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A Study of New Class of Almost Contact Metric Manifolds of
Kenmotsu Type

Habeeb M. Abood and Mohammed Y. Abass

Abstract. In this paper, we characterized a new class of almost contact metric manifolds and
established the equivalent conditions of the characterization identity in term of Kirichenko’s
tensors. We demonstrated that the Kenmotsu manifold provides the mentioned class; i.e., the
new class can be decomposed into a direct sum of the Kenmotsu and other classes. We proved
that the manifold of dimension 3 coincided with the Kenmotsu manifold and provided an
example of the new manifold of dimension 5, which is not the Kenmotsu manifold. Moreover,
we established the Cartan’s structure equations, the components of Riemannian curvature
tensor and the Ricci tensor of the class under consideration. Further, the conditions required
for this to be an Einstein manifold have been determined.

1 Introduction

In 1972, Kenmotsu [9] studied a class of almost contact metric manifolds that satisfied the identity
Vx (@)Y = —g(X,®Y)(—n(Y)PX. In particular, he proved that it is a class of constant curva-
ture (—1). Kenmotsu manifolds are different from the Sasakian manifolds, as discussed by Sasaki
[16], on several sides; one of these sides is the Sasakian manifold of constant curvature (+1), ac-
cording to Tanno’s classification [18]. In 1990, Chinea and Gonzalez [5] classified the almost con-
tact metric manifolds, with the Kenmotsu manifolds falling under class Cs. In 2001, Kirichenko
[10] constructed a Kenmotsu structure by taking into consideration a con-circular transforma-
tion of a cosymplectic structure. In 2002, Umnova [19] determined the Cartan’s structure equa-
tions and the components of the Riemannian curvature tensor, the Ricci tensor of the Kenmotsu
manifolds, and the nearly Kenmotsu manifolds in the G-structure adjoined space. Later, many re-
searchers studied the Kenmotsu manifolds, the almost Kenmotsu manifolds, the nearly Kenmotsu
manifolds and the conformal Kenmotsu manifolds. For more details, we furnish the following ci-
tations [1], [7], [8], [15], and [17].
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2 Preliminaries

We denote M2t X (M), A(M) and d, the smooth manifold M of dimension 2n + 1, mod-
ule of smooth vector fields of M, Grassmann algebra on M and exterior differentiation operator

respectively.

Definition 1. [3] An almost contact metric manifold (AC-manifold) is a Riemannian manifold
(M*"F1 g) with the family of tensors {®, £, 1}, where ® is a (1, 1)-tensor, ¢ is a vector field and

n is a 1-form, such that
OE)=0; N =1 no®=0 ¢ =-id+na¢
g(PX,2Y) =g(X,Y) —n(X)nY); VX,Y € X(M).
Moreover, if dn # 0 then (M2 1 &, £, 1, g) is called a contact metric manifold.

Now, suppose that X (M) is the complexification of the module X (). Then X (M)

decomposes into direct sum as the following [11]:
XO(M)=L° @Dy = DY " &D;V " & DY;

where L is the complexification of L = Im(®) and D} = ker(®) such that dim L = 2n and
dim D} = 1. Whereas each of D}F and Dy V=T has dimension n. Then we have projections
from X (M) into DQ}F and D;ﬁ respectively, which are defined by

1 — 1
= —§(<1>2+\/—1<1>); = 5(—<1>2+\/—1<1>).
There are another projections from L into Dﬁ and Dy V=L respectively, are given by

o= %(id— VoIo): = %(idJr V1),

Since the almost contact metric manifold has the structure group U(n) x {e}, then for any

orthonormal basis {¢, e1, ..., €n, €3, ..., €5 } of X (M), we can define an A-frame as

(p§§p7517~--75n75T7~--78ﬁ)7
wherep € M, e, = ﬂa(ea),ea = \/iﬁ(ea), a=1,...,n,anda = a+n.

Definition 2. [11] The set of all A-frames of AC-manifold M is called a G-structure adjoined

space.



255

In the G-structure adjoined space, the metric g and the tensor ® take the following formulas
[19]:

10 0 0 0 0
(g)=10 O I, |; (®)=|0 v=1I, O (2.1)
0 I, O 0 0 I,

wherei,j = 0,1,...,2n and I,, is n X n identity matrix.

In [11], Kirichenko defined tensors which are called first, second, ..., and sixth structure ten-

sors, represented by the following formulas respectively:
B(X,Y) = —é{@ 0 Vgey (B)(22X) + @ 0 Vay (8)(3X) + % 0 Vay () (B2X)
— ®% 0 Vgry () (2X)};
C(X,Y) = —é{—cp 0 Vgey (2)(2X) + @ 0 Vay (3)(BX) + % 0 Vay () (B2X)
+ ®% 0 Vgoy () (®X)};
D(X) = i{m 0 Vo x (@) — 202 0 Vg x (®)E — D o V() (P2X) + % 0 V() (PX)};
B(X) = {0 Vaux (D)6 + 7 0 Vax (2)e);
F(X) = 3{® 0 Vaax (B)6 — 9% 0 Vo (2)c}:

G = o V(D).

The nonzero components of Kirichenko’s tensors in the G-structure adjoined space have the fol-

lowing formulas respectively:
L B, = —3V-183 5 B, = 3v-195
3. D = V=L@ = 59 )i Dap = —V=1H®F, — 525);
4 B = V=100, B = —\E‘I)gjﬁ
5. P =/=1005  Fap = —V/-120;

6. G* = —/—180 i Go = V=18 ;

where a,b,c=1,...,nanda = a + n.

If we suppose that V is the Riemannian connection and 6 its connection form, from [12], we
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have the following:

) ~ ~
o= pre ok 6 = —YReph e = o
02 = V-1od,Wk ) = —V/-19) 0" ol = 0 (2.2)
05 = —v-— <I>0kw 05 = V- <I>0kw CI)8’k = 0.
Moreover, 9;- + 0% = 0; 98 = 0; <I>§.JC = —@%}k,where 1,7,k =0, a,aand/i\: i.

3 New Class of Almost Contact Metric Manifold

In this section we introduce a new class of almost contact metric manifold (M, ®, &, n, g), char-
acterized by the following identity:

Vx(®)Y — Vox(®)®Y = —n(Y)®X; VX,V € X(M) (3.1)

We note that the Kenmotsu manifold satisfies the equation (3.1), which means that the Kenmotsu
manifold is a special class of our class.

Now, we characterize the identity (3.1) in the G-structure adjoined space as follows:
(@} X YT — @ (DX)F(®Y ) )e; = —m @ X Y ey; 0,5,k =0,1,...,n,1, ..., 7.
Since (®X)? = 0; (®X)* = /—1X% (®X)® = —/—1X? and regarding the matrix of ® in

equation (2.1), we get the following assertion:

Theorem 3.1. In G-structure adjoined space, the equation (3.1) equivalent to the following condi-
tions:

b ‘ . b ST b
; 0~ ‘I’o,a = ‘I)fz,b =0; ‘I’o,a = - —15a-
Now, from the components of Kirichenko’s tensors in section two, we have the following
theorem:

Theorem 3.2. Suppose that (M>*"+1 & ¢, n, g) is AC-manifold. Then the following conditions are
equivalent:

1. Vx(®)Y — Vax(®)PY = —(Y)®X; X,Y € X(M);
2C=D=F=G=0; E=1id;
3. In the G-structure adjoined space, we have

Bab _ _Bba . BbC:_Bbac;

c ¢ al
Cabc _ Dab — Fab —Ge = 0; % — Eba — 5(()1;
Cabe = Dap = Fap =Gq = 0.
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Corollary 3.3. With the assumption of the Theorem 3.2, equation (2.2) given by
9§:—B“bcwc; 0?2@; 08: ;

09 = —w 6 = 0% 6i+6.=0.

a

where B® , = B, ©; W% = wg; Wy = w™
Proof. From the equation (2.2), the components of Kirichenko’s tensors and the Theorem 3.2, we

have

v/ —1 k
a __ a .
O = 5 P
V—1 a 0 v—1 a c vV—1 a )
= T(ngocu -+ T(I)E,Cw -+ T(I)E,Ew N
V)
2
= —Babcwc.

DL W<
be

and similarly for the remaining components. O

Corollary 3.4. An AC-manifold M of dimension 3, which satisfies the equation (3.1) is Kenmotsu
manifold.

Proof. If we suppose that M satisfies the equation (3.1) and its dimension is 2n+1 = 3. Thenn =
land a,b,c = 1. Moreover, the components of the first structure tensor B are B% . = B!! | and
B, =By 1 But from the Theorem 3.2; item 3, we have B .= — Rba cand B, ©=—-B, ¢
and this implies that B'*; = B;; ! = 0. Since the Kenmotsu manifold satisfies the Theorem 3.2;
item 3 with B% _ = B_, © = 0 according to [11], we derive that M is Kenmotsu manifold. [

Now, we construct an example of AC-manifold of dimension 5, which satisfies (3.1), but is

not Kenmotsu manifold, due to the following:

Example 1. Suppose that (M, £, n, @, g) is an AC-manifold of dimension 5, such that
M = {(x,y,z,u,v) S R5 X2V 75 O}7

and {eg = &, e1, €2, €3, €4} is a basis of X (M), given by

0 0 0 0
e =~ gyt 2= ep(—(v et e =exp(-v) g
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Then we have the following Lie brackets:

le1,e0] = e1;  [ea,e1] = exp(—v)es; [e3,e0] =e3; [es,€0] =eq; [e2,e1] = exp(—v)ey;

[e1,e3] = 0;  [e2,e0] = e2;  [e2,e3] = exp(—v)ea; [ea,ea] = 0; [es, e3] = exp(—v)es.
Moreover, if we have the following:
D(eg) =0; P(e1) =e3; Plex) =eq; Pleg) = —e1; Plesg) = —eg;

n(eo) = 1;  nle1) = nlez) = nles) = nles)

(eneyy =4 0 1T
€i,€5) = . .
TG 0, i#7

where 7, j = 0,1, 2, 3, 4. Then from the Koszul’s formula that given by [6] as follows:

29(VxY,Z) = X(9(Y,2)) +Y(9(X, 2)) — Z(9(X,Y)) — 9(X, [V, Z]) — (Y, [X, Z])
+9(Z,[X,Y)); VX,Y,Z€cX(M).

We deduce the following values of the Riemannian connection V of the metric g:

Veseo = 0 Veer = 0 Vese2 = 0
Veeo = e1; Veger = —ep; Vegea = 0
Ve,e0 = €35 Ve,er = exp(—v)ea; Ve,ea = —exp(—v)(er + e3) — ep;
Veseo = e3; Veger = 0 Veea = 0
Veeo = eq; Veer = exp(—v)es; Ve,ea = 0;
Veo€3 = 0; Veo€a = 0;
Ve,es3 = 0 Vees = 0
Ve, = exp(—v)ea; Ve,eq4 = 0;
Vese3 = —eo; Veea = 0
Ve,es3 = exp(—v)es; Ve,es = —exp(—v)(er +e3) — eop.

Then from the above discussion, we deduce that M/ satisfies the identity (3.1), but M is not Ken-

motsu manifold. For instance, if X = e4 and Y = e then

Vx (@)Y = exp(—v)(ez +e4) # 0 = —g(X, PY)E — n(Y)2X.

4 Cartan’s Structure Equations

In this section, we establish the structure equation of the new class of AC-manifold in section 3

Boothby [4] stated the following assertion:
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Lemma 4.1. Suppose that (M™, g) is Riemannian manifold, w* the dual of the orthonormal frame
and 9;- the connection form of Levi-Civita connection of the metric g, wherei,j = 1,2, ...,n. Then

we have
1. dw' = —9;- A w;
2. d0i = =0, N 0% + S RE, WP AW,
where R; 11 are the components of the Riemannian curvature tensor of type (3, 1), (see [13]).

Now, if we have a class of AC-manifold satisfies the identity (3.1), then the first family of

structure equations of this class is given in the theorem below.
Theorem 4.1. Suppose that M?"! is AC-manifold satisfies the equation (3.1), then we have
1. dw =0;
2. dw?® = —Gg/\wb—i-Babcwc/\wb —w? A w;
3. dw, :02/\wb+Babcwc/\wb—wa/\w.
Proof. We put ¢ = 0, taking into account the Lemma 4.1; item 1, and the Corollary 3.3 we get
dw® = dw = —H?ij = N -0 AW — 2 AW =0.

Once again, regarding the Lemma 4.1; item 1, and the Corollary 3.3, if weput: = a = 1,...,n,

then we have
dw“:—Gg/\wj :—08/\w—9,‘f/\wb—6§/\wb;
= W Aw — 08 Aw® + BP A wy.

On the other hand, if we puti = @ = n + 1, ..., 2n, then the result follows from the conjugate of

the case when 7 = a. O

Now, we can find the second family of the structure equations by using the Theorem 4.1 and

the following lemma:

Lemma 4.2. [14] Suppose that M is a smooth manifold, then there exist a unique operator  d :
A(M) — A(M), satisfies the following properties:

1. d is linear over R.

2. d(A*(M)) € AR (M),
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3. d(w) Awa) = dwy Aws + (—1)F wy A dws, where wi € A¥(M); wy € AY(M).
4 dod=0.
5. For f € C*®(M) and X € X (M), then df (X) = X (f).

Theorem 4.2. The second family of the structure equations of the class of AC-manifold M>*" ! which
satisfies the identity (3.1), is given by

1 doy = —02 N0y + Al‘fgw ANwg+ A, we Aw —f—A“dec/\wd,

2. dB" =B 62— B® 63— B 64+ B* ,w'+ B wy— B w

3.dB,,¢=—-B, %05+ B, 02+ B, ,°0l+ B, “wq + B,,f w! — B, ¢ w,
where A% — B — B By d=0;, AL BB, P B =0,

ac aled alc hld a C
Ay ‘-B | b} + B [ hB| lb] =0; Agcd + Ba[cd] - Ba[c B|h|d] = 0; A[bcd] = ALb 9= 0.

Proof. By applying the exterior differentiation operator d in the Theorem 4.1; item 2 and using
the Lemma 4.2, we get

0= —df Nwb+ 0% A (=65 Aw® + B* jwl Awe — w® Aw)
+dB™ A wC Awy + B (=05 w4+ B, WM Awg — wEAW) Awy
— B WA (B8 Awg + Byy " wn Aw? — wp Aw)
— (=08 Awb 4+ BY W Awp — wt Aw) Aw;

—(dOf 4 0% A 05) Aw® + (dB® ,+ B® 0% + B, A4 — B™ ,07) A wC Aws
Ba[ch Blh‘i] WO A we Awg — B® cWEAWA Wy + Beh b B|h|c‘]l Wb A wC A wy. (4.1)
Suppose that
dog + 02 A 05 = AL 05 N 0] + AZS 05 A wh + AR 05 A wp, + AD 05 Aw + Aflyw A w?
+ AL ° A wg + ALy W Aw + AZ Ge A wg + ALD we A w;
dBabC + Bdbc 03 + BadC ed Babd Hd Babh 9 Bab od wd + Babdc Wy + Babocw
Then the equation (4.1) becomes
— AR IS AOf NP — AR 05 AWt A Wb — AR 05 A wy Aw® — A 05 A w AW
—A’[Ib d] wc/\wd/\wb—A‘ﬁb‘i} WA wg Awb — ‘[lbc} wc/\w/\wb—A“dec/\wd/\wb

—Aacowc/\w/\w +Babhd9h/\w /\wb+B“b[Cd]w A wC /\wb—l—Ba[bd]wd/\w A wp
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Ihld]

—l—Babch/\wc/\wb—Ba[ch WA we A wy — B“bcwc/\w/\wb

+ Bah[b B‘h‘(j wb /\wc/\Wd = 0

Then we get
d d ) d d h d _ .
Abcf - A([Z|0|h] = Ajeo = At[lbcd] - Al[lbdo =0; AFbC] - B [eb] B* [b BWC] =0
Ag‘Cd a[cd] + Ba[c |h|z] —_ 07 Ag,co _ BacOb _ Bacb — 0’ Aadh + Bahlgc =0.

(4.2)

Now, applying the same argument above for the Theorem 4.1; item 3, and using the truth 6% =
—@ and B, ¢ = Bt then we get

AV — gloed) — plodo — g, APdy g g P RN _g,
Agcd + Ba[cg} a Ba[chB|h|£] =0 AZCO + BacO + By b= 0; Aadh ahc?c =0. (43)
Regarding the Theorem 3.2; item 3, we have B [ab] = B _and By = By, % s0 all the compo-

nents of their derivatives have the same property. Then frorn this fact and the equations (4.2) and

(4.3) we deduce the required results. O

5 Riemannian Curvature Tensor and Ricci Tensor

In this section we calculate the components of the Riemannian curvature tensor and the Ricci
tensor of the almost contact metric manifold, which was characterized in the previous sections.
The method of calculation depends on the Lemma 4.1; item 2, Theorem 4.1, Lemma 4.2, and
Theorem 4.2, due to the following:
J+ k/\ ]_5 jklw /\w,
, : 4 R : , 1.
g’ + 65 A 03 + 05 A 05 + 05 A 65 = Rz.cow‘:/\erR;mwcAWnL §R;-cdwc/\wd
—|—R’ Aw A wg + R S We A\ wq. (5.1)

So, there are several cases regarding the values of 4, j = 0, a, a. These cases are designing as the
following:
Case (1). If i = j = 0, then the equation (5.1) and the Corollary 3.3 give

Ri = Riz = Roog = Ry 7= R).2=0.

Case (2). Ifi = a, j = 0, thenaccording to the equation (5.1) and the Corollary 3.3, we obtain

a a. a _ pa _ pa _ pa __
ROCO - _5c’ ROEO_ROcd_ROC&\_ROaj_O‘
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Case (3). Ifi = a, j = b, then taking into account the equation (5.1), the Corollary 3.3 and the
Theorem 4.2, we have

(Agd — Bah By, & — 5% 68wl Awg + ALy w Aw? + A“Cd wWe Awg = Rjgw Aw
1
+R§50wc/\w+§Rl‘fcdwc/\wd+RZ ~w A wg + R S We A\ W
Thus we conclude that
Rch = RI?EO = 0; Rgcd = QAZCd; RZCJ = Agg - Bahc Bbh 4 53 557 RZEc/l\ = 2A(l;wd'

Case(4). Ifi =a, j= E)\, then from the equation (5.1), Corollary 3.3, Theorem 4.1, Lemma 4.2
and Theorem 4.2, we have

(B“b led] — 5? 6Z])wc Aw? + (Babd — Bab Bhd JwWEAwg = R%co wéAw + R%Eo We A w
+ QRZdwc/\derR% ~w’ A wg + R Fwe A wg;
So, we get
Ry = Riy = Big =0 Re, =2B% 1y =0 00); Ryg=B" - B, B"..
From the above cases we have the following theorem:

Theorem 5.1. In the G-structure adjoined space, the components of the Riemannian curvature ten-
sor of the AC-manifold M>" ! which satisfy the identity (3.1), are given by

a J— a,
L 0cO — _50’

2. Rgcd = 2Agcd’.

3. R -=Ajl — B, By, " — 62 5}
b b .

4 By = 2BY o = 0 0g)) 5

5. R@ — Babd Bathhdc‘

and the other components are identical to zero or given by the symmetric property or conjugate to

the above components.

Now, we discuss some properties of the Riemannian curvature tensor, which has components

as mentioned in Theorem 5.1.

R(X,Y)¢ = R, X7Y"e;
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= Rig, X"Y?e; + R - XOVPe; + Ry X'V + R XY,
= 0y XY’ 4+ 6L XOVPe; — 6, XY ¢, — 6L XY 0,

— (X)Y = n(Y)X.

R(X,€)Y = Rjo X Y
= Riyo X"Y'; + Rlz XoY'e; + Rigy XYl + RE | XVie,
= =0y X"Y0ei — 6L X3 Y O2; + 0 6 XY + 6 0 X Vie
= 9(X,Y)§ —n(Y)X.
Suppose that 7 is the Ricci tensor of type (2, 0), then r(X,Y) = g(R(Z,Y)X, Z). So, we
have r(X, §) = g(R(Y,£)X,Y) = —2nn(X).
Thereafter, we compute the components of the Ricci tensor in the G-structure adjoined space
of the class, which satisfies (3.1) due to the following:

Tij = —Rf}k; i,j,k=0,1,...,2n,
— RO _R¢ _RC

170 ijc ijc:
Then for a,b,c=1,...,n, anda = a + n, we have
— 0 c C
Tab = _RabO - Rabc - tlabe
_ c c h c
- _2Aabc + Bcab - Bca Bhb :

ray = — Ry — Ripe — Rope
= =0 = 2(B*  — 0, 09) + Ay — B, By, © = 63
= —2(ndj + B ) + Al — B, By, ©.
From the above discussion we have the following theorem:

Theorem 5.2. The components of the Ricci tensor in the G-structure adjoined space of the AC-
manifold M*" ! which satisfy the identity (3.1), are given by

1. Too = —2n;
2. ra0 = 0;
3. Tap = _QASLbc + BcabC - Bca 4 Bhb 5

4. rap = —2(ndj + B y) + A% — B, B, ©.

and the remaining components are identical to zero or given by the symmetric property or conjugate
to the above components.
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Definition 3. [9] An AC-manifold (M, ®, &, n, g) is called n-Einstein manifold if, it's Ricci tensor

r satisfies the following equation:
r(X,Y) =Ag(X.Y) +pun(X)nY); VXY € X(M) (5.2)
where A, p € C°°(M). In particular, if = 0 then M is called Einstein manifold.

The equation (5.2) equivalent to r;; = A g;; + 1 1; nj, where n; = gojand i, = 0,1, ...,2n
In the rest of this paper, we suppose that M is the AC-manifold of dimension 2n + 1, that satisfies
the identity (3.1).

Theorem 5.3. An AC-manifold M is an Einstein manifold if and only if, the following conditions

hold true:
A=—=2n; A5, =0; B, =B,"By% B“,;=0 A% =B"B,".

cab T

Proof. Regarding the Theorem 5.2, and the equation (2.1) we have rog = —2nggo, then A\ = —2n.
Moreover, we must have r,, = 0 and r3, = —2nd;. This equivalent to the following equations:

2Aabc C_Bca hBhbC = 0; —2B“ [be] +A(CL§_Bahb Bchc =0.
From the fact that B, © = —B,, ¢and B% , = —B" , we get
_2Agbc - BacbC + Bac h Bhb ¢= O; 2B [b] + Agg + Bahb th “=0.

Since Rf,; = 2A} ., = —R},. = —2Af,., then by taking the anisymmetric of the indexes b and

c of the above equations, we obtain

3Aacb (Agcb + Ba[clf] - Ba[ch B|h\bc}) =0; 3B* [be] + (A?ccb] - B* [bc] Bah[c B|h|bc]) =0.

Now, from the Theorem 4.2, we deduce that Af, , = B b = 0 and this gives the result. O

Theorem 5.4. An AC-manifold M is an )-Einstein manifold if and only if, the following conditions
hold good:

1 p
Mp==2n; A% =0; By =By "By By, = 30 A= =B, B, ° —3%:

Proof. Regarding the definition of the 7-Einstein manifold, we have rogg = A 4 p, then A 4 1 =
—2n. Moreover, we must have 7o, = 0 and 73, = A gap = (—2n — p)dj. Similar to the manner

of the proof of Theorem 5.3, we obtain the assertion of this theorem. O

Remark. From the above theorems, it is clearly that A and y are scalars.

Now, suppose that @ is the Ricci operator of the Ricci tensor r of type (2, 0), thatis, r(X,Y) =
9(@X,Y).
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Definition 4. [2] An AC-manifold (M, ®,&,n, g) is said to be of ®-invariant Ricci tensor if, ® o
Q=Qod.

Lemma 5.1. [2] An AC-manifold (M, ®,£, 1, g) has ®-invariant Ricci tensor if and only if, Qg -
Qg = 0, or equivalently, rq0 = rqp = 0.

Theorem 5.5. An AC-manifold M is an Einstein manifold if and only if, M has ®-invariant Ricci

tensor and satisfies the following equations:
A= —2n, B [bd] = 0, gg = Bahb Bch €.
Proof. The result follows from the Theorem 5.3 and the Lemma 5.1. O]

Theorem 5.6. An AC-manifold M is an n-Einstein manifold if and only if, M has ®-invariant Ricci

tensor and satisfies the following equations:

Atp=—2n; B, :%51(}? Zf:BathchC*%ﬁ-
Proof. The assertion of this theorem follows from the Theorem 5.4 and the Lemma 5.1. O
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