3.1) we have

� (kAw �Bzk; kSw� Tzk; kSw�Awk; kTz �Bzk;

(1=2)(kSw �Awk+ kTz �Bzk); kTz �Awk) � 0:

� (kAw � zk; 0; kz�Awk; 0; (1=2)kz �Awk; kz �Awk) � 0;

and by (�b), we have z = Aw = Sw. Since Aw = Sw = z, by Lemma 1, it follows that

SAw = ASw and so Sz = SAw = ASw = Az = z. We have therefore proved that z is a

common �xed point of A;B; S and T .

The same result holds, if we assume that B is continuous instead of A. By (3.1) and

�3 it follows that z is unique.

Theorem 3.1 and Examples 1 to 3 imply the following:

Corollary 3.2. Let (X; k � k) be a Banach space and A;B; S and T : X ! X be four

mappings satisfying the conditions (3:2) to (3:4) and the following :

kAx�Byk � kmaxfkSx� Tyk; kSx�Axk; kTy �Byk;

(1=2)(jjSx�Axk+ kTy �Byk); (1=2)kTy�Axkg (3.5)

for all x; y in X, where k 2 (0; 1),

or

kAx�Byk2 � akSx� Tyk2 (3.6)
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for all x; y in X, where a 2 (0; 1),
or

kAx�Byk2 � c1maxfkSx� Tyk2; kSx�Axk2; kTy �Byk2g

+c2maxfkSx�Axk(1=2)(kSx�Axk+ kTy �Byk);

(1=2)kTy�Byk kTy �Axkg (3.7)

for all x; y in X, where c1 > 0; c2 � 0; c1 + c2 < 1:
Then A;B; S and T have a unique common �xed point.

We now give an example to illustrate the above results:

Example 4. Consider X = [1; 15] with the usual norm.
De�ne A;B; S and T by

Ax = 1 if x 2 [1; 15]

Bx =

�
1 if x = 1; x > 3

2 if 1 < x � 3

Sx =

8<
:
1 if x = 1; x > 3; x 6= 12

2 if x = 12

15 if 1 < x � 3

Tx =

�
1 if x = 1; x > 3

5 if 1 < x � 3

Then A;B; S and T satisfy condition (3.2) of Theorem 3.1. In this example only mapping
A is continuous and so condition (3.3) is satis�ed.

Let us consider a decreasing sequence fxng such that limn!1 xn = 3. Then limn!1

Axn = limn!1 Sxn = 1 and limn!1 kASxn � SAxnk = 0. Thus the pair fA;Sg is
compatible. Similarly the pair fB; Tg is also compatible.

We see that condition (3.1) is satis�ed if � is similar to that of Example 1 or Example
2 or Example 3. Here we take k 2 [0:5; 1) in Example 1, a 2 [0:3; 1) in Example 2 and
c1 = 0:8; c2 = 0:1 in Example 3.

Thus A;B; S and T satisfy all the conditions of Theorem 3.1 and Corollary 3.2 and
have a unique common �xed point x = 1.

For a function f : (X; k � k)! (X; k � k) we denote Ff = fx 2 X : x = f(x)g.

Theorem 3.3. Let A;B; S and T be mappings from a normed linear space (X; k � k)
into itself. If the inequality (3:1) holds for x; y in X then (FS\FT )\FA = (FS\FT )\FB.

Proof. Let x 2 (FS \ FT ) \ FA. Then by (3.1), we have

� (kAx�Bxk; kSx� Txk; kSx�Axk; kTx�Bxk;

(1=2)(kSx�Axk+ kTx�Bxk); kTx�Axk) � 0:

= �(kx�Bxk; 0; 0; kx�Bxk; (1=2)kx�Bxk; 0) � 0;
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which implies, by (�a) that x = Bx. Thus

(FS \ FT ) \ FA � (FS \ FT ) \ FB :

Similarly, we have by (�b), that

(FS \ FT ) \ FB � (FS \ FT ) \ FA:

Remark. Theorem 3.3 is true if we replace the condition (3.1) by (3.5) or (3.6) or

(3.7).

Theorem 3.1 implies following one.

Theorem 3.4. Let S; T and fAigi2N be mappings from a Banach space (X; k � k)

into itself such that

A2(X) � S(X) and A1(X) � T (X); (3.8)

one of S; T;A1 and A2 is continuous; (3.9)

the pairs (A1; S) and (A2; T ) are compatible; (3.10)

the inequality

� (kAix�Ai+1yk; kSx� Tyk; kSx�Aixk; (kTy �Ai+1yk;

(1=2)((kSx�Aixk+ kTy �Ai+1yk); kAy �Aixk) � 0 (3.11)

holds for each x; y 2 X, for all i 2 N and � 2 �. Then S; T and fAigi2N have a unique

common �xed point.
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