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Approximation of Functions in Besov Space

Hare Krishna Nigam and Supriya Rani

Abstract. In the present paper, we establish a theorem on best approximation of a function
g€ B;‘ (L") of its Fourier series. Our main theorem generalizes some known results of this
direction of work. Thus, the results of [10], [26] and [27] become the particular case of our
main Theorem 3.1.

1 Introduction

The degree of approximation of the functions in Lipschitz spaces and Holder spaces using single
and product summability means has been studied by the authors [7, 8, 9, 15, 16, 18, 19, 20, 21,
22, 23, 25, 28]. This motivates us to study the degree of approximation of a function in more
generalized function space. Therefore, in this paper, we study the degree of approximation of a
function g in Besov space using Hausdorff-generalized Norlund means of its Fourier series. It can
be noted that Besov space generalizes different Sobolev spaces, Lipschitz spaces and generalized

Holder spaces [13]. Besov space can also be used to study regularity properties of the functions.

Let Oy, := C[0, 27] denote the Banach space of all 27- periodic continuous functions g defined

on [0, 27r] under the supremum norm.
Let
2
L":=L"[0,27] := {g :[0,27] » R : / lg(2)|"dz < oo} r>1
0

be the space of all 27-periodic, integrable functions L"-norm of the function g is given by

1 o 1/r
gl {ﬂ 0 |g(z)\’”dz} for 1<r<oo
gllr =
esSSuUpP) -, <o 19(2)| for r=o0.
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The modulus of continuity of a function g € L" is defined by

w(g;l) == sup  [g(z+h)—g(2)|. (1.1)
z, z+h€(0,27]
|h|<l

The integral modulus of continuity of the first order of a function g € L" is defined [3] by

wi(g;l)r = sup |lg(z+h) —g(2)|. (12)
|h|<l,zER

The integral moduli of continuity of the second order (modulus of smoothness) of a function
g € L" is defined [2] by

wa(g;l)r = sup  |[lg(z+h)+g(z —h) —2g9(2)|- (1.3)
0<h<l,zeR

The j*" order modulus of smoothness of a function g € L" is defined [1] by

w](g7l)7“ = Sup HA?Z(gv ')HT‘? l > Oa (14)
0<h<l
where '
J )
A (g,2) == (-1)7 (‘Z))g(z +ph), jeN. (1.5)
p=0
Remark 1.

(i) Ifr = 00, j = 1 and g being a continuous function, then w;(g, [), reduces to w(g, 1).

(i) If0 < 7 < 00,j = 1and g being a continuous function, then w;(g, 1), reduces tow; (g, ).
(iii) Ifg € Cor andw(g,1) = O(1*),0 < A < 1, then g € Lip \.
(iv) Ifg € L",0 < r < ooand w(g,1), = O(1*),0 < XA < 1, then g € Lip(\, 7).

(v) Ifr = oo, then Lip(\, 1) class reduces to Lip A.
Note 1. From Remark 1(iv) and 1(v), we write
Lip(\) C Lip(\, 7).
Let A > 0,j > Aie. j = [A] + 1, where j being smallest integer. For g € L", if

wi(g,1)r = O(1), 1>0, (1.6)
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then g € Lip*(A, r) and its semi-norm is given by

‘g‘Lip*()\,r) = Sup(liAw]'(gv l)T)v
>0

where Lip* (A, r) is a generalized Lipschitz class of function g.

Thus,
Lip(\,7) C Lip* (A, 7).

For0 < A <1,let
H/\ = {g S 027r : w(g,l) = O(l)\>}7

where H) is a Banach space with the norms
lollx = llglle +sup(~w@) for 0<6<A<1
>
and
lgllo = llgllc-
Thus, we observe that
H)y C Hs CCy for 0<6d<a<1(]28)).

The metric induced by the norm || - ||y on H) is called the Holder metric.

ForO0< A <1, 0<r <oolet
Hyy = Hy,[0,27] = {g € L" : w(g,1), = O(1M)},
where H) , is also a Banach space with the norm || - || , defined by

lgllar = llgllr + iup(l”w(g,l)r) for 0 <A<1
>0

and

lgllo, = llgll

Then H , is a Banach space for > 1 and a complete r-normed space ([14], p. 87) for0 < r < 1.

Thus,
HA,T - H577~ CL" for 0<d< )AL 1([9})
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For A > Oandletj > Aie. j = [A]+ 1. For 0 < r, ¢ < oo, the Besov space B;‘(LT) is a

collection of all 27-periodic function g € L” such that

Q|

(fo I w;(g, D)r]79) 7, 0 < g < o0,

! (1.7)
Supl>0<l w](.q’l)r)a q=00

91530 = llwi(g, g =

is finite ([24], p. 237) for 27 - periodic function g ([1], p. 54).

It is further observed that (1.7) is a semi-norm if 1 < r,¢ < 0o and a quasi semi-norm in
other cases ([1], p. 55).

The quasi-norm for Besov space is given by

B>‘ L7 . r BA(I/
lgll = llgll» + |g|
= llgllr + [[w;(g,-)lIx

7q.

Note 2.
(i) If0 < A < 1, then the Besov space B2, (L") reduces to the Hy , ([9]).
(ii)) Ifr =co=¢gand 0 < X\ < 1, the Besov space BS‘O(LT) reduces to the space H) ([28]).

The m-order error approximation of a function g € Ca; is defined by E,,,(g) := inf;,, ||g — tm]]
where t,, is a trigonometric polynomial of degree m ([3]).

If B, (g9) — 0asm — 00, E,,(g) is said to be the best approximation of g ([3]).

2 Definitions

The Hausdorft matrix H = (h,y, ;) is an infinite lower triangular matrix defined by,

where A is a forward operator defined by Ajt,, = ftr — a1 and ATy = A(AT ) ([6]).

A Hausdorff matrix H is regular iff fo |dy(y)| < oo, where the mass function y(y) is continuous
at y = 0 and belongs to BV|[0, 1] such that v(0+) = 0,7(1) = l;andfor0 < y < 1, y(y) =
[v(y+0)+~(y—0)]/2 [4, 11]. Thus {p, } , known as moment sequence, has the representation

1
um=/0 y"dy(y).
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The Hausdorft means of a trigonometric Fourier series of g is defined by
m
2)=> hmysi(g;z), ¥ m=>0.

The series is said to be summable to s by Hausdorff means, if H,,(g; z) — s as m — oo and we

denote Hausdorff means by Ay through out the paper.

Examplel. (i) If

(M) e, 0<j <m,
07 j>m7

then the Hausdorff matrix H = (A, ;) reduces to (E, ¢) matrix (Euler matrix of order

g > 0) and defines the corresponding (F, ¢) means by

Ef(g;2) = quZ( )””sgg, 2).

1
(ii) If oy = 1 then the Hausdorff matrix H = (hy, ;) reduces to (C, 1) matrix (Cesaro
matrix of order 1) and defines the corresponding means by
m
H (gﬂ . m + 1 Z S] 97

]

Let {pm } and {q,, } be the sequence of constants, real or complex, such that

Pn=po+pi+p2a+-+Ppm=) Dpo—00, as m—00
v=0

Qm=q+qa+q@+ +qn=) ¢ —00, as m-—o0
v=0

Ry = pom + P1@m-1 + P2Gm—2+ -+ Dm0 = Y _ PoGm-—v — 00, as 1M — 00.
v=0

Given two sequences {p,, } and {¢,, } convolution (p * ¢) is defined as
Ry = (0% Qm =Y _ Pm—j-
j=0

We write

1 m
tm! = R > Pmoidssi-
=0
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If R, # 0, for all m, the generalized Nérlund transform of the sequence {s,,} is the sequence
{th?} . Ifth! — s, as m — oo, then the series Y - an, or sequence {s,, } is summable to s by

generalized Norlund method and is denoted by s,,, — s(NP:?).

The necessary and sufficient condition for (/N?¢) method to be regular are
m
> lpm—jajl = O (|Rm)
j=0

and py,—j = o (|Ry|), as m — oo for every fixed j > 0, for which ¢; # 0 ([17]).

If the method Ay is superimposed on the N?*¢ method, another new method of summability
A NP4 is obtained.
The Hausdorff transform of NP7 transform is defined as A NP9 product transform of the partial

sum S,,, which can be given by

m
P,q
t7ArLHN — E hm,jt§,q
Jj=0

m 1 i
= Z hmviﬁ ij—vaSv-
J v=0

Jj=0

Ift2#N"" — sasm — oo then the series Y °°_ a,, or the sequence {s,,} is summable to s by
A g NP9 means.

Now, we define the regularity of A i NP7 method.
Sm—s = th?— s as m— oo so NP method is regular,

— A(tP9) =235V 4 5 as m — 0o so Ay method is regular,

= (AgNP?) method is regular.

Remark 2.
my ¢qmI . .
; s, tf 0< 7 <m,
(i) Ap NP4 means reduces to £, NP4 means if hy, ; = (J ) (1+4) / J
0, if j>m.
1 . .
—— 1 f 0<73<m
(ii) A NP7 means reduces to C1 NP9 means if by, j = mtl fosj=m,
0, if j>m.

(iii) Ay NP7 means reduces to Ay NP™ means if ¢,, = 1,V m.

(iv) Ay NP4 means reduces to AHN‘]W means if p,, = 1,V m.



Approximation of Functions in Besov Space 323

m+a—1
a—1

(v) AgNP% means reduces to Ay C, means if p,,, = ( ), a>0and g, =1,V m.

Remark 3. The above cases (i) and (ii) of Remark 2 can be further reduced as

(i) E4NP9 means reduces to B, NP™ meansif ¢,, = 1,V m.
(ii) EyNP? means reduces to £1 NP means if ¢,, = 1,V m.

(iii) E,/NP? means reduces to Equ’” means if p,, = 1,V m.

m+a—1
a—1

(iv) E4,NP? means reduces to F;C, means if p,, = ( ), a>0andgqg,, =1,Vm.
(v) C1 NP means reduces to Cy NP™ means if ¢,, = 1,V m.

(vi) C71NP-? means reduces to C; N9 means ifp,, =1,V m.

3 Main Theorems

Theorem 3.1. If g is a 27-periodic and Lebesgue integrable function, then for 0 < § < A\ < 2, the
best approximation of g in B;‘(LT), r>1,1< q < oo space using A gy NP9 means, is given by

O(m+1)7’\+0<m)+0(m) 1< g< o

AN _g(2)]| =
[t (2)—9(2)l O(m4+1) +O<

e 1=

4 Lemmas
Lemma 4.1. Let KA#N"%(n)) .= fol M, (n)dy(y)

where
Z/m\ s1n( + )7]
Z(j)yﬂ(l { Zp] v 28111727 } )

j=0

then
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Proof. For0 <n < we have sinmn < msinn, then

=g

My (n)
B " (m\ B 1 sin(v + 3)n
— |:Z% (])y](l {R] Zp] vy — (5 2sm727 }
1
2

J n
m\ Iy 1 (2v + 1) sin 5
]>y ( Rj ij vy sin 7

2

IN

(VAN
N | N | —
]

IN
N | =

m) y(1- y)m_j%@j +1) ijl/%/:|

J v=0

W.L> P y)m—j%@j +1)O(|R;))

Jj=0 J J
=01 (m)yj(l y)" 7 (2j +1)
=0
=0 |2 <m> Y(1—y)" i+ <m> y(1—y)"m 7. (4.1)
=0 N7 j=0 J

Now, solving first term of (4.1),

> (?)yj“—w’”‘j = <1—y>m§j (m) (?f)j.j

=0 AT
Ui m
:(1—y)mz< .)pJ J,
j=0 \J
where %zp:l—kp:ﬁ.
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= ()pe2(y)r+3(5)p + oo em(T)o W)
e = (W) (7)o (0) e (0)

By diffrentiating with respect to p, we have

m(1+p)™ =0+ (T) + @) 2+ @) 3P4+ <Z) Cmp™ L,

Multiplying above equation by p on both side, we have

mp(1+p)" ! = (?)p + 2(7;)102 + 3<7;>p3 ot m(Z)pm- (4.3)

Now, from (4.2) and (4.3), we have

We know that

£(5) (%5) 5=
(1- W; (T) <1§y>] j ==y {mp(1+p)" 1}

Now, solving second term of (4.1),
Z( .>yj(1 —y)"
=0\

= (?) yA—y)"+ <T> gLyt <m>ym(1 —y)mm

=1-y+y"
=1. (4.5)

Now, from (4.1), (4.4) and (4.5), we get

Mi(n) = O (2my +1).
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Thus,
1
KA ) = [ Moy
° 1
= O(l)/O (2my +1)dy
=O0(m+1).

For #ﬂ < n < 7, by Jordan’s lemma we have, sin g > g and sinnn < 1. Thus,

I O W Py R N R )L
m@{%@ﬁuy>{&§mw2mgﬂ
1| P 1
<3 ;( >yj(1—y) 7 Rj;)pguqyz}]

Thus,
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Lemma4.2. ([12])Letl1 <r <ooand0 <\ <2.Ifge€ L" thenfor0 <l,n <m:

@) 12, L)l < 4w;(g,1)r,
(i) |2(,Ln)llr < 4w;(g,n)r,
(iii) [|2(n)llr < 2w;(g,m)r,

where j = [\] + 1.

Lemma4.3. Let0 < < A< 2.Ifg € Bé\(L’"),r >1,1< q < oo, then

1
: " ’ K (I)'vlﬂ? ’?dl a
(z)/ |K$HN”(77>!</ It ool (l5q 1 l) dip =
0 0
1-(1/q)

0(1){ / <nA5rK$HNP’q<n>\>ﬂdn} ,
n B (- )| D dl @
@ [T ([ -
0 n

T Alsi(1 Ay NPd _a_ 1=(/9)
0<1>{ /0 (P -5+/0) g A (n)\)q—ldn} .

Proof. This Lemma can be proved along the same lines of the proof of Lemma 1 of [12]. O

Lemma4.4. ([12]) Let0 < d < A< 2.Ifg € Bé‘(L’"),r >1,q = oo, then

sup (I7°)|® (-, 1,m)]l») = O(*™°). (4.6)
0<in<m

5 Proof of the Main theorem

Proof. Following [5], i (g, z) of Fourier series is given by

™ sin(m + %
sl )=o) = 5 [ pu(n) SRt ),

2 sin 2

Denoting the N?Y summability transform of s,,,(g; z) by th;!(2), we get

thi(z) — g(z) = Y t"Ys;(g:2) — g(2)}
=0
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_1 g = ¢Sin m+ )
N /0 ( Z 2sin 7 )dn

{QW/ ¢-(n i( ZPJ uqusm :Tnj; M)}dn.

The Hausdorff transform of th!(z) i.e., Ay NP9 transform of s,,,(g; ) denoted by t2#N" s

given by

tn >N (2) — g(2)
= hm {82(2) — g(2)}
=0
B ]z;) (] )Am_%’ {th'(z) —9(2)}
o (1

i/oﬂéz < >Am3 { Zp] qusmmjn) }dn
j=0
I = r +
LS v o

j=0
1 [™ T /m)\ sin m—l— )
:ﬂ 0 (;SZ(T]) {/0 ]z(:)(])yj ij vy —— ¢ d’Y( )}dn
- 0”¢Z(U)K$HNM( )d
Let L
laz) = 37" = 2) = = [ . G.)
where
AgNPa, \ TSN (m i sm(m+ )
Km ( )_A ];( )Z/ (1 { Zp] l/ql/ sm” dﬁ)/( )
1
- /O M (n)d(y),
where
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We write,
®(z,1,1) = ¢z+l(77) - ¢z(77)7 0< A<,
Gz1(n) + Pzmi(n) — 202(n), 1<A <2
and
Lon(al) = Im(z +1) = ln(2), 0< A<,

In(z+10) +1lpn(z—1) —20,(2), 1<A<2

Now, we have
/KAHNpq ®(z,1,m)dn and Wj(lmJ)T:HEm('vl)HT'

Casel : Forl<g<oo,r>1,0<d< A<

By definition, we have

1lm (B3 (zry = 1lm ()l + 1w Ums ) s.g- (52)

Using generalized Minkowski’s inequality [3], Lemma 4.2 (iii) and (5.1), we have

o / 160 [ AN ()i

9 [T ,
< / w;(g,m)e | KH N (n)]dn.
0

™

Using Holder’s inequality and definition of Besov space, we get

™ , /-y e ™ (wi(g,m)e\*
Il <2 [ (s )" anf s f [ (2420 )

=0(1) {/7r (|KAHNM( i A+q71)q/(q71) dn}l—ql

{( /m+1 / ) |K$pr,q(n)|nx+q—1)q/<q—1> dn}

m—41

= O0(1) [ + I]. (5.3)

-1

1—q’1

Using Lemma 4.1 for 0 <7 < +1’ we get

1_
m+1 A NP Apg-1\2/(@-1) !
(1A )

-1

—1

1

q 1=q
=0(m+1) {/mﬂ (nA-Fq’l)qu dr]}
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1 1—q
=O0(m+1) {/’"“ nqqlwa)dn}
0

=O0((m+1)7). (5.4)

By using Lemma 4.1 for #H <n <, we get

™ fa-y 10
P.q -1\ 4/~
5—{/1(m$” (") m}

m—+1

=0(1) {/71 (77>\+q*1_1)q/(q71) dn}l—q

m—+1

™ I=q
=0(1) {/1 ﬁqql(”qll)dn}

m—+1

1—q
=om{/1nﬁﬂ*m}

m—+1

—1
—1

—1

=O0((m+1)77). (5.5)
From (5.3), (5.4) and (5.5), we have
1 ()l = O((m +1)72). (5.6)

Now, using generalized Minkowski’s inequality and using Lemma 4.3, we have

[ ()
(et 2y

< T
(

—1

1 2 . a/ dl q
27r/0 1L (2,1) | dZ) s

1 T
/0 O (z,1,m) KRN (n)dn

—1

r Q/r dl q
dz s

™

IN

L\ o N Yr di ]’
=) (e piae ) s

™ , a 19"
{/0 1@ (-, 1m) ||T|K7%HNpq(n)dn} l5q+1:|
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1 T A NP4 ﬂHq)(ulﬂﬁ Hgdl v
7T/0 | KR (m)]dn </ T pa ]
L [T A Nra 1 (s lim) 17 dI *
:/‘KH {(/ /> 2t bl
T () |IE di
AHNpq H 61 o
[ e [HEGEHEG
2 [Ty { 12 LAD AL
T fo e NPT

T , a/q-1) W9
—ow{ [ (i) i

T, , a/(¢-1) 19
+O(1) {/O (n)\ 6+(1/Q)|KMA1HN”Q(TZ)) dﬁ}

= 0(1) (J1 + J3) . (5.7)

IN

| /\

Since (z + y)" < " + y" for positive z, y and 0 < r < 1, then
p

T , a/(¢-1) ¢
n={ [ (i)™ o)

Y(m+1)  pm ) W Nafla-D)
(e e

0 1/(m+1)

1
1/m1) o yalaD)
< { /0 (=2 1A Y )

& - , q/(¢—1)
+ {/ (=212 ) dn}
1/(m+1)

=111 + Lo (5.8)

—1
1—¢~1!
1—q~

lfq_1

Using Lemma 4.1 for 0 < n < < g, we have

1/(m+1) , a/(q—1)
I = {/0 (77)‘_6|K7%HNM(77)|) dn

1/(m+1) 1—q~!
=0(m+1) {/ nqql()‘a)dn}
0
1/(m+1)
=0(m+1) {/ 77,131(/\—5-5-1—(1/11))—1(17]}
0

1
-0 ((m - 1)>\—6—(1/q)> : (5.9)

1—q*1

17q’1
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Using Lemma 4.1 for 1 <n<mwe have

™ 1=q
=0(1) / na 10 Dy
1/(m+1)

s 1_q
—oQ) / P A==/ -1,
1/(m+1)

1
-0 ((m - I)Aé(l/q)> : (5.10)

From (5.8), (5.9) and (5.10), we have

J1 =T+ 12

1
:O<(m+1)A—5—(1/q)>' (5.11)

Now,

—1

i , a/(q-1) 14
ga={ [ (s ) g}
0

1/(m+1) T B 7 a/(q—1)
- H [ }(nA w40/ g () ) ay
0 1/(m+1)

= Ji1 + J12. (5.12)

1—(1*1

Using Lemma 4.1 for 0 <7 <. 1, we have

1/ (m+1) , a/(a—1)
= { (2 RN ] )

1/(m+1) N
=0 (m+1) {/0 (n)‘_5+(1/q)) dn

1
1/(m+1)
0

1

1—q~ 1

-1

1—q~
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Using Lemma 4.1 for #ﬂ < n < m, we have

1—q

Q . q/(g—1)

J12 _ {/ (77)\—5+(1/Q)|KT%HNP‘?(77>’> dﬂ}
1/(m+1)

Sy O
— o) {/ (nxfwl/q)fl) dn}
1/(m+1)
T l—g~!
=0(1) / 71070y
1/(m+1)

1
=0 ((m + 1)>‘5> ‘ 519
From (5.12), (5.13) and (5.14), we have

-1

-1

Jo = Ji1 + Ji2

1

From (5.7), (5.11) and (5.15), we get

[wj (s ) [ls.g = O (1) (J1 + J2)

1 1
=0(1) [O <(m+ 1)A_5_(1/q)> +0 ((m+ 1)*5)} . (5.16)
From (5.2), (5.6) and (5.16), we get

1l () B3 ry = Nlbm C) [lr + llwj (b, ) llsg

=O0(m+1)"+0 <(m+1)i_5_(1/q)) +0 ((m+11)H)

This completes the proof of case I.

Casell : Forg =00,0 < < A < 2.

We have
1 () B3, 2y = lllm () I+ + 1w (s <) ll6,00- (5.17)

Using (1.6), we have

1l () [l < 2/0 w; (g,1), [ K™ () dn

1/(m+1) ™
—o0() / AT () iy + / AN ()
0 1/(m+1)
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=0 (1) (IQ + Jz) .

Using Lemma 4.1 for 0 <n < #ﬂ’ we get

1/(m+1) N A NP
= / M KAV (1) iy
0

1/(m+1)
=0 (m+ 1)/ mdn
0

=0 (m+1)".

Again, using Lemma 4.1 for %H <n <, weget

Ty = / KAV () | dn
1/(m+1)

=0(1) / " tdn
1/(m+1)
=0 (m+1)".
From (5.18), (5.19) and (5.20), we get

[l () [l = O (1) (12 + J2)
=0(m+1)"“.

Using generalized Minkowski’s inequality and Lemma 4.4, we get

[[w; (ms ) [l5.00

= sup (7w (o))

—sup (17911L (- 1) 1)

>0

i 1 21
-4
=sup |/ (/
1>0 27 Jo

/0 KRN (106 (2,1, ) iy

'lfé T 7
= sup | — / 6 (-,1,m) ||T|K$HN”q<n>ldn]
>0 L T Jo

1 (7 _ .
=2 [ (st o 1) RN

>0

—o0() /0 | AN ()

Id 1/7"
dz> ]

_l—é 1 /r rm 2m A NP 1/r
<sup |— | — K2E ()| o (z,0,n sz} dn
|7 () AL e

(5.18)

(5.19)

(5.20)

(5.21)
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1/(m+1) x
—o() /0 PO K AN () + / PO K AN ()

1/(m+1)
=0(1)[I3+ J3]. (5.22)

Using Lemma 4.1 for 0 <7 < +1, we get
/(m+1)
= [ s

1/(m+1)
=0 (m+ 1)/ n’\_édn

=0 <(7n—|—1))‘5> . (5.23)

Using Lemma 4.1 for — < n <, we get

Jy = / O KAEN (1) dny
1/(m+1)

—o) / Py

1/(m+1)

1
From (5.22), (5.23) and (5.24), we get

— O () I + J3)

1
From (5.17), (5.21) and (5.25), we have
It )1, 7y = i ©) e+ 05 () s
_ - 1
=0(m+1)""+0 <(m+1))‘5> .
This completes the proof of case II. O

ij (lma )

6 Corollary

The following corollary are derived from our main theorem.

Corollary 6.1. If ¢, = 1V m, then Ay NP1 means reduces to Ay NP™ means and the best
approximation of g € B;‘(L’”) space by A g NP™ means of Fourier series is

O(m+1)_)‘+0(m>+0<m) l<g<

[t N (2)—g(2)| =
g {O(m—i—l) —i—O(W) 1qg = 00
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Corollary6.2. Ifp,, = 1V'm, then Ay NP9 reducesto A g N means and the best approximation
ofg € B;‘(L") space by Ay N means of Fourier series is

O(m+1)"+0 (ot ) + 0 (Grmpes) i1<a<o0

AN (2)—g(2)]| =

Corollary 6.3. Ifp,,, = (m+°‘_1) a > 0, and g, = 1V m, then Ay NP9 means reduces to Ay Cl,

a—1
means of and the best approximation of g € B;‘(L’”) space by A g C\, means of Fourier series is

—\ 1 1 .
sy — ooy < | O+ D7+ 0 (Gt ) + 0 (Gripes) i1 <a<o0

—-A
O(m+1) +O(m) 34 = 0.
(7) g if 0<j<m,
Corollary 6.4. Ifh,, ; = , then A g NP4 means reduces to Fog NP
0, if j>m.

means and the best approximation of g € B&\(L’") space by EE, NP1 means of Fourier series is

Y 1 . '
Htﬁquyq(Z)—g(z)H _ 0 (m + 1) + 0 <(m+1)>\—_5_(1/q)> + O (W) 1< qg<oo

O(m+1)‘*+0(m) ;q = o0.
s if 0<j<m,
Corollary 6.5. If hy, ; = , then Ay NP means reduces to C1 NP4
0, if j>m.

means and the best approximation of g € B&\(LT) space by C'y NP9 means of Fourier series is

O(m+1)_)‘+0(m)+0<m) l<g<

CINPT N _g(2)]] =
[t ™ (2) —g(2) || O(m—i—l)_)‘—i—O(

m ;4 = 0.

7 Particular cases

(i) Inview of Remark 2 (i) and 3 (ii), our result becomes a particular case of [10].
(ii) In view of Remark 2 (i) and 3 (iv), our result becomes a particular case of [26].

(iii) In view of Remark 2 (ii) and 3 (v), our result becomes a particular case of [27].
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