Approximation of Functions in Besov Space

Hare Krishna Nigam and Supriya Rani

Abstract. In the present paper, we establish a theorem on best approximation of a function \(g \in B^{p,q}_{λ}(L^r) \) of its Fourier series. Our main theorem generalizes some known results of this direction of work. Thus, the results of [10], [26] and [27] become the particular case of our main Theorem 3.1.

1 Introduction

The degree of approximation of the functions in Lipschitz spaces and Hölder spaces using single and product summability means has been studied by the authors [7, 8, 9, 15, 16, 18, 19, 20, 21, 22, 23, 25, 28]. This motivates us to study the degree of approximation of a function in more generalized function space. Therefore, in this paper, we study the degree of approximation of a function \(g \) in Besov space using Hausdorff-generalized Nörlund means of its Fourier series. It can be noted that Besov space generalizes different Sobolev spaces, Lipschitz spaces and generalized Hölder spaces [13]. Besov space can also be used to study regularity properties of the functions.

Let \(C_{2π} := C[0, 2π] \) denote the Banach space of all \(2π \)-periodic continuous functions \(g \) defined on \([0, 2π]\) under the supremum norm.

Let

\[
L^r := L^r[0, 2π] := \left\{ g : [0, 2π] \mapsto \mathbb{R} : \int_0^{2π} |g(z)|^r dz < \infty \right\}, \quad r \geq 1
\]

be the space of all \(2π \)-periodic, integrable functions \(L^r \)-norm of the function \(g \) is given by

\[
\|g\|_r := \begin{cases} \frac{1}{2π} \int_0^{2π} |g(z)|^r dz \quad & \text{for } 1 \leq r < \infty \\ \text{ess sup}_{0<z<2π} |g(z)| & \text{for } r = \infty. \end{cases}
\]

2010 Mathematics Subject Classification. 41A10, 41A25, 42B05, 42A50, 40G05, 40C05.

Key words and phrases. Degree of approximation; Besov space; Hausdorff \((\Delta_H) \) means; generalized Nörlund \((N^{p,q}) \) means; Hausdorff-generalized Nörlund \((\Delta_HN^{p,q}) \) means; Fourier series.

Corresponding author: Hare Krishna Nigam.
The modulus of continuity of a function \(g \in L^r \) is defined by
\[
w(g; l) := \sup_{z, z+h \in [0,2\pi], |h|<l} |g(z + h) - g(z)|.
\]
(1.1)

The integral modulus of continuity of the first order of a function \(g \in L^r \) is defined \([3]\) by
\[
w_1(g; l)_r := \sup_{|h|<l, z \in \mathbb{R}} \|g(z + h) - g(z)\|_r.
\]
(1.2)

The integral moduli of continuity of the second order (modulus of smoothness) of a function \(g \in L^r \) is defined \([2]\) by
\[
w_2(g; l)_r = \sup_{0<h \leq l, z \in \mathbb{R}} \|g(z + h) + g(z - h) - 2g(z)\|_r.
\]
(1.3)

The \(j^{th} \) order modulus of smoothness of a function \(g \in L^r \) is defined \([1]\) by
\[
w_j(g; l)_r := \sup_{0<h \leq l} \|\Delta_h^j(g, \cdot)\|_r, \quad l > 0,
\]
(1.4)
where
\[
\Delta_h^j(g, z) := \sum_{\rho=0}^{j} (-1)^{j-\rho} \binom{j}{\rho} g(z + \rho h), \quad j \in \mathbb{N}.
\]
(1.5)

Remark 1.

(i) If \(r = \infty, j = 1 \) and \(g \) being a continuous function, then \(w_j(g; l)_r \) reduces to \(w(g; l) \).

(ii) If \(0 < r < \infty, j = 1 \) and \(g \) being a continuous function, then \(w_j(g; l)_r \) reduces to \(w_1(g; l)_r \).

(iii) If \(g \in C_{2\pi} \) and \(w(g, l) = O(l^{\lambda}), 0 < \lambda \leq 1 \), then \(g \in \text{Lip } \lambda \).

(iv) If \(g \in L^r, 0 < r < \infty \) and \(w(g, l)_r = O(l^{\lambda}), 0 < \lambda \leq 1 \), then \(g \in \text{Lip}(\lambda, r) \).

(v) If \(r = \infty \), then \(\text{Lip}(\lambda, r) \) class reduces to \(\text{Lip } \lambda \).

Note 1. From Remark 1(iv) and 1(v), we write
\[
\text{Lip}(\lambda) \subseteq \text{Lip}(\lambda, r).
\]

Let \(\lambda > 0, j > \lambda \) i.e. \(j = [\lambda] + 1 \), where \(j \) being smallest integer. For \(g \in L^r \), if
\[
w_j(g, l)_r = O(l^{\lambda}), \quad l > 0,
\]
(1.6)
then \(g \in \text{Lip}^*(\lambda, r) \) and its semi-norm is given by

\[
|g|_{\text{Lip}^*(\lambda, r)} = \sup_{l > 0} (l^{-\lambda} w_j(g, l)r),
\]

where \(\text{Lip}^*(\lambda, r) \) is a generalized Lipschitz class of function \(g \).

Thus,

\[
\text{Lip}(\lambda, r) \subseteq \text{Lip}^*(\lambda, r).
\]

For \(0 < \lambda \leq 1 \), let

\[
\text{H}_\lambda := \{ g \in C_{2\pi} : w(g, l) = O(l^\lambda) \},
\]

where \(\text{H}_\lambda \) is a Banach space with the norms

\[
\|g\|_\lambda = \|g\|_C + \sup_{l > 0} (l^{-\lambda} w(l)) \quad \text{for} \quad 0 < \delta \leq \lambda < 1
\]

and

\[
\|g\|_0 = \|g\|_C.
\]

Thus, we observe that

\[
\text{H}_\lambda \subseteq \text{H}_\delta \subseteq C_{2\pi} \quad \text{for} \quad 0 < \delta \leq \alpha < 1([28]).
\]

The metric induced by the norm \(\| \cdot \|_\lambda \) on \(\text{H}_\lambda \) is called the Hölder metric.

For \(0 < \lambda \leq 1 \), \(0 < r \leq \infty \), let

\[
\text{H}_{\lambda, r} := \text{H}_{\lambda, [0, 2\pi]} = \{ g \in L^r : w(g, l)r = O(l^\lambda) \},
\]

where \(\text{H}_{\lambda, r} \) is also a Banach space with the norm \(\| \cdot \|_{\lambda, r} \) defined by

\[
\|g\|_{\lambda, r} = \|g\|_r + \sup_{l > 0} (l^{-\lambda} w(g, l)r) \quad \text{for} \quad 0 < \lambda \leq 1
\]

and

\[
\|g\|_{0, r} = \|g\|_r.
\]

Then \(\text{H}_{\lambda, r} \) is a Banach space for \(r \geq 1 \) and a complete \(r \)-normed space ([14], p. 87) for \(0 < r < 1 \).

Thus,

\[
\text{H}_{\lambda, r} \subseteq \text{H}_{\delta, r} \subseteq L^r \quad \text{for} \quad 0 < \delta \leq \lambda \leq 1([9]).
\]
For $\lambda > 0$ and let $j > \lambda$ i.e. $j = [\lambda] + 1$. For $0 < r, q \leq \infty$, the Besov space $B^\lambda_q(L^r)$ is a collection of all 2π-periodic function $g \in L^r$ such that

$$|g|_{B^\lambda_q(L^r)} := \|w_j(g, \cdot)\|_{\lambda,q} = \begin{cases} \left(\int_0^{2\pi} [l^{-\lambda} w_j(g, l)]^q \frac{dl}{l} \right)^{\frac{1}{q}}, & 0 < q < \infty, \\ \sup_{l>0} (l^{-\lambda} w_j(g, l)), & q = \infty, \end{cases}$$

(1.7)

is finite ([24], p. 237) for 2π-periodic function g ([1], p. 54).

It is further observed that (1.7) is a semi-norm if $1 \leq r, q \leq \infty$ and a quasi semi-norm in other cases ([1], p. 55).

The quasi-norm for Besov space is given by

$$\|g\|_{B^\lambda_q(L^r)} := \|g\|_r + |g|_{B^\lambda_q(L^r)} = \|g\|_r + \|w_j(g, \cdot)\|_{\lambda,q}.$$

Note 2.

(i) If $0 < \lambda < 1$, then the Besov space $B^\lambda_\infty(L^r)$ reduces to the $H_{\lambda,r}$ ([9]).

(ii) If $r = \infty = q$ and $0 < \lambda < 1$, the Besov space $B^\lambda_\infty(L^r)$ reduces to the space H_λ ([28]).

The m-order error approximation of a function $g \in C_{2\pi}$ is defined by $E_m(g) := \inf_{t_m} \|g - t_m\|$ where t_m is a trigonometric polynomial of degree m ([3]).

If $E_m(g) \to 0$ as $m \to \infty$, $E_m(g)$ is said to be the best approximation of g ([3]).

2 Definitions

The Hausdorff matrix $H \equiv (h_{m,j})$ is an infinite lower triangular matrix defined by,

$$h_{m,j} = \begin{cases} \binom{m}{j} \Delta^{m-j} \mu_j, & 0 \leq j \leq m, \\ 0, & j > m, \end{cases}$$

where Δ is a forward operator defined by $\Delta \mu_m = \mu_m - \mu_{m+1}$ and $\Delta^{j+1} \mu_m = \Delta(\Delta^j \mu_m)$ ([6]).

A Hausdorff matrix H is regular iff $\int_0^1 |d\gamma(y)| < \infty$, where the mass function $\gamma(y)$ is continuous at $y = 0$ and belongs to $BV[0,1]$ such that $\gamma(0+) = 0, \gamma(1) = 1$; and for $0 < y < 1$, $\gamma(y) = [\gamma(y+0) + \gamma(y-0)]/2$ [4, 11]. Thus $\{\mu_m\}$, known as moment sequence, has the representation

$$\mu_m = \int_0^1 y^m d\gamma(y).$$
The Hausdorff means of a trigonometric Fourier series of \(g \) is defined by

\[
H_m(g; z) = \sum_{j=0}^{m} h_{m,j} s_j(g; z), \quad \forall \ m \geq 0.
\]

The series is said to be summable to \(s \) by Hausdorff means, if \(H_m(g; z) \to s \) as \(m \to \infty \) and we denote Hausdorff means by \(\Delta_H \) throughout the paper.

Example 1.

(i) If

\[
h_{m,j} = \begin{cases}
\binom{m}{j} \frac{q^{m-j}}{(1+q)^m}, & 0 \leq j \leq m, \\
0, & j > m,
\end{cases}
\]

then the Hausdorff matrix \(H \equiv (h_{m,j}) \) reduces to \((E, q) \) matrix (Euler matrix of order \(q > 0 \)) and defines the corresponding \((E, q) \) means by

\[
E_m^q(g; z) := \frac{1}{(1+q)^m} \sum_{j=0}^{m} \binom{m}{j} q^{m-j} s_j(g; z).
\]

(ii) If \(\mu_m = \frac{1}{m+1} \) then the Hausdorff matrix \(H \equiv (h_{m,j}) \) reduces to \((C, 1) \) matrix (Cesàro matrix of order 1) and defines the corresponding means by

\[
H_m(g; z) := \frac{1}{(m+1)} \sum_{j=0}^{m} s_j(g; z).
\]

Let \(\{p_m\} \) and \(\{q_m\} \) be the sequence of constants, real or complex, such that

\[
P_m = p_0 + p_1 + p_2 + \cdots + p_m = \sum_{v=0}^{m} p_v \to \infty, \text{ as } m \to \infty
\]

\[
Q_m = q_0 + q_1 + q_2 + \cdots + q_m = \sum_{v=0}^{m} q_v \to \infty, \text{ as } m \to \infty
\]

\[
R_m = p_0 q_m + p_1 q_{m-1} + p_2 q_{m-2} + \cdots + p_m q_0 = \sum_{v=0}^{m} p_v q_{m-v} \to \infty, \text{ as } m \to \infty.
\]

Given two sequences \(\{p_m\} \) and \(\{q_m\} \) convolution \((p \ast q) \) is defined as

\[
R_m = (p \ast q)_m = \sum_{j=0}^{m} p_{m-j} q_j.
\]

We write

\[
\mu_m^{p,q} = \frac{1}{R_m} \sum_{j=0}^{m} p_{m-j} q_j s_j.
\]
If $R_m \neq 0$, for all m, the generalized Nörlund transform of the sequence $\{s_m\}$ is the sequence $\{t_{m}^{p,q}\}$. If $t_{m}^{p,q} \rightarrow s$, as $m \rightarrow \infty$, then the series $\sum_{m=0}^{\infty} a_m$ or sequence $\{s_m\}$ is summable to s by generalized Nörlund method and is denoted by $s_m \rightarrow s(N^{p,q})$.

The necessary and sufficient condition for $(N^{p,q})$ method to be regular are

$$\sum_{j=0}^{m} |p_{m-j}q_j| = O(|R_m|)$$

and $p_{m-j} = o(|R_m|)$, as $m \rightarrow \infty$ for every fixed $j \geq 0$, for which $q_j \neq 0$ ([17]).

If the method Δ_H is superimposed on the $N^{p,q}$ method, another new method of summability $\Delta_H N^{p,q}$ is obtained.

The Hausdorff transform of $N^{p,q}$ transform is defined as $\Delta_H N^{p,q}$ product transform of the partial sum s_m, which can be given by

$$t_{m}^{\Delta_H N^{p,q}} = \sum_{j=0}^{m} h_{m,j} t_{j}^{p,q} = \sum_{j=0}^{m} h_{m,j} \frac{1}{R_j} \sum_{v=0}^{j} p_{j-v} q_v s_v.$$

If $t_{m}^{\Delta_H N^{p,q}} \rightarrow s$ as $m \rightarrow \infty$ then the series $\sum_{m=0}^{\infty} a_m$ or the sequence $\{s_m\}$ is summable to s by $\Delta_H N^{p,q}$ means.

Now, we define the regularity of $\Delta_H N^{p,q}$ method.

$$s_m \rightarrow s \implies t_{m}^{p,q} \rightarrow s, \quad \text{as} \quad m \rightarrow \infty \quad \text{so} \quad N^{p,q} \quad \text{method is regular},$$

$$\implies \Delta_H (t_{m}^{p,q}) = t_{m}^{\Delta_H N^{p,q}} \rightarrow s \quad \text{as} \quad m \rightarrow \infty \quad \text{so} \quad \Delta_H \quad \text{method is regular},$$

$$\implies (\Delta_H N^{p,q}) \quad \text{method is regular}.$$

Remark 2.

(i) $\Delta_H N^{p,q}$ means reduces to $E_q N^{p,q}$ means if $h_{m,j} = \begin{cases} \binom{m}{j} \frac{q^{m-j}}{(1+q)^m}, & \text{if } 0 \leq j \leq m, \\ 0, & \text{if } j > m. \end{cases}$

(ii) $\Delta_H N^{p,q}$ means reduces to $C_1 N^{p,q}$ means if $h_{m,j} = \begin{cases} \frac{1}{m+1}, & \text{if } 0 \leq j \leq m, \\ 0, & \text{if } j > m. \end{cases}$

(iii) $\Delta_H N^{p,q}$ means reduces to $\Delta_H N^{p_m}$ means if $q_m = 1, \forall m$.

(iv) $\Delta_H N^{p,q}$ means reduces to $\Delta_H \tilde{N}_m^{p_m}$ means if $p_m = 1, \forall m$.
\(\Delta_H N^{p,q}\) means reduces to \(\Delta_H C_\alpha\) means if \(p_m = \left(\frac{m+\alpha-1}{\alpha-1}\right), \alpha > 0\) and \(q_m = 1, \forall m\).

Remark 3. The above cases (i) and (ii) of Remark 2 can be further reduced as

(i) \(E_q N^{p,q}\) means reduces to \(E_q N^{pm}\) means if \(q_m = 1, \forall m\).

(ii) \(E_q N^{p,q}\) means reduces to \(E_q N^{pm}\) means if \(q_m = 1, \forall m\).

(iii) \(E_q N^{p,q}\) means reduces to \(E_q \tilde{N}^{q_m}\) means if \(p_m = 1, \forall m\).

(iv) \(E_q N^{p,q}\) means reduces to \(E_q C_\alpha\) means if \(p_m = \left(\frac{m+\alpha-1}{\alpha-1}\right), \alpha > 0\) and \(q_m = 1, \forall m\).

(v) \(C_1 N^{p,q}\) means reduces to \(C_1 N^{pm}\) means if \(p_m = 1, \forall m\).

(vi) \(C_1 N^{p,q}\) means reduces to \(C_1 \tilde{N}^{q_m}\) means if \(p_m = 1, \forall m\).

3 Main Theorems

Theorem 3.1. If \(g\) is a 2\(\pi\)-periodic and Lebesgue integrable function, then for \(0 \leq \delta < \lambda < 2\), the best approximation of \(g\) in \(B_\lambda^q(L^r), r \geq 1, 1 < q \leq \infty\) space using \(\Delta_H N^{p,q}\) means, is given by

\[
\|t_m^{\Delta_H N^{p,q}}(z) - g(z)\| = \begin{cases}
O(m+1)^{-\frac{\lambda}{(m+1)^{\lambda-s\frac{1}{1/q}}}} + O\left(\frac{1}{(m+1)^{\lambda-s}}\right) & ; 1 < q < \infty \\
O(m+1)^{-\lambda} + O\left(\frac{1}{(m+1)^{\lambda-s}}\right) & ; q = \infty.
\end{cases}
\]

4 Lemmas

Lemma 4.1. Let \(K_m^{\Delta_H N^{p,q}}(\eta) := \int_0^1 M_m(\eta) d\gamma(y)\) where

\[
M_m(\eta) := \left[\sum_{j=0}^m \binom{m}{j} y^j (1-y)^{m-j} \left\{\frac{1}{R_j} \sum_{\nu=0}^j p_{j-\nu} q_{\nu} \sin \left(\nu + \frac{1}{2}\right) \eta \right\}\right],
\]

then

\[
K_m^{\Delta_H N^{p,q}}(\eta) = \begin{cases}
O(m+1), & 0 \leq \eta \leq \frac{1}{(m+1)}; \\
O\left(\frac{1}{\eta}\right), & \frac{1}{(m+1)} \leq \eta \leq \pi.
\end{cases}
\]
Proof. For $0 \leq \eta \leq \frac{1}{m+1}$, we have $m\eta \leq m \sin \eta$, then

\[M_m(\eta) \]

\[= \sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} \left\{ \frac{1}{R_j} \sum_{\nu=0}^{j} p_{j-\nu} q_{\nu} \frac{\sin(\nu + \frac{1}{2})\eta}{2 \sin \frac{\eta}{2}} \right\} \]

\[\leq \frac{1}{2} \sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} \left\{ \frac{1}{R_j} \sum_{\nu=0}^{j} p_{j-\nu} q_{\nu} \frac{(2\nu + 1) \sin \frac{\eta}{2}}{\sin \frac{\eta}{2}} \right\} \]

\[\leq \frac{1}{2} \sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} \left\{ \frac{1}{R_j} \sum_{\nu=0}^{j} p_{j-\nu} q_{\nu}(2\nu + 1) \right\} \]

\[= \frac{1}{2} \sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} \frac{1}{R_j} \left\{ p_j q_0 (2\cdot 0 + 1) + p_{j-1} q_1 (2\cdot 1 + 1) + \cdots + p_0 q_j (2\cdot j + 1) \right\} \]

\[\leq \frac{1}{2} \sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} \frac{1}{R_j} \left\{ p_j q_0 (2\cdot j + 1) + p_{j-1} q_1 (2\cdot j + 1) + \cdots + p_0 q_j (2\cdot j + 1) \right\} \]

\[= \frac{1}{2} \sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} \frac{1}{R_j} (2j + 1) \sum_{\nu=0}^{j} p_{j-\nu} q_{\nu} \]

\[= \frac{1}{2} \sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} \frac{1}{R_j} (2j + 1) O(\vert R_j \vert) \]

\[= O \left[\sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} (2j + 1) \right] \]

\[= O \left[2 \sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} \cdot j + \sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} \right]. \] \hspace{1cm} (4.1)

Now, solving first term of (4.1),

\[\sum_{j=0}^{m} \binom{m}{j} y^j (1-y)^{m-j} \cdot j = (1-y)^m \sum_{j=0}^{m} \binom{m}{j} \left(\frac{y}{1-y} \right)^j \cdot j \]

\[= (1-y)^m \sum_{j=0}^{m} \binom{m}{j} p^j \cdot j, \]

where \(\frac{y}{1-y} = p \Rightarrow \frac{1}{1+p} = \frac{1}{1-y}. \)

\[\sum_{j=0}^{m} \binom{m}{j} p^j \cdot j = \binom{m}{0} p^0 \cdot 0 + \binom{m}{1} p^1 \cdot 1 + \binom{m}{2} p^2 \cdot 2 + \cdots + \binom{m}{m} p^m \cdot m. \]
\[= \binom{m}{1} p + 2 \binom{m}{2} p^2 + 3 \binom{m}{3} p^3 + \cdots + m \binom{m}{m} p^m. \quad (4.2) \]

We know that

\[(1 + p)^m = \binom{m}{0} + \binom{m}{1} \cdot p + \binom{m}{2} \cdot p^2 + \cdots + \binom{m}{m} \cdot p^m. \]

By differentiating with respect to \(p \), we have

\[m(1 + p)^{m-1} = 0 + \binom{m}{1} \cdot 2p + \binom{m}{2} \cdot 3p^2 + \cdots + \binom{m}{m} \cdot mp^{m-1}. \]

Multiplying above equation by \(p \) on both side, we have

\[mp(1 + p)^{m-1} = \binom{m}{1} p + 2 \binom{m}{2} p^2 + 3 \binom{m}{3} p^3 + \cdots + m \binom{m}{m} p^m. \quad (4.3) \]

Now, from (4.2) and (4.3), we have

\[\sum_{j=0}^{m} \binom{m}{j} \frac{y^j}{1 - y} \cdot j = mp(1 + p)^{m-1} \]

\[(1 - y)^m \sum_{j=0}^{m} \binom{m}{j} \frac{y^j}{1 - y} \cdot j = (1 - y)^m \left\{ mp(1 + p)^{m-1} \right\} \]

\[\sum_{j=0}^{m} \binom{m}{j} y^j (1 - y)^{m-j} \cdot j = (1 - y)^m \left\{ m \cdot \frac{y}{1 - y} \cdot \frac{1}{(1 - y)^{m-1}} \right\} \]

\[\sum_{j=0}^{m} \binom{m}{j} y^j (1 - y)^{m-j} \cdot j = my. \quad (4.4) \]

Now, solving second term of (4.1),

\[\sum_{j=0}^{m} \binom{m}{j} y^j (1 - y)^{m-j} \]

\[= \binom{m}{0} y^0 (1 - y)^m + \binom{m}{1} y^1 (1 - y)^{m-1} + \cdots + \binom{m}{m} y^m (1 - y)^{m-m} \]

\[= (1 - y + y)^m = 1. \quad (4.5) \]

Now, from (4.1), (4.4) and (4.5), we get

\[M_m(\eta) = O (2my + 1). \]
Thus,

\[K_m^{\Delta H^{N_p,q}}(\eta) = \int_0^1 M_m(\eta)d\gamma(y) \]

\[= O(1) \int_0^1 (2my + 1) \, dy \]

\[= O(m + 1). \]

For \(\frac{1}{m+1} \leq \eta \leq \pi \), by Jordan's lemma we have, \(\sin \frac{\eta}{2} \geq \frac{n \eta}{\pi} \) and \(\sin n \eta \leq 1 \). Thus,

\[M_m(\eta) = \left[\sum_{j=0}^m \binom{m}{j} y^j (1-y)^{m-j} \left\{ \frac{1}{R_j} \sum_{\nu=0}^j p_{j-\nu} q_{\nu} \frac{\sin(\nu + \frac{1}{2})\eta}{2 \sin \frac{\eta}{2}} \right\} \right] \]

\[\leq \frac{1}{2} \left[\sum_{j=0}^m \binom{m}{j} y^j (1-y)^{m-j} \left\{ \frac{1}{R_j} \sum_{\nu=0}^j p_{j-\nu} q_{\nu} \frac{1}{\frac{\eta}{\pi}} \right\} \right] \]

\[\leq \frac{\pi}{2\eta} \left[\sum_{j=0}^m \binom{m}{j} y^j (1-y)^{m-j} \left\{ \frac{1}{R_j} \sum_{\nu=0}^j p_{j-\nu} q_{\nu} \right\} \right] \]

\[= \frac{\pi}{2\eta} \left[\sum_{j=0}^m \binom{m}{j} y^j (1-y)^{m-j} \left\{ \frac{1}{R_j} O(|R_j|) \right\} \right] \]

\[= \frac{\pi}{2\eta} \left[\sum_{j=0}^m \binom{m}{j} y^j (1-y)^{m-j} \{ O(1) \} \right] \]

\[= O \left(\frac{\pi}{2\eta} \right) \left[\sum_{j=0}^m \binom{m}{j} y^j (1-y)^{m-j} \right] \]

\[= O \left(\frac{1}{\eta} \right) \text{ since } \sum_{j=0}^m \binom{m}{j} y^j (1-y)^{m-j} = 1. \]

Thus,

\[K_m^{\Delta H^{N_p,q}}(\eta) = \int_0^1 M_m(\eta)d\gamma(y) \]

\[= \int_0^1 O \left(\frac{1}{\eta} \right) \, dy \]

\[= O \left(\frac{1}{\eta} \right) \int_0^1 \, dy \]

\[= O \left(\frac{1}{\eta} \right). \]
Lemma 4.2. ([12]) Let \(1 \leq r \leq \infty\) and \(0 < \lambda < 2\). If \(g \in L^r\) then for \(0 < l, \eta \leq \pi\):

(i) \(\|\Phi(\cdot, l, \eta)\|_r \leq 4w_j(g, l)_r\),

(ii) \(\|\Phi(\cdot, l, \eta)\|_r \leq 4w_j(g, \eta)_r\),

(iii) \(\|\Phi(\eta)\|_r \leq 2w_j(g, \eta)_r\),

where \(j = [\lambda] + 1\).

Lemma 4.3. Let \(0 \leq \delta < \lambda < 2\). If \(g \in B^{\lambda}_{1q}(L^r), r \geq 1, 1 < q < \infty\), then

\[
\begin{align*}
(i) & \quad \int_0^\pi |K_m^{\Delta H N^{p,q}}(\eta)| \left(\int_0^\pi \frac{||\Phi(\cdot, l, \eta)||_r^q}{l^{s_q}} \frac{dl}{l} \right)^{\frac{1}{q}} d\eta = \frac{O(1)}{\int_0^\pi (\eta^{\lambda-\delta} |K_m^{\Delta H N^{p,q}}(\eta)|)^{\frac{q}{q-1}} d\eta} \left(\int_0^\pi \frac{||\Phi(\cdot, l, \eta)||_r^q}{l^{s_q}} \frac{dl}{l} \right)^{\frac{1}{q}} \eta^{\delta}\, d\eta, \\
(ii) & \quad \int_0^\pi |K_m^{\Delta H N^{p,q}}(\eta)| \left(\int_\eta^\pi \frac{||\Phi(\cdot, l, \eta)||_r^q}{l^{s_q}} \frac{dl}{l} \right)^{\frac{1}{q}} d\eta = \frac{O(1)}{\int_0^\pi (\eta^{\lambda-\delta} |K_m^{\Delta H N^{p,q}}(\eta)|)^{\frac{q}{q-1}} d\eta} \left(\int_\eta^\pi \frac{||\Phi(\cdot, l, \eta)||_r^q}{l^{s_q}} \frac{dl}{l} \right)^{\frac{1}{q}} \eta^{\delta}\, d\eta.
\end{align*}
\]

Proof. This Lemma can be proved along the same lines of the proof of Lemma 1 of [12]. \(\square\)

Lemma 4.4. ([12]) Let \(0 \leq \delta < \lambda < 2\). If \(g \in B^{\lambda}_{1q}(L^r), r \geq 1, q = \infty\), then

\[
\sup_{0 < l, \eta \leq \pi} (l^{-\delta} \|\Phi(\cdot, l, \eta)\|_r) = O(\eta^{\lambda-\delta}). \quad (4.6)
\]

5 Proof of the Main theorem

Proof. Following [5], \(s_m(g, z)\) of Fourier series is given by

\[
s_m(g; z) - g(z) = \frac{1}{2\pi} \int_0^\pi \phi_z(\eta) \frac{\sin(m + \frac{1}{2})\eta}{\sin \frac{\eta}{2}} d\eta.
\]

Denoting the \(N^{p,q}\) summability transform of \(s_m(g; z)\) by \(t_{m,p,q}(z)\), we get

\[
t_{m,p,q}(z) - g(z) = \sum_{j=0}^m t_{j,p,q} \{s_j(g; z) - g(z)\}
\]
where given by

\[
\sum_{j=0}^{m} \frac{t_{p,q}^{j}}{H_{m}(\Delta \nu)} \sin \left(\frac{m + \frac{1}{2}}{2 \sin \frac{\eta}{2}} \right) \delta \eta
\]

\[
\left\{ \frac{1}{2\pi} \int_{0}^{\pi} \phi_{z}(\eta) \sum_{j=0}^{m} \left(\frac{1}{R_{j}} \sum_{\nu=0}^{j} p_{j-\nu} \sin \left(\frac{m + \frac{1}{2}}{2 \sin \frac{\eta}{2}} \right) \right) d\eta \right\}
\]

The Hausdorff transform of \(t_{m}^{p,q}(z) \) i.e., \(\Delta_{H}N^{p,q} \) transform of \(s_{m}(g; z) \) denoted by \(t_{m}^{\Delta_{H}N^{p,q}} \), is given by

\[
t_{m}^{\Delta_{H}N^{p,q}}(z) = g(z)
\]

\[
= \sum_{j=0}^{m} h_{m,j} \{ t_{p,q}^{j}(z) - g(z) \}
\]

\[
= \sum_{j=0}^{m} \binom{m}{j} \Delta^{m-j} \mu_{j} \{ t_{p,q}^{j}(z) - g(z) \}
\]

\[
= \sum_{j=0}^{m} \binom{m}{j} \Delta^{m-j} \mu_{j} \left\{ \frac{1}{R_{j}} \sum_{\nu=0}^{j} p_{j-\nu} \sin \left(\frac{m + \frac{1}{2}}{2 \sin \frac{\eta}{2}} \right) \right\}
\]

\[
= \frac{1}{\pi} \int_{0}^{\pi} \phi_{z}(\eta) \sum_{j=0}^{m} \binom{m}{j} \Delta^{m-j} \mu_{j} \left\{ \frac{1}{R_{j}} \sum_{\nu=0}^{j} p_{j-\nu} \sin \left(\frac{m + \frac{1}{2}}{2 \sin \frac{\eta}{2}} \right) \right\} d\eta
\]

\[
= \frac{1}{2\pi} \int_{0}^{\pi} \phi_{z}(\eta) \sum_{j=0}^{m} \binom{m}{j} \int_{0}^{1} y^{j} (1 - y)^{m-j} d\gamma(y) \left\{ \frac{1}{R_{j}} \sum_{\nu=0}^{j} p_{j-\nu} \sin \left(\frac{m + \frac{1}{2}}{2 \sin \frac{\eta}{2}} \right) \right\} d\eta
\]

\[
= \frac{1}{2\pi} \int_{0}^{\pi} \phi_{z}(\eta) \left\{ \int_{0}^{1} \sum_{j=0}^{m} \binom{m}{j} y^{j} (1 - y)^{m-j} \frac{1}{R_{j}} \sum_{\nu=0}^{j} p_{j-\nu} \sin \left(\frac{m + \frac{1}{2}}{2 \sin \frac{\eta}{2}} \right) d\gamma(y) \right\} d\eta
\]

\[
= \int_{0}^{\pi} \phi_{z}(\eta) K_{m}^{\Delta_{H}N^{p,q}}(\eta) d\eta.
\]

Let

\[
l_{m}(z) := t_{m}^{\Delta_{H}N^{p,q}}(z) - g(z) = \frac{1}{\pi} \int_{0}^{\pi} \phi_{z}(\eta) K_{m}^{\Delta_{H}N^{p,q}}(\eta) d\eta,
\]

where

\[
K_{m}^{\Delta_{H}N^{p,q}}(\eta) = \int_{0}^{1} \sum_{j=0}^{m} \binom{m}{j} y^{j} (1 - y)^{m-j} \left\{ \frac{1}{R_{j}} \sum_{\nu=0}^{j} p_{j-\nu} \sin \left(\frac{m + \frac{1}{2}}{2 \sin \frac{\eta}{2}} \right) \right\} d\gamma(y)
\]

\[
= \int_{0}^{1} M_{m}(\eta) d\gamma(y),
\]

where

\[
M_{m}(\eta) = \sum_{j=0}^{m} \binom{m}{j} y^{j} (1 - y)^{m-j} \left\{ \frac{1}{R_{j}} \sum_{\nu=0}^{j} p_{j-\nu} \sin \left(\frac{m + \frac{1}{2}}{2 \sin \frac{\eta}{2}} \right) \right\}.
\]
We write,
\[
\Phi(z, l, \eta) = \begin{cases}
\phi_{z+l}(\eta) - \phi_z(\eta), & 0 < \lambda < 1, \\
\phi_{z+l}(\eta) + \phi_{z-l}(\eta) - 2\phi_z(\eta), & 1 \leq \lambda < 2.
\end{cases}
\]
and
\[
L_m(z, l) = \begin{cases}
l_m(z + l) - l_m(z), & 0 < \lambda < 1, \\
l_m(z + l) + l_m(z - l) - 2l_m(z), & 1 \leq \lambda < 2.
\end{cases}
\]
Now, we have
\[
L_m(z, l) = \frac{1}{\pi} \int_0^\pi K_m^{\Delta H N^{p,q}}(\eta) \Phi(z, l, \eta) \, d\eta \quad \text{and} \quad \omega_j(l_m, l) r = \|L_m(\cdot, l)\|_r.
\]

Case I: For \(1 < q < \infty, r \geq 1, 0 \leq \delta < \lambda < 2\).

By definition, we have
\[
\|l_m(\cdot)\|_{B^\delta_r(L^r)} = \|l_m(\cdot)\|_r + \|w_j(l_m, \cdot)\|_{\delta, q}.
\]
Using generalized Minkowski’s inequality [3], Lemma 4.2 (iii) and (5.1), we have
\[
\|l_m(\cdot)\|_r \leq \frac{1}{\pi} \int_0^\pi \|\phi(\eta)\|_r |K_m^{\Delta H N^{p,q}}(\eta)| \, d\eta
\leq \frac{2}{\pi} \int_0^\pi w_j(g, \eta, \eta) r |K_m^{\Delta H N^{p,q}}(\eta)| \, d\eta.
\]
Using Hölder’s inequality and definition of Besov space, we get
\[
\|l_m(\cdot)\|_r \leq 2 \left\{ \int_0^\pi \left(|K_m^{\Delta H N^{p,q}}(\eta)| \eta^{\lambda + q - 1} \right)^{q/(q-1)} \, d\eta \right\}^{1-q^{-1}} \times \left\{ \int_0^\pi \left(\frac{w_j(g, \eta, \eta)}{\eta^{\lambda + q - 1}} \right)^q \eta^q \, d\eta \right\}^{q^{-1}}
= O(1) \left\{ \int_0^\pi \left(|K_m^{\Delta H N^{p,q}}(\eta)| \eta^{\lambda + q - 1} \right)^{q/(q-1)} \, d\eta \right\}^{1-q^{-1}}
= O(1) \left\{ \left(\int_0^{1/m+1} + \int_{1/m+1}^\pi \right) \left(|K_m^{\Delta H N^{p,q}}(\eta)| \eta^{\lambda + q - 1} \right)^{q/(q-1)} \, d\eta \right\}^{1-q^{-1}}
:= O(1) [I_1 + I_2].
\]
Using Lemma 4.1 for \(0 \leq \eta \leq \frac{1}{m+1}\), we get
\[
I_1 = \left\{ \int_0^{1/m+1} \left(|K_m^{\Delta H N^{p,q}}(\eta)| \eta^{\lambda + q - 1} \right)^{q/(q-1)} \, d\eta \right\}^{1-q^{-1}}
= O(m + 1) \left\{ \int_0^{1/m+1} \left(\eta^{\lambda + q - 1} \right)^{q/(q-1)} \, d\eta \right\}^{1-q^{-1}}
\]
\[I_2 = \left\{ \int_{\frac{1}{m+1}}^{\pi} \left(|K_m^{\Delta H_{NPq}}(\eta)| \eta^{\lambda+q-1} \right)^{q/(q-1)} d\eta \right\}^{1-q^{-1}} = O\left(\frac{1}{(m + 1)^{-\lambda}}\right). \] (5.4)

By using Lemma 4.1 for \(\frac{1}{m+1} \leq \eta \leq \pi \), we get

\[I_2 = \left\{ \int_{\frac{1}{m+1}}^{\pi} \left(|K_m^{\Delta H_{NPq}}(\eta)| \eta^{\lambda+q-1} \right)^{q/(q-1)} d\eta \right\}^{1-q^{-1}} = O\left(\frac{1}{(m + 1)^{-\lambda}}\right). \] (5.5)

From (5.3), (5.4) and (5.5), we have

\[\|l_m(\cdot)\|_r = O\left(\frac{1}{(m + 1)^{-\lambda}}\right). \] (5.6)

Now, using generalized Minkowski’s inequality and using Lemma 4.3, we have

\[\|w_j(l_m, \cdot)\|_{\delta, q} \]

\[= \left\{ \int_0^{\pi} \left(\frac{w_j(l_m, l) r}{l^{\delta+1}} \right)^q d\eta \right\}^{q^{-1}} = \left\{ \int_0^{\pi} \left(\frac{\|L_m(\cdot, l)\|_r}{l^{\delta+1}} \right)^q d\eta \right\}^{q^{-1}} \]

\[= \left\{ \int_0^{\pi} \left(\frac{1}{2\pi} \int_0^{2\pi} |L_m(z, l)|^r dz \right)^{q/r} d\eta \right\}^{q^{-1}} \]

\[= \left\{ \int_0^{\pi} \left(\frac{1}{2\pi} \int_0^{2\pi} \Phi(z, l, \eta) K_m^{\Delta H_{NPq}}(\eta) d\eta \right)^{q/r} d\eta \right\}^{1/r} \]

\[\leq \frac{1}{\pi} \left[\int_0^{\pi} \left(\frac{1}{2\pi} \right)^{q/r} \left\{ \int_0^{\pi} \Phi(z, l, \eta) K_m^{\Delta H_{NPq}}(\eta) d\eta \right\}^{1/r} d\eta \right]^{q^{-1}} \]

\[= \frac{1}{\pi} \left[\int_0^{\pi} \left\{ \int_0^{\pi} \Phi(z, l, \eta) K_m^{\Delta H_{NPq}}(\eta) d\eta \right\}^{1/r} d\eta \right]^{q^{-1}} \]
\[
\begin{align*}
\leq \frac{1}{\pi} \int_0^\pi |K_{m}^{\Delta H N^{p,q}}(\eta)| d\eta \left(\int_0^\pi \frac{\left\| \Phi (\cdot, l, \eta) \right\|^q}{l^{\delta q}} \frac{dl}{l} \right)^{q-1} \\
= \frac{1}{\pi} \int_0^\pi |K_{m}^{\Delta H N^{p,q}}(\eta)| d\eta \left\{ \left(\int_0^\eta + \int_\eta^\pi \right) \frac{\left\| \Phi (\cdot, l, \eta) \right\|^q}{l^{\delta q}} \frac{dl}{l} \right\}^{q-1} \\
\leq \frac{1}{\pi} \int_0^\pi |K_{m}^{\Delta H N^{p,q}}(\eta)| d\eta \left\{ \int_0^\eta \frac{\left\| \Phi (\cdot, l, \eta) \right\|^q}{l^{\delta q}} \frac{dl}{l} \right\}^{q-1} \\
+ \frac{1}{\pi} \int_0^\pi |K_{m}^{\Delta H N^{p,q}}(\eta)| d\eta \left\{ \int_\eta^\pi \frac{\left\| \Phi (\cdot, l, \eta) \right\|^q}{l^{\delta q}} \frac{dl}{l} \right\}^{q-1} \\
= O(1) \left\{ \left(\eta^{\lambda-\delta} |K_{m}^{\Delta H N^{p,q}}(\eta)| \right)^{q/(q-1)} d\eta \right\}^{1-(1/q)} \\
+ O(1) \left\{ \left(\eta^{\lambda-\delta+(1/q)} |K_{m}^{\Delta H N^{p,q}}(\eta)|^{q/(q-1)} d\eta \right\}^{1-(1/q)} \\
:= O(1) (J_1 + J_2). \tag{5.7}
\end{align*}
\]

Since \((x + y)^r \leq x^r + y^r\) for positive \(x, y\) and \(0 < r \leq 1\), then

\[
J_1 = \left\{ \int_0^\pi \left(\eta^{\lambda-\delta} |K_{m}^{\Delta H N^{p,q}}(\eta)| \right)^{q/(q-1)} d\eta \right\}^{1-(1/q)}
\]

\[
= \left\{ \left(\int_0^{1/(m+1)} + \int_{1/(m+1)}^\pi \right) \left(\eta^{\lambda-\delta} |K_{m}^{\Delta H N^{p,q}}(\eta)| \right)^{q/(q-1)} \right\}^{1-(1/q)}
\]

\[
\leq \left\{ \int_0^{1/(m+1)} \left(\eta^{\lambda-\delta} |K_{m}^{\Delta H N^{p,q}}(\eta)| \right)^{q/(q-1)} d\eta \right\}^{1-(1/q)}
\]

\[
+ \left\{ \int_{1/(m+1)}^\pi \left(\eta^{\lambda-\delta} |K_{m}^{\Delta H N^{p,q}}(\eta)| \right)^{q/(q-1)} d\eta \right\}^{1-(1/q)}
\]

\[
= I_{11} + I_{12}. \tag{5.8}
\]

Using Lemma 4.1 for \(0 \leq \eta \leq \frac{1}{m+1}\), we have

\[
I_{11} = \left\{ \int_0^{1/(m+1)} \left(\eta^{\lambda-\delta} |K_{m}^{\Delta H N^{p,q}}(\eta)| \right)^{q/(q-1)} d\eta \right\}^{1-(1/q)}
\]

\[
= O(m + 1) \left\{ \int_0^{1/(m+1)} \eta^{q/(q-1)} (\lambda-\delta) d\eta \right\}^{1-(1/q)}
\]

\[
= O(m + 1) \left\{ \int_0^{1/(m+1)} \eta^{q/(q-1)} (\lambda-\delta+1-(1/q))^{-1} d\eta \right\}^{1-(1/q)}
\]

\[
= O \left(\frac{1}{(m+1)^{\lambda-\delta-(1/q)}} \right). \tag{5.9}
\]
Using Lemma 4.1 for $0 < \eta \leq \frac{1}{m+1}$, we have

\[
I_{12} = \left\{ \int_{1/(m+1)}^{\pi} \left(\eta^{\lambda-\delta} |K^\Delta_m H^{N_p,q}(\eta)| \right)^{q/(q-1)} \frac{d\eta}{\eta^{q-1}} \right\}^{1-q^{-1}}
\]

\[
= O \left(\frac{1}{(m+1)^{\lambda-\delta-(1/q)}} \right).
\] (5.10)

From (5.8), (5.9) and (5.10), we have

\[
J_1 := I_{11} + I_{12}
= O \left(\frac{1}{(m+1)^{\lambda-\delta-(1/q)}} \right). \tag{5.11}
\]

Now,

\[
J_2 = \left\{ \int_{0}^{1/(m+1)} \left(\eta^{\lambda-\delta+(1/q)} |K^\Delta_m H^{N_p,q}(\eta)| \right)^{q/(q-1)} \frac{d\eta}{\eta^{q-1}} \right\}^{1-q^{-1}}
\]

\[
= \left\{ \int_{0}^{1/(m+1)} \left(\eta^{\lambda-\delta+(1/q)} |K^\Delta_m H^{N_p,q}(\eta)| \right)^{q/(q-1)} \frac{d\eta}{\eta^{q-1}} \right\}^{1-q^{-1}}
= J_{11} + J_{12}. \tag{5.12}
\]

Using Lemma 4.1 for $0 \leq \eta \leq \frac{1}{m+1}$, we have

\[
J_{11} = \left\{ \int_{0}^{1/(m+1)} \left(\eta^{\lambda-\delta+(1/q)} |K^\Delta_m H^{N_p,q}(\eta)| \right)^{q/(q-1)} \frac{d\eta}{\eta^{q-1}} \right\}^{1-q^{-1}}
\]

\[
= O \left(\frac{1}{(m+1)^{\lambda-\delta}} \right). \tag{5.13}
\]
Using Lemma 4.1 for $\frac{1}{m+1} \leq \eta \leq \pi$, we have

$$J_{12} = \left\{ \int_0^{1/(m+1)} \left(\eta^{\lambda-\delta+(1/q)} |K_m^{\Delta_{H}^{N_p,q}}(\eta)| \right)^{q/(q-1)} d\eta \right\}^{1-q^{-1}}$$

$$= O\left(\left(\frac{1}{(m+1)^{\lambda-\delta}} \right) \right).$$

From (5.12), (5.13) and (5.14), we have

$$J_2 := J_{11} + J_{12}$$

$$= O\left(\left(\frac{1}{(m+1)^{\lambda-\delta}} \right) \right).$$

From (5.7), (5.11) and (5.15), we get

$$\| w_j (l_m, \cdot) \|_{\delta,q} = O\left(\left(\frac{1}{(m+1)^{\lambda-\delta}} \right) \right) + O\left(\left(\frac{1}{(m+1)^{\lambda-\delta-(1/q)}} \right) \right).$$

From (5.2), (5.6) and (5.16), we get

$$\| l_m (\cdot) \|_{B^\delta_\infty (L^r)} = \| l_m (\cdot) \|_r + \| w_j (l_m, \cdot) \|_{\delta,q}$$

$$= O\left((m+1)^{-\lambda} + \left(\frac{1}{(m+1)^{\lambda-\delta-(1/q)}} \right) \right).$$

This completes the proof of case I.

Case II : For $q = \infty$, $0 \leq \delta < \lambda < 2$.

We have

$$\| l_m (\cdot) \|_{B^\delta_\infty (L^r)} = \| l_m (\cdot) \|_r + \| w_j (l_m, \cdot) \|_{\delta,\infty}.$$

Using (1.6), we have

$$\| l_m (\cdot) \|_r \leq 2 \int_0^\pi w_j (g, \eta) |K_m^{\Delta_{H}^{N_p,q}}(\eta)| d\eta$$

$$= O\left(\left(\int_0^{1/(m+1)} \eta^{\lambda} |K_m^{\Delta_{H}^{N_p,q}}(\eta)| d\eta + \int_{1/(m+1)}^\pi \eta^{\lambda} |K_m^{\Delta_{H}^{N_p,q}}(\eta)| d\eta \right) \right).$$
\[:= O \left(1 \right) \left(I_2 + J_2 \right). \quad (5.18) \]

Using Lemma 4.1 for \(0 \leq \eta \leq \frac{1}{m+1} \), we get

\[
I_2 = \int_0^{1/(m+1)} \eta^\lambda |K_m^{\Delta H_{N^p,q}}(\eta)| d\eta \\
= O \left(m + 1 \right) \int_0^{1/(m+1)} \eta^\lambda d\eta \\
= O \left(m + 1 \right)^{-\lambda}. \quad (5.19)
\]

Again, using Lemma 4.1 for \(\frac{1}{m+1} \leq \eta \leq \pi \), we get

\[
J_2 = \int_0^{\pi} \eta^\lambda |K_m^{\Delta H_{N^p,q}}(\eta)| d\eta \\
= O \left(1 \right) \int_0^{\pi} \eta^{\lambda-1} d\eta \\
= O \left(m + 1 \right)^{1-\lambda}. \quad (5.20)
\]

From (5.18), (5.19) and (5.20), we get

\[
\|l_m(\cdot)\|_r = O \left(1 \right) \left(I_2 + J_2 \right) \\
= O \left(m + 1 \right)^{-\alpha}. \quad (5.21)
\]

Using generalized Minkowski’s inequality and Lemma 4.4, we get

\[
\|w_j(l_m, \cdot)\|_{\delta,\infty} \\
= \sup_{l > 0} \left(l^{-\delta} w_j(l_m, l) \right) \\
= \sup_{l > 0} \left(l^{-\delta} \|L_m(\cdot, l)\|_r \right) \\
= \sup_{l > 0} \left[l^{-\delta} \left(\frac{1}{2\pi} \int_0^{2\pi} \left| \int_0^{\pi} K_m^{\Delta H_{N^p,q}}(\eta) \phi(z, l, \eta) d\eta \right|^r dz \right]^{1/r} \right] \\
\leq \sup_{l > 0} \left[\frac{l^{-\delta}}{\pi} \left(\frac{1}{2\pi} \right)^{1/r} \int_0^{\pi} \left\{ \int_0^{2\pi} \left| K_m^{\Delta H_{N^p,q}}(\eta) \right|^r \phi(z, l, \eta) d\eta \right\}^{1/r} d\eta \right] \\
= \sup_{l > 0} \left[\frac{l^{-\delta}}{\pi} \int_0^{\pi} \|\phi(\cdot, l, \eta)\|_r \left| K_m^{\Delta H_{N^p,q}}(\eta) \right| d\eta \right] \\
= \frac{1}{\pi} \int_0^{\pi} \left(\sup_{l > 0} l^{-\delta} \|\Phi(\cdot, l, \eta)\|_r \right) \left| K_m^{\Delta H_{N^p,q}}(\eta) \right| d\eta \\
= O \left(1 \right) \int_0^{\pi} \eta^{\lambda-\delta} \left| K_m^{\Delta H_{N^p,q}}(\eta) \right| d\eta
\]
\[\approx \mathcal{O}(1) \left[\int_0^{1/(m+1)} \eta^{\lambda-\delta} |K_{m}^{\Delta H N^{p,q}}(\eta)| \, d\eta \right] + \int_{1/(m+1)}^{\pi} \eta^{\lambda-\delta} |K_{m}^{\Delta H N^{p,q}}(\eta)| \, d\eta \]
\[= \mathcal{O}(1) [I_3 + J_3]. \] (5.22)

Using Lemma 4.1 for \(0 \leq \eta \leq \frac{1}{m+1}\), we get
\[I_3 = \int_0^{1/(m+1)} \eta^{\lambda-\delta} |K_{m}^{\Delta H N^{p,q}}(\eta)| \, d\eta \]
\[= \mathcal{O}(m+1) \int_0^{1/(m+1)} \eta^{\lambda-\delta} \, d\eta \]
\[= \mathcal{O} \left(\frac{1}{(m+1)^{\lambda-\delta}} \right). \] (5.23)

Using Lemma 4.1 for \(\frac{1}{m+1} \leq \eta \leq \pi\), we get
\[J_3 = \int_{1/(m+1)}^{\pi} \eta^{\lambda-\delta} |K_{m}^{\Delta H N^{p,q}}(\eta)| \, d\eta \]
\[= \mathcal{O}(1) \int_{1/(m+1)}^{\pi} \eta^{\lambda-\delta-1} \, d\eta \]
\[= \mathcal{O} \left(\frac{1}{(m+1)^{\lambda-\delta}} \right). \] (5.24)

From (5.22), (5.23) and (5.24), we get
\[\|w_j(l_m, \cdot)\|_{\delta, \infty} = \mathcal{O}(1) [I_3 + J_3] \]
\[= \mathcal{O} \left(\frac{1}{(m+1)^{\lambda-\delta}} \right). \] (5.25)

From (5.17), (5.21) and (5.25), we have
\[\|l_m(\cdot)\|_{B^{\alpha}_\infty(L^r)} = \|l_m(\cdot)\|_{r} + \|w_j(l_m, \cdot)\|_{\delta, \infty} \]
\[= \mathcal{O}(m+1)^{\lambda-\delta} + \mathcal{O} \left(\frac{1}{(m+1)^{\lambda-\delta}} \right). \]

This completes the proof of case II. \(\square\)

6 Corollary

The following corollary are derived from our main theorem.

Corollary 6.1. If \(q_m = 1 \forall m\), then \(\Delta H N^{p,q}\) means reduces to \(\Delta H N^{p,m}\) means and the best approximation of \(g \in B^\lambda_q(L^r)\) space by \(\Delta H N^{p,m}\) means of Fourier series is
\[\|l_m^{\Delta H N^{p,m}}(z) - g(z)\| = \begin{cases} O(m+1)^{\lambda} + \mathcal{O} \left(\frac{1}{(m+1)^{\lambda-\delta-(4/q)}} \right) + \mathcal{O} \left(\frac{1}{(m+1)^{\lambda-\delta}} \right) & ; 1 < q < \infty \\ O(m+1)^{\lambda} + \mathcal{O} \left(\frac{1}{(m+1)^{\lambda-\delta}} \right) & ; q = \infty. \end{cases} \]
Corollary 6.2. If \(p_m = 1 \forall m \), then \(\Delta_H N^{p,q} \) reduces to \(\Delta_H N^q \) means and the best approximation of \(g \in B^\lambda_q(L^r) \) space by \(\Delta_H N^q \) means of Fourier series is

\[
\| t_m \Delta_H N^q (z) - g(z) \| = \begin{cases}
O((m+1)^{-\lambda}) + O\left(\frac{1}{(m+1)^{\lambda-\delta-(1/q)}}\right) + O\left(\frac{1}{(m+1)^{\lambda-\delta}}\right) & ; 1 < q < \infty \\
O((m+1)^{-\lambda}) + O\left(\frac{1}{(m+1)^{\lambda-\delta}}\right) & ; q = \infty.
\end{cases}
\]

Corollary 6.3. If \(p_m = \left(\frac{m+\alpha-1}{\alpha-1}\right) \alpha > 0 \), and \(q_m = 1 \forall m \), then \(\Delta_H N^{p,q} \) means reduces to \(\Delta_H C_\alpha \) means of and the best approximation of \(g \in B^\lambda_q(L^r) \) space by \(\Delta_H C_\alpha \) means of Fourier series is

\[
\| t_m \Delta_H C_\alpha (z) - g(z) \| = \begin{cases}
O((m+1)^{-\lambda}) + O\left(\frac{1}{(m+1)^{\lambda-\delta-(1/q)}}\right) + O\left(\frac{1}{(m+1)^{\lambda-\delta}}\right) & ; 1 < q < \infty \\
O((m+1)^{-\lambda}) + O\left(\frac{1}{(m+1)^{\lambda-\delta}}\right) & ; q = \infty.
\end{cases}
\]

Corollary 6.4. If \(h_{m,j} = \left(\frac{m-j}{(1+q)^m}\right) \), then \(\Delta_H N^{p,q} \) means and the best approximation of \(g \in B^\lambda_q(L^r) \) space by \(E_q N^{p,q} \) means of Fourier series is

\[
\| t_m E_q N^{p,q} (z) - g(z) \| = \begin{cases}
O((m+1)^{-\lambda}) + O\left(\frac{1}{(m+1)^{\lambda-\delta-(1/q)}}\right) + O\left(\frac{1}{(m+1)^{\lambda-\delta}}\right) & ; 1 < q < \infty \\
O((m+1)^{-\lambda}) + O\left(\frac{1}{(m+1)^{\lambda-\delta}}\right) & ; q = \infty.
\end{cases}
\]

Corollary 6.5. If \(h_{m,j} = \left(\frac{1}{m+1}\right) \), then \(\Delta_H N^{p,q} \) means and the best approximation of \(g \in B^\lambda_q(L^r) \) space by \(C_1 N^{p,q} \) means of Fourier series is

\[
\| t_m C_1 N^{p,q} (z) - g(z) \| = \begin{cases}
O((m+1)^{-\lambda}) + O\left(\frac{1}{(m+1)^{\lambda-\delta-(1/q)}}\right) + O\left(\frac{1}{(m+1)^{\lambda-\delta}}\right) & ; 1 < q < \infty \\
O((m+1)^{-\lambda}) + O\left(\frac{1}{(m+1)^{\lambda-\delta}}\right) & ; q = \infty.
\end{cases}
\]

7 Particular cases

(i) In view of Remark 2 (i) and 3 (ii), our result becomes a particular case of [10].

(ii) In view of Remark 2 (i) and 3 (iv), our result becomes a particular case of [26].

(iii) In view of Remark 2 (ii) and 3 (v), our result becomes a particular case of [27].

Acknowledgements

First author expresses his gratitude towards his mother for her blessings. The first author also expresses his gratitude towards his father in heaven whose soul is always guiding and encouraging
him. The first author is also thankful to Council of Scientific and Industrial Research, Government of India for his support to the work under the project 25/(0225)/13/EMR-II. Second author is thankful to her grandfather for his encouragement.

References

Hare Krishna Nigam Department of Mathematics, Central University of South Bihar, Gaya - 824236 (Bihar), India
E-mail: hknigam@cusb.ac.in

Supriya Rani Department of Mathematics, Central University of South Bihar, Gaya - 824236 (Bihar), India
E-mail: supriya@cusb.ac.in