TAMKANG JOURNAL OF MATHEMATICS Volume 33, Number 3, Autumn 2002

ON COMPATIBLE MAPPINGS SATISFYING AN IMPLICIT RELATION IN COMMON FIXED POINT CONSIDERATION

SUSHIL SHARMA AND BHAVANA DESHPANDE

Abstract. In this paper, we prove some common fixed point theorems for compatible mappings satisfying an implicit relation.

1. Introduction

Wang, Li, Gao and Iseki [14] proved some fixed point theorems on expansion mappings which correspond to some contractive mappings. In a paper Rhoades [9] generalized the results for pairs of mappings. Some theorems on unique fixed point for expansion mappings are proved by Popa [6]. Popa [7] further extended results [6], [9] for compatible mappings.

In 1999, Popa [8] proved some fixed point theorems for compatible mappings satisfying an implicit relation.

Let S and T be two self mappings of a metric space (X, d). Sessa [10] defines S and T to be weakly commuting if $d(STx, TSx) \leq d(Tx, Sx)$ for all x in X. Jungck [1] defines S and T to be compatible if $\lim_{n\to\infty} d(STx_n, TSx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = x$ for some x in X. Clearly, commuting mappings are weakly commuting and weakly commuting mappings are compatible, but implications are not reversible [11, Ex 1] and [1, Ex 2.2].

Many authors have proved common fixed point theorems for compatible mappings for this we refer to Jungck [1], [2] and [3], Sessa, Rhoades and Khan [12], Kang, Cho and Jungck [4], Kang and Ray [5] and Sharma and Patidar [13].

In this paper, we prove common fixed point theorems for compatible mappings in Banach spaces, satisfying an implicit relation. We improve and generalize the results of Popa [6], [7] and [8].

Lemma 1.([1]) Let S and T be compatible self mappings on a metric space (X, d). If S(t) = T(t) for some $t \in X$ then ST(t) = TS(t).

Received April 27, 2001; revised November 14, 2001.

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25

Key words and phrases. Compatible mappings, implicit relation, common fixed point.

2. Implicit Relations

Let Φ be the set of all real continuous functions $\phi(t_1, t_2, \ldots, t_6) : R_+^6 \to R$ satisfying the following conditions:

- ϕ_1 : ϕ is non-increasing in variable t_6 ,
- ϕ_2 : there exists $h \in (0,1)$ such that for every $u, v \ge 0$ with

$$(\phi_a): \phi(u, v, v, u, (1/2)(u+v), 0) \le 0$$

or

$$(\phi_b): \phi(u, v, u, v, (1/2)(u+v), u+v) \le 0$$

we have $u \leq hv$.

 $\phi_3: \phi(u, u, 0, 0, 0, u) > 0$ for all u > 0.

Example 1. $\phi(t_1, \ldots, t_6) = t_1 - k \max\{t_2, t_3, t_4, t_5, (1/2)t_6\}$, where $k \in (0, 1)$.

- ϕ_1 : Obviously.
- $\begin{aligned} \phi_2: \ \text{Let } u > 0, \ \phi(u,v,v,u,(1/2)(u+v),0) &= u k \max\{v,v,u,(1/2)(u+v),0\} \leq 0. \ \text{If} \\ u \geq v \ \text{then } u \leq ku < u, \ \text{a contradiction. Thus } u < v \ \text{and } u \leq kv = hv, \ \text{where} \\ h = k \in (0,1). \\ \text{Similarly, if } u > 0 \ \text{then } \phi(u,v,u,v,(1/2)(u+v),u+v) \leq 0 \ \text{imply } u \leq hv. \ \text{If } u = 0, \\ \text{then } u \leq hv. \end{aligned}$

 $\phi_3: \phi(u, u, 0, 0, 0, u) = (1 - k)u > 0$, for all u > 0.

Example 2. $\phi(t_1, t_2, \dots, t_6) = t_1^2 - a\{t_2^2 - t_6((1/2)(t_3 + t_4) - t_5)\}$, where $a \in (0, 1)$.

- ϕ_1 : Obviously.
- ϕ_2 : Let u > 0, $\phi(u, v, v, u, (1/2)(u+v), 0) = u^2 av^2 \le 0$, which implies $u \le a^{1/2}v = hv$, where $h = a^{1/2} < 1$. Similarly, if u > 0 then $\phi(u, v, u, v, (1/2)(u+v), u+v) < 0$ imply u < hv. If u = 0,

then $u \leq hv$.

 $\phi_3: \phi(u, u, 0, 0, 0, u) = u^2(1-a) > 0$, for all u > 0.

Example 3. $\phi(t_1, \ldots, t_6) = t_1^2 - c_1 \max\{t_2^2, t_3^2, t_4^2\} - c_2 \max\{t_3t_5, (1/2)t_4t_6\}$, where $c_1 > 0, c_2 \ge 0, c_1 + c_2 < 1$.

- ϕ_1 : Obviously.
- $\begin{array}{l} \phi_2 \colon \text{Let } u > 0, \, \phi(u,v,v,u,(1/2)(u+v),0) = u^2 c_1 \, \max\{v^2,v^2,u^2\} c_2 \, \max\{v(1/2)(u+v),0\} \leq 0. \quad \text{If } u \geq v \, \text{then } u^2(1-c_1-c_2) \leq 0, \, \text{which implies } c_1+c_2 \geq 1, \, \text{a contradiction. Thus } u < v \, \text{and } u \leq (c_1+c_2)^{1/2}v = hv, \, \text{where } h = (c_1+c_2)^{1/2} < 1. \, \text{Similarly, if } u > 0 \, \text{then } \phi(u,v,u,v,(1/2)(u+v),u+v) \leq 0 \, \text{imply } u \leq hv. \, \text{If } u = 0, \, \text{then } u \leq hv. \end{array}$
- $\phi_3: \phi(u, u, 0, 0, 0, u) = u^2(1 c_1) > 0$, for all u > 0.

3. Main Results

Theorem 3.1. Let $(X, \|\cdot\|)$ be a Banach space and $A, B, S, T: X \to X$ be four mappings satisfying the conditions:

$$\phi (\|Ax - By\|, \|Sx - Ty\|, \|Sx - Ax\|, \|Ty - By\|, (1/2)(\|Sx - Ax\| + \|Ty - By\|), \|Ty - Ax\|) \le 0$$
(3.1)

for all x, y in X, where $\phi \in \Phi$,

$$A(X) \subset T(X) \text{ and } B(X) \subset S(X), \tag{3.2}$$

one of
$$A, B, S, T$$
 is continuous, (3.3)

$$\{A, S\}$$
 and $\{B, T\}$ are compatible pairs. (3.4)

Then A, B, S and T have a unique common fixed point.

Proof. By (3.2), since $A(X) \subset T(X)$, for an arbitrary point $x_0 \in X$ there exists a point $x_1 \in X$ such that $Ax_0 = Tx_1$. Since $B(X) \subset S(X)$, for this point $x_1 \in X$, we can choose a point $x_2 \in X$ such that $Bx_1 = Sx_2$ and so on. Inductively we can define a sequence $\{y_n\}$ in X such that

$$y_{2n} = Tx_{2n+1} = Ax_{2n}$$
 and $y_{2n+1} = Sx_{2n+2} = Bx_{2n+1}$

for every n = 0, 1, 2, ...By (3.1), we have

$$\phi \left(\|Ax_{2n} - Bx_{2n+1}\|, \|Sx_{2n} - Tx_{2n+1}\|, \|Sx_{2n} - Ax_{2n}\|, \|Tx_{2n+1} - Bx_{2n+1}\|, \\ (1/2)(\|Sx_{2n} - Ax_{2n}\| + \|Tx_{2n+1} - Bx_{2n+1}\|), \|Tx_{2n+1} - Ax_{2n}\|) \le 0,$$

$$\phi \left(\|Ax_{2n} - Bx_{2n+1}\|, \|Bx_{2n-1} - Ax_{2n}\|, \|Bx_{2n-1} - Ax_{2n}\|, \\ \|Ax_{2n} - Bx_{2n+1}\|, (1/2)(\|Bx_{2n-1} - Ax_{2n}\| + \|Ax_{2n} - Bx_{2n+1}\|), 0) \le 0.$$

By (ϕ_a) , we have

$$||Ax_{2n} - Bx_{2n+1}|| \le h ||Bx_{2n-1} - Ax_{2n}||.$$

Similarly by (ϕ_b) and ϕ_1 , we have

$$||Ax_{2n} - Bx_{2n-1}|| \le h ||Ax_{2n-2} - Bx_{2n-1}||.$$

and so

$$||Ax_{2n} - Bx_{2n-1}|| \le h^{2n} ||Ax_0 - Bx_1||$$
 for $n = 0, 1, 2, \dots$

By a routine calculation it follows that $\{y_n\}$ is a Cauchy sequence in X and hence it converges to a point z in X. Consequently, subsequences $\{Ax_{2n}\}, \{Bx_{2n+1}\}, \{Sx_{2n}\}$ and $\{Tx_{2n+1}\}$ of $\{y_n\}$ also converges to the point z.

Let us now suppose that S is continuous, so the sequence $\{SAx_{2n}\}$ converges to $\{Sz\}$. We have

$$||ASx_{2n} - Sz|| \le ||ASx_{2n} - SAx_{2n}|| + ||SAx_{2n} - Sz||.$$

Since S is continuous and A and S are compatible, letting n tends to infinity, we state that the sequence $\{ASx_{2n}\}$ also converges to Sz. Using (3.1), we have

$$\phi \left(\|ASx_{2n} - Bx_{2n+1}\|, \|SSx_{2n} - Tx_{2n+1}\|, \|SSx_{2n} - ASx_{2n}\|, \|Tx_{2n+1} - Bx_{2n+1}\|, (1/2)(\|SSx_{2n} - ASx_{2n}\| + \|Tx_{2n+1} - Bx_{2n+1}\|), \|Tx_{2n+1} - ASx_{2n}\|) \le 0.$$

Letting n tends to infinity we have by the continuity of ϕ ,

$$\phi(\|Sz - z\|, \|Sz - z\|, 0, 0, 0, \|z - Sz\|) \le 0,$$

which is a contradiction to ϕ_3 if $||z - Sz|| \neq 0$. Thus Sz = z. Further by (3.1), we have

$$\phi \left(\|Az - Bx_{2n+1}\|, \|Sz - Tx_{2n+1}\|, \|Sz - Az\|, \|Tx_{2n+1} - Bx_{2n+1}\|, \\ (1/2)(\|Sz - Az\| + \|Tx_{2n+1} - Bx_{2n+1}\|), \|Tx_{2n+1} - Az\|) \le 0.$$

Letting n tends to infinity we have by the continuity of ϕ ,

$$\phi(\|Az - z\|, 0, \|z - Az\|, 0, (1/2)\|z - Az\|, \|z - Az\|) \le 0,$$

which implies by (ϕ_b) , that Az = z. This means that z is in the range of A and since $A(X) \subset T(X)$, there exists a point u in X such that Tu = z.

Using (3.1), we have

$$\phi (||Az - Bu||, ||Sz - Tu||, ||Sz - Az||, ||Tu - Bu||, (1/2)(||Sz - Az|| + ||Tu - Bu||), ||Tu - Az||) \le 0 = \phi(||z - Bu||, 0, 0, ||z - Bu||, (1/2)||z - Bu||, 0) \le 0,$$

which implies by (ϕ_a) , that z = Bu.

Since Tu = Bu = z, by Lemma 1, it follows that BTu = TBu and so Bz = BTu = TBu = Tz.

Thus from (3.1), we have

$$\begin{aligned} \phi & (||Az - Bz||, ||Sz - Tz||, ||Sz - Az||, ||Tz - Bz||, \\ (1/2)(||Sz - Az|| + ||Tz - Bz||), ||Tz - Az||) \leq 0 \\ &= \phi(||z - Tz||, ||z - Tz||, 0, 0, 0, ||Tz - z||) \leq 0, \end{aligned}$$

which is contradiction to ϕ_3 if $||Tz - z|| \neq 0$. Thus Tz = z = Bz.

We have therefore, proved that z is a common fixed point of A, B, S and T. The same result holds if T is continuous instead of S. Now suppose that A is continuous. Then the sequence $\{ASx_{2n}\}$ converges to Az we have

$$||SAx_{2n} - Az|| \le ||SAx_{2n} - ASx_{2n}|| + ||ASx_{2n} - Az||.$$

Since A is continuous and A and S are compatible, letting n tends to infinity we obtain that $\{SAx_{2n}\}$ converges to Az. Using (3.1), we have

$$\phi \left(\|AAx_{2n} - Bx_{2n+1}\|, \|SAx_{2n} - Tx_{2n+1}\|, \|SAx_{2n} - AAx_{2n}\|, \|Tx_{2n+1} - Bx_{2n+1}\|, (1/2)(\|SAx_{2n} - AAx_{2n}\| + \|Tx_{2n+1} - Bx_{2n+1}\|), \|Tx_{2n+1} - AAx_{2n}) \le 0.$$

Letting n tends to infinity, we have by continuity of ϕ

$$\phi(\|Az - z\|, \|Az - z\|, 0, 0, 0, \|z - Az\|) \le 0,$$

a contradiction to ϕ_3 if $z \neq Az$. Thus z = Az.

This means that z is in the range of A and since $A(X) \subset T(X)$, there exists a point v in X such that Tv = z. Thus by (3.1), we have

$$\phi \left(\|AAx_{2n} - Bv\|, \|SAx_{2n} - Tv\|, \|SAx_{2n} - AAx_{2n}\|, \|Tv - Bv\|, \\ (1/2)(\|SAx_{2n} - AAx_{2n}\| + \|Tv - Bv\|), \|Tv - AAx_{2n}\|) \le 0.$$

Letting n tends to infinity we get

$$\phi(\|z - Bv\|, 0, 0, \|z - Bv\|, (1/2)\|z - Bv\|, 0) \le 0$$

and by (ϕ_a) it follows that z = Bv. Since Tv = Bv = z, by Lemma 1, it follows that Bz = BTv = TBv = Tz. Thus from (3.1) we have

$$\phi \left(\|Ax_{2n} - Bz\|, \|Sx_{2n} - Tz\|, \|Sx_{2n} - Ax_{2n}\|, \|Tz - Bz\|, \\ (1/2)(Sx_{2n} - Ax_{2n}\| + \|Tz - Bz\|), \|Tz - Ax_{2n}) \le 0.$$

Letting n tends to infinity, we obtain

$$\phi(\|z - Bz\|, \|z - Bz\|, 0, 0, 0, \|Bz - z\|) \le 0,$$

which is contradiction to ϕ_3 , it follows that z = Bz = Tz. This means that z is in the range of B and since $B(X) \subset S(X)$ there exists $w \in X$ such that Sw = z. Thus from (3.1) we have

$$\begin{aligned} \phi & (||Aw - Bz||, ||Sw - Tz||, ||Sw - Aw||, ||Tz - Bz||, \\ (1/2)(||Sw - Aw|| + ||Tz - Bz||), ||Tz - Aw||) \leq 0. \\ \phi & (||Aw - z||, 0, ||z - Aw||, 0, (1/2)||z - Aw||, ||z - Aw||) \leq 0, \end{aligned}$$

and by (ϕ_b) , we have z = Aw = Sw. Since Aw = Sw = z, by Lemma 1, it follows that SAw = ASw and so Sz = SAw = ASw = Az = z. We have therefore proved that z is a common fixed point of A, B, S and T.

The same result holds, if we assume that B is continuous instead of A. By (3.1) and ϕ_3 it follows that z is unique.

Theorem 3.1 and Examples 1 to 3 imply the following:

Corollary 3.2. Let $(X, \|\cdot\|)$ be a Banach space and A, B, S and $T: X \to X$ be four mappings satisfying the conditions (3.2) to (3.4) and the following :

$$||Ax - By|| \le k \max\{||Sx - Ty||, ||Sx - Ax||, ||Ty - By||, (1/2)(||Sx - Ax|| + ||Ty - By||), (1/2)||Ty - Ax||\}$$
(3.5)

for all x, y in X, where $k \in (0, 1)$, or

$$||Ax - By||^2 \le a||Sx - Ty||^2 \tag{3.6}$$

for all x, y in X, where $a \in (0, 1)$, or

$$||Ax - By||^{2} \leq c_{1} \max\{||Sx - Ty||^{2}, ||Sx - Ax||^{2}, ||Ty - By||^{2}\} + c_{2} \max\{||Sx - Ax||(1/2)(||Sx - Ax|| + ||Ty - By||), (1/2)||Ty - By|| ||Ty - Ax||\}$$

$$(3.7)$$

for all x, y in X, where $c_1 > 0$, $c_2 \ge 0$, $c_1 + c_2 < 1$. Then A, B, S and T have a unique common fixed point.

We now give an example to illustrate the above results:

Example 4. Consider X = [1, 15] with the usual norm. Define A, B, S and T by

$$Ax = 1 \text{ if } x \in [1, 15]$$
$$Bx = \begin{cases} 1 & \text{if } x = 1, \ x > 3\\ 2 & \text{if } 1 < x \le 3 \end{cases}$$
$$Sx = \begin{cases} 1 & \text{if } x = 1, \ x > 3, \ x \neq 12\\ 2 & \text{if } x = 12\\ 15 & \text{if } 1 < x \le 3 \end{cases}$$
$$Tx = \begin{cases} 1 & \text{if } x = 1, \ x > 3\\ 5 & \text{if } 1 < x \le 3 \end{cases}$$

Then A, B, S and T satisfy condition (3.2) of Theorem 3.1. In this example only mapping A is continuous and so condition (3.3) is satisfied.

Let us consider a decreasing sequence $\{x_n\}$ such that $\lim_{n\to\infty} x_n = 3$. Then $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = 1$ and $\lim_{n\to\infty} ||ASx_n - SAx_n|| = 0$. Thus the pair $\{A, S\}$ is compatible. Similarly the pair $\{B, T\}$ is also compatible.

We see that condition (3.1) is satisfied if ϕ is similar to that of Example 1 or Example 2 or Example 3. Here we take $k \in [0.5, 1)$ in Example 1, $a \in [0.3, 1)$ in Example 2 and $c_1 = 0.8$, $c_2 = 0.1$ in Example 3.

Thus A, B, S and T satisfy all the conditions of Theorem 3.1 and Corollary 3.2 and have a unique common fixed point x = 1.

For a function $f: (X, \|\cdot\|) \to (X, \|\cdot\|)$ we denote $F_f = \{x \in X : x = f(x)\}.$

Theorem 3.3. Let A, B, S and T be mappings from a normed linear space $(X, \|\cdot\|)$ into itself. If the inequality (3.1) holds for x, y in X then $(F_S \cap F_T) \cap F_A = (F_S \cap F_T) \cap F_B$.

Proof. Let $x \in (F_S \cap F_T) \cap F_A$. Then by (3.1), we have

$$\phi \left(||Ax - Bx||, ||Sx - Tx||, ||Sx - Ax||, ||Tx - Bx||, (1/2)(||Sx - Ax|| + ||Tx - Bx||), ||Tx - Ax|| \right) \le 0.$$

= $\phi(||x - Bx||, 0, 0, ||x - Bx||, (1/2)||x - Bx||, 0) \le 0,$

which implies, by (ϕ_a) that x = Bx. Thus

$$(F_S \cap F_T) \cap F_A \subset (F_S \cap F_T) \cap F_B.$$

Similarly, we have by (ϕ_b) , that

$$(F_S \cap F_T) \cap F_B \subset (F_S \cap F_T) \cap F_A.$$

Remark. Theorem 3.3 is true if we replace the condition (3.1) by (3.5) or (3.6) or (3.7).

Theorem 3.1 implies following one.

Theorem 3.4. Let S, T and $\{A_i\}_{i \in N}$ be mappings from a Banach space $(X, \|\cdot\|)$ into itself such that

$$A_2(X) \subset S(X) \text{ and } A_1(X) \subset T(X), \tag{3.8}$$

one of
$$S, T, A_1$$
 and A_2 is continuous, (3.9)

the pairs
$$(A_1, S)$$
 and (A_2, T) are compatible, (3.10)

the inequality

$$\phi (||A_i x - A_{i+1} y||, ||Sx - Ty||, ||Sx - A_i x||, (||Ty - A_{i+1} y||, (1/2)((||Sx - A_i x|| + ||Ty - A_{i+1} y||), ||Ay - A_i x||) \le 0$$
(3.11)

holds for each $x, y \in X$, for all $i \in N$ and $\phi \in \Phi$. Then S, T and $\{A_i\}_{i \in N}$ have a unique common fixed point.

References

- G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(1986), 771-779.
- [2] G. Jungck, Compatible mappings and common fixed points (2), Internat. J. Math. and Math. Sci. 11(1988), 285-288.
- [3] G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc. 103(1988), 977-983.
- [4] S. M. Kang, Y. J. Cho and G. Jungck, Common fixed points of compatible mappings, Internat. J. Math. and Math. Sci. 13(1990), 61-66.
- [5] S. M. Kang and J. W. Rye, A common fixed point theorem for compatible mappings, Math. Japonica 35(1990), 153-157.
- [6] V. Popa, Theorems of unique fixed point for expansion mappings, Demonstratio Math. 23(1990), 213-218.
- [7] V. Popa, Common fixed points of compatible mappings, Demons. Math. 26 (3-4) (1993), 802-809.
- [8] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math. 32 (1999), 157-163.

- [9] B. E. Rhoades, Some fixed point theorems for pairs of mappings, Jnanabha 15(1985), 151-156.
- [10] S. Sessa, On weak commutativity condition of mappings in a fixed point consideration, Publ. Inst. Math. 32 (46) (1986), 149-153.
- [11] S. Sessa, and B. Fisher, Common fixed points of weakly commuting mappings, Bull. Polish. Acad. Sci. Math. 36 (1987), 345-349.
- [12] S. Sessa, B. E. Rhoades and M. S. Khan, On common fixed points of compatible mappings in metric and Banach spaces, Iternat. J. Math. Sci. 11 (2) (1988), 375-392.
- [13] Sushil Sharma and P. C. Patidar, On common fixed point theorem of four mappings, Bull. Mal. Math. Soc. (accepted).
- [14] S. Z. Wong, B. Y. Li, Z. M. Gao and K. Iseki, Some fixed point theorems on expansion mappings, Math. Japonica 29 (1984), 631-636.

Department of Mathematics, Madhav Science College, Ujjain (M. P.), India. E-mail:sksharma2005@yahoo.com

Department of Mathematics, Govt. Arts and Science P. G. College, Ratlam (M. P.), India. E-mail:bhavnadeshpande@yahoo.com