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A Study of New Class of Almost Contact Metric Manifolds of
Kenmotsu Type

Habeeb M. Abood and Mohammed Y. Abass

Abstract. In this paper, we characterized a new class of almost contact metric manifolds and
established the equivalent conditions of the characterization identity in term of Kirichenko’s
tensors. We demonstrated that the Kenmotsumanifold provides thementioned class; i.e., the
new class can be decomposed into a direct sumof theKenmotsu and other classes. We proved
that the manifold of dimension 3 coincided with the Kenmotsu manifold and provided an
example of the newmanifold of dimension 5, which is not theKenmotsumanifold. Moreover,
we established the Cartan’s structure equations, the components of Riemannian curvature
tensor and the Ricci tensor of the class under consideration. Further, the conditions required
for this to be an Einstein manifold have been determined.

1 Introduction

In 1972, Kenmotsu [9] studied a class of almost contactmetricmanifolds that satisfied the identity
∇X(Φ)Y = −g(X,ΦY )ξ−η(Y )ΦX . In particular, he proved that it is a class of constant curva-
ture (−1). Kenmotsu manifolds are different from the Sasakian manifolds, as discussed by Sasaki
[16], on several sides; one of these sides is the Sasakian manifold of constant curvature (+1), ac-
cording to Tanno’s classification [18]. In 1990, Chinea and Gonzalez [5] classified the almost con-
tact metric manifolds, with the Kenmotsu manifolds falling under class C5. In 2001, Kirichenko
[10] constructed a Kenmotsu structure by taking into consideration a con-circular transforma-
tion of a cosymplectic structure. In 2002, Umnova [19] determined the Cartan’s structure equa-
tions and the components of the Riemannian curvature tensor, the Ricci tensor of the Kenmotsu
manifolds, and the nearly Kenmotsumanifolds in the G-structure adjoined space. Later, many re-
searchers studied the Kenmotsumanifolds, the almost Kenmotsumanifolds, the nearly Kenmotsu
manifolds and the conformal Kenmotsu manifolds. For more details, we furnish the following ci-
tations [1], [7], [8], [15], and [17].
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2 Preliminaries

We denote M2n+1, X(M), Λ(M) and d, the smooth manifold M of dimension 2n + 1, mod-
ule of smooth vector fields ofM , Grassmann algebra onM and exterior differentiation operator
respectively.

Definition 1. [3] An almost contact metric manifold (AC-manifold) is a Riemannian manifold
(M2n+1, g) with the family of tensors {Φ, ξ, η}, where Φ is a (1, 1)-tensor, ξ is a vector field and
η is a 1-form, such that

Φ(ξ) = 0; η(ξ) = 1; η ◦ Φ = 0; Φ2 = −id+ η ⊗ ξ;

g(ΦX,ΦY ) = g(X,Y )− η(X)η(Y ); ∀X,Y ∈ X(M).

Moreover, if dη ̸= 0 then (M2n+1,Φ, ξ, η, g) is called a contact metric manifold.

Now, suppose that XC(M) is the complexification of the module X(M). Then XC(M)

decomposes into direct sum as the following [11]:

XC(M) = LC ⊕D0
Φ = D

√
−1

Φ ⊕D−
√
−1

Φ ⊕D0
Φ;

where LC is the complexification of L = Im(Φ) and D0
Φ = ker(Φ) such that dimL = 2n and

dimD0
Φ = 1. Whereas each of D

√
−1

Φ and D−
√
−1

Φ has dimension n. Then we have projections
fromX(M) intoD

√
−1

Φ andD−
√
−1

Φ respectively, which are defined by

Π = −1

2
(Φ2 +

√
−1Φ); Π =

1

2
(−Φ2 +

√
−1Φ).

There are another projections from L intoD
√
−1

Φ andD−
√
−1

Φ respectively, are given by

σ =
1

2
(id−

√
−1Φ); σ =

1

2
(id+

√
−1Φ).

Since the almost contact metric manifold has the structure group U(n) × {e}, then for any
orthonormal basis {ξ, e1, ..., en, e1̂, ..., en̂} ofX(M), we can define an A-frame as

(p; ξp, ε1, ..., εn, ε1̂, ..., εn̂),

where p ∈ M , εa =
√
2σ(ea), εâ =

√
2σ(ea), a = 1, ..., n, and â = a+ n.

Definition 2. [11] The set of all A-frames of AC-manifold M is called a G-structure adjoined
space.
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In the G-structure adjoined space, the metric g and the tensorΦ take the following formulas
[19]:

(gij) =

 1 0 0

0 O In

0 In O

 ; (Φi
j) =

 0 0 0

0
√
−1In O

0 O −
√
−1In

 (2.1)

where i, j = 0, 1, ..., 2n and In is n× n identity matrix.

In [11], Kirichenko defined tensors which are called first, second, ..., and sixth structure ten-
sors, represented by the following formulas respectively:

B(X,Y ) = −1

8
{Φ ◦ ∇Φ2Y (Φ)(Φ

2X) + Φ ◦ ∇ΦY (Φ)(ΦX) + Φ2 ◦ ∇ΦY (Φ)(Φ
2X)

− Φ2 ◦ ∇Φ2Y (Φ)(ΦX)};

C(X,Y ) = −1

8
{−Φ ◦ ∇Φ2Y (Φ)(Φ

2X) + Φ ◦ ∇ΦY (Φ)(ΦX) + Φ2 ◦ ∇ΦY (Φ)(Φ
2X)

+ Φ2 ◦ ∇Φ2Y (Φ)(ΦX)};

D(X) =
1

4
{2Φ ◦ ∇Φ2X(Φ)ξ − 2Φ2 ◦ ∇ΦX(Φ)ξ − Φ ◦ ∇ξ(Φ)(Φ

2X) + Φ2 ◦ ∇ξ(Φ)(ΦX)};

E(X) = −1

2
{Φ ◦ ∇Φ2X(Φ)ξ +Φ2 ◦ ∇ΦX(Φ)ξ};

F (X) =
1

2
{Φ ◦ ∇Φ2X(Φ)ξ − Φ2 ◦ ∇ΦX(Φ)ξ};

G = Φ ◦ ∇ξ(Φ)ξ.

The nonzero components of Kirichenko’s tensors in the G-structure adjoined space have the fol-
lowing formulas respectively:

1. Bab
c = −1

2

√
−1Φa

b̂,c
; B c

ab = 1
2

√
−1Φâ

b,ĉ;

2. Cabc = 1
2

√
−1Φa

b̂,ĉ
; Cabc = −1

2

√
−1Φâ

b,c;

3. Dab =
√
−1(Φa

0,̂b
− 1

2Φ
a
b̂,0
); Dab = −

√
−1(Φâ

0,b −
1
2Φ

â
b,0);

4. Ea
b =

√
−1Φa

0,b; E b
a = −

√
−1Φâ

0,̂b
;

5. F ab =
√
−1Φ0

â,̂b
; Fab = −

√
−1Φ0

a,b;

6. Ga = −
√
−1Φ0

â,0; Ga =
√
−1Φ0

a,0;

where a, b, c = 1, ..., n and â = a+ n.
If we suppose that∇ is the Riemannian connection and θ its connection form, from [12], we
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have the following:

θa
b̂

=
√
−1
2 Φa

b̂,k
ωk; θâb = −

√
−1
2 Φâ

b,kω
k; Φa

b,k = 0;

θ0â =
√
−1Φ0

â,kω
k; θ0a = −

√
−1Φ0

a,kω
k; Φâ

b̂,k
= 0;

θâ0 = −
√
−1Φâ

0,kω
k; θa0 =

√
−1Φa

0,kω
k; Φ0

0,k = 0.

(2.2)

Moreover, θij + θĵ
î
= 0; θ00 = 0; Φi

j,k = −Φĵ

î,k
, where i, j, k = 0, a, â and ̂̂i = i.

3 New Class of Almost Contact Metric Manifold

In this section we introduce a new class of almost contact metric manifold (M,Φ, ξ, η, g), char-
acterized by the following identity:

∇X(Φ)Y −∇ΦX(Φ)ΦY = −η(Y )ΦX; ∀X,Y ∈ X(M) (3.1)

We note that the Kenmotsu manifold satisfies the equation (3.1), which means that the Kenmotsu
manifold is a special class of our class.

Now, we characterize the identity (3.1) in the G-structure adjoined space as follows:

(Φi
j,kX

kY j − Φi
j,k(ΦX)k(ΦY )j)εi = −ηjΦ

i
kX

kY jεi; i, j, k = 0, 1, ..., n, 1̂, ..., n̂.

Since (ΦX)0 = 0; (ΦX)a =
√
−1Xa; (ΦX)â = −

√
−1X â and regarding the matrix of Φ in

equation (2.1), we get the following assertion:

Theorem 3.1. In G-structure adjoined space, the equation (3.1) equivalent to the following condi-
tions:

Φi
j,0 = Φb̂

0,a = Φi
a,b = 0; Φb

0,a = −
√
−1δba.

Now, from the components of Kirichenko’s tensors in section two, we have the following
theorem:

Theorem 3.2. Suppose that (M2n+1,Φ, ξ, η, g) is AC-manifold. Then the following conditions are
equivalent:

1. ∇X(Φ)Y −∇ΦX(Φ)ΦY = −η(Y )ΦX; X,Y ∈ X(M);

2. C = D = F = G = 0; E = id;

3. In the G-structure adjoined space, we have

Bab
c = −Bba

c; B c
ab = −B c

ba ;

Cabc = Dab = F ab = Ga = 0; Ea
b = E a

b = δab ;

Cabc = Dab = Fab = Ga = 0.
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Corollary 3.3. With the assumption of the Theorem 3.2, equation (2.2) given by

θa
b̂
= −Bab

c ω
c; θâb = θa

b̂
; θ00 = 0;

θ0â = −ωa; θ0a = θ0â; θij + θĵ
î
= 0.

where Bab
c = B c

ab ; ωa = ωa; ωa = ωa.

Proof. From the equation (2.2), the components of Kirichenko’s tensors and theTheorem 3.2, we
have

θa
b̂
=

√
−1

2
Φa
b̂,k

ωk;

=

√
−1

2
Φa
b̂,0

ω0 +

√
−1

2
Φa
b̂,c

ωc +

√
−1

2
Φa
b̂,ĉ

ωĉ;

=

√
−1

2
Φa
b̂,c

ωc;

= −Bab
c ω

c.

and similarly for the remaining components.

Corollary 3.4. An AC-manifoldM of dimension 3, which satisfies the equation (3.1) is Kenmotsu
manifold.

Proof. If we suppose thatM satisfies the equation (3.1) and its dimension is 2n+1 = 3. Thenn =

1 and a, b, c = 1. Moreover, the components of the first structure tensorB areBab
c = B11

1 and
B c

ab = B 1
11 . But from theTheorem 3.2; item 3, we have Bab

c = −Bba
c and B c

ab = −B c
ba

and this implies thatB11
1 = B 1

11 = 0. Since the Kenmotsu manifold satisfies theTheorem 3.2;
item 3 with Bab

c = B c
ab = 0 according to [11], we derive thatM is Kenmotsu manifold.

Now, we construct an example of AC-manifold of dimension 5, which satisfies (3.1), but is
not Kenmotsu manifold, due to the following:

Example 1. Suppose that (M, ξ, η,Φ, g) is an AC-manifold of dimension 5, such that

M = {(x, y, z, u, v) ∈ R5 : xzv ̸= 0};

and {e0 = ξ, e1, e2, e3, e4} is a basis ofX(M), given by

e0 =
∂

∂v
; e1 = exp(−v)

∂

∂x
; e2 = exp(−(v + x+ z))

∂

∂y
; e3 = exp(−v)

∂

∂z
;

e4 = exp(−(v + x+ z))
∂

∂u
.
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Then we have the following Lie brackets:

[e1, e0] = e1; [e4, e1] = exp(−v)e4; [e3, e0] = e3; [e4, e0] = e4; [e2, e1] = exp(−v)e2;

[e1, e3] = 0; [e2, e0] = e2; [e2, e3] = exp(−v)e2; [e2, e4] = 0; [e4, e3] = exp(−v)e4.

Moreover, if we have the following:

Φ(e0) = 0; Φ(e1) = e3; Φ(e2) = e4; Φ(e3) = −e1; Φ(e4) = −e2;

η(e0) = 1; η(e1) = η(e2) = η(e3) = η(e4) = 0;

g(ei, ej) =

{
1, i = j;
0, i ̸= j;

where i, j = 0, 1, 2, 3, 4. Then from the Koszul’s formula that given by [6] as follows:

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X,Y ))− g(X, [Y, Z])− g(Y, [X,Z])

+ g(Z, [X,Y ]); ∀X,Y, Z ∈ X(M).

We deduce the following values of the Riemannian connection∇ of the metric g:

∇e0e0 = 0; ∇e0e1 = 0; ∇e0e2 = 0;

∇e1e0 = e1; ∇e1e1 = −e0; ∇e1e2 = 0;

∇e2e0 = e2; ∇e2e1 = exp(−v)e2; ∇e2e2 = − exp(−v)(e1 + e3)− e0;

∇e3e0 = e3; ∇e3e1 = 0; ∇e3e2 = 0;

∇e4e0 = e4; ∇e4e1 = exp(−v)e4; ∇e4e2 = 0;

∇e0e3 = 0; ∇e0e4 = 0;

∇e1e3 = 0; ∇e1e4 = 0;

∇e2e3 = exp(−v)e2; ∇e2e4 = 0;

∇e3e3 = −e0; ∇e3e4 = 0;

∇e4e3 = exp(−v)e4; ∇e4e4 = − exp(−v)(e1 + e3)− e0.

Then from the above discussion, we deduce thatM satisfies the identity (3.1), butM is not Ken-
motsu manifold. For instance, ifX = e4 and Y = e1 then

∇X(Φ)Y = exp(−v)(e2 + e4) ̸= 0 = −g(X,ΦY )ξ − η(Y )ΦX.

4 Cartan’s Structure Equations

In this section, we establish the structure equation of the new class of AC-manifold in section 3
Boothby [4] stated the following assertion:
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Lemma 4.1. Suppose that (Mn, g) is Riemannian manifold, ωi the dual of the orthonormal frame
and θij the connection form of Levi-Civita connection of the metric g, where i, j = 1, 2, ..., n. Then
we have

1. dωi = −θij ∧ ωj ;

2. dθij = −θik ∧ θkj + 1
2R

i
jkl ω

k ∧ ωl,

where Ri
jkl are the components of the Riemannian curvature tensor of type (3, 1), (see [13]).

Now, if we have a class of AC-manifold satisfies the identity (3.1), then the first family of
structure equations of this class is given in the theorem below.

Theorem 4.1. Suppose thatM2n+1 is AC-manifold satisfies the equation (3.1), then we have

1. dω = 0;

2. dωa = −θab ∧ ωb +Bab
c ω

c ∧ ωb − ωa ∧ ω;

3. dωa = θba ∧ ωb +B c
ab ωc ∧ ωb − ωa ∧ ω.

Proof. We put i = 0, taking into account the Lemma 4.1; item 1, and the Corollary 3.3 we get

dω0 = dω = −θ0j ∧ ωj = −θ00 ∧ ω0 − θ0a ∧ ωa − θ0â ∧ ωâ = 0.

Once again, regarding the Lemma 4.1; item 1, and the Corollary 3.3, if we put i = a = 1, ..., n,
then we have

dωa = −θaj ∧ ωj = −θa0 ∧ ω − θab ∧ ωb − θa
b̂
∧ ωb̂;

= −ωa ∧ ω − θab ∧ ωb +Bab
c ω

c ∧ ωb.

On the other hand, if we put i = â = n+ 1, ..., 2n, then the result follows from the conjugate of
the case when i = a.

Now, we can find the second family of the structure equations by using theTheorem 4.1 and
the following lemma:

Lemma 4.2. [14] Suppose that M is a smooth manifold, then there exist a unique operator d :

Λ(M) → Λ(M), satisfies the following properties:

1. d is linear over R.

2. d(Λk(M)) ⊂ Λk+1(M).
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3. d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k ω1 ∧ dω2, where ω1 ∈ Λk(M); ω2 ∈ Λl(M).

4. d ◦ d = 0.

5. For f ∈ C∞(M) andX ∈ X(M), then df(X) = X(f).

Theorem4.2. The second family of the structure equations of the class of AC-manifoldM2n+1 which
satisfies the identity (3.1), is given by

1. dθab = −θac ∧ θcb +Aad
bc ωc ∧ ωd +Aa

bcd ω
c ∧ ωd +Aacd

b ωc ∧ ωd;

2. dBab
c = Bab

d θ
d
c −Bdb

c θ
a
d −Bad

c θ
b
d +Bab

cd ω
d +Babd

c ωd −Bab
c ω;

3. dB c
ab = −B d

ab θcd +B c
db θda +B c

ad θdb +B cd
ab ωd +B c

abd ωd −B c
ab ω,

where Aad
[bc] −Bad

[cb] −Bah
[b B

d
|h|c] = 0; A

[bc]
ad +B

[cb]
ad +B

[b
ah B

|h|c]
d = 0;

Aacd
b −B

a[cd]
b +B

a[c
hB

|h|d]
b = 0; Ab

acd +B b
a[cd] −B h

a[c B b
|h|d] = 0; Aa

[bcd] = A[bcd]
a = 0.

Proof. By applying the exterior differentiation operator d in the Theorem 4.1; item 2 and using
the Lemma 4.2, we get

0 = −dθab ∧ ωb + θab ∧ (−θbc ∧ ωc +Bbc
d ω

d ∧ ωc − ωb ∧ ω)

+ dBab
c ∧ ωc ∧ ωb +Bab

c(−θcd ∧ ωd +Bcd
h ωh ∧ ωd − ωc ∧ ω) ∧ ωb

−Bab
c ω

c ∧ (θdb ∧ ωd +B h
bd ωh ∧ ωd − ωb ∧ ω)

− (−θab ∧ ωb +Bab
c ω

c ∧ ωb − ωa ∧ ω) ∧ ω;

0 = −(dθab + θac ∧ θcb) ∧ ωb + (dBab
c +Bdb

c θ
a
d +Bad

c ∧ θbd −Bab
d θ

d
c ) ∧ ωc ∧ ωb

−B
a[c

h B
|h|d]

b ωb ∧ ωc ∧ ωd −Bab
c ω

c ∧ ω ∧ ωb +Bah
[b B

d
|h|c] ω

b ∧ ωc ∧ ωd. (4.1)

Suppose that

dθab + θac ∧ θcb = Aadh
bcf θcd ∧ θfh +Aad

bch θcd ∧ ωh +Aadh
bc θcd ∧ ωh +Aad

bc0 θ
c
d ∧ ω +Aa

bcd ω
c ∧ ωd

+Aad
bc ωc ∧ ωd +Aa

bc0 ω
c ∧ ω +Aacd

b ωc ∧ ωd +Aac0
b ωc ∧ ω;

dBab
c +Bdb

c θ
a
d +Bad

c θ
b
d −Bab

d θ
d
c = Babh

cd θ
d
h +Bab

cd ω
d +Babd

c ωd +Bab0
c ω.

Then the equation (4.1) becomes

−Aadh
bcf θcd ∧ θfh ∧ ωb −Aad

[b|c|h] θ
c
d ∧ ωh ∧ ωb −Aadh

bc θcd ∧ ωh ∧ ωb −Aad
bc0 θ

c
d ∧ ω ∧ ωb

−Aa
[bcd] ω

c ∧ ωd ∧ ωb −Aad
[bc] ω

c ∧ ωd ∧ ωb −Aa
[bc]0 ω

c ∧ ω ∧ ωb −Aacd
b ωc ∧ ωd ∧ ωb

−Aac0
b ωc ∧ ω ∧ ωb +Babh

cd θ
d
h ∧ ωc ∧ ωb +Bab

[cd] ω
d ∧ ωc ∧ ωb +Ba[bd]

c ωd ∧ ωc ∧ ωb
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+Bab0
c ω ∧ ωc ∧ ωb −B

a[c
h B

|h|d]
b ωb ∧ ωc ∧ ωd −Bab

c ω
c ∧ ω ∧ ωb

+Bah
[b B

d
|h|c] ω

b ∧ ωc ∧ ωd = 0.

Then we get

Aadh
bcf = Aad

[b|c|h] = Aad
bc0 = Aa

[bcd] = Aa
[bc]0 = 0; Aad

[bc] −Bad
[cb] −Bah

[b B
d

|h|c] = 0;

Aacd
b −B

a[cd]
b +B

a[c
hB

|h|d]
b = 0; Aac0

b −Bac0
b −Bac

b = 0; Aadh
bc +Bahd

bc = 0.

(4.2)

Now, applying the same argument above for the Theorem 4.1; item 3, and using the truth θba =

−θab andB c
ab = Bab

c, then we get

A
[b|c|h]
ad = A[bcd]

a = A[bc]0
a = 0; A

[bc]
ad +B

[cb]
ad +B

[b
ah B

|h|c]
d = 0;

Ab
acd +B b

a[cd] −B h
a[c B b

|h|d] = 0; Ab
ac0 +B b

ac0 +B b
ac = 0; Abc

adh −B bc
ahd = 0. (4.3)

Regarding the Theorem 3.2; item 3, we have B[ab]
c = Bab

c and B c
[ab] = B c

ab , so all the compo-
nents of their derivatives have the same property. Then from this fact and the equations (4.2) and
(4.3) we deduce the required results.

5 Riemannian Curvature Tensor and Ricci Tensor

In this section we calculate the components of the Riemannian curvature tensor and the Ricci
tensor of the almost contact metric manifold, which was characterized in the previous sections.
The method of calculation depends on the Lemma 4.1; item 2, Theorem 4.1, Lemma 4.2, and
Theorem 4.2, due to the following:

dθij + θik ∧ θkj =
1

2
Ri

jkl ω
k ∧ ωl;

dθij + θi0 ∧ θ0j + θic ∧ θcj + θiĉ ∧ θĉj = Ri
jc0 ω

c ∧ ω +Ri
jĉ0 ωc ∧ ω +

1

2
Ri

jcd ω
c ∧ ωd

+Ri
jcd̂

ωc ∧ ωd +
1

2
Ri

jĉd̂
ωc ∧ ωd. (5.1)

So, there are several cases regarding the values of i, j = 0, a, â. These cases are designing as the
following:
Case (1). If i = j = 0, then the equation (5.1) and the Corollary 3.3 give

R0
0c0 = R0

0ĉ0 = R0
0cd = R0

0cd̂
= R0

0ĉd̂
= 0.

Case (2). If i = a, j = 0, then according to the equation (5.1) and the Corollary 3.3, we obtain

Ra
0c0 = −δac ; Ra

0ĉ0 = Ra
0cd = Ra

0cd̂
= Ra

0ĉd̂
= 0.
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Case (3). If i = a, j = b, then taking into account the equation (5.1), the Corollary 3.3 and the
Theorem 4.2, we have

(Aad
bc −Bah

c B
d

bh − δac δdb )ω
c ∧ ωd +Aa

bcd ω
c ∧ ωd +Aacd

b ωc ∧ ωd = Ra
bc0 ω

c ∧ ω

+Ra
bĉ0 ωc ∧ ω +

1

2
Ra

bcd ω
c ∧ ωd +Ra

bcd̂
ωc ∧ ωd +

1

2
Ra

bĉd̂
ωc ∧ ωd.

Thus we conclude that

Ra
bc0 = Ra

bĉ0 = 0; Ra
bcd = 2Aa

bcd; Ra
bcd̂

= Aad
bc −Bah

c B
d

bh − δac δdb ; Ra
bĉd̂

= 2Aacd
b .

Case (4). If i = a, j = b̂, then from the equation (5.1), Corollary 3.3, Theorem 4.1, Lemma 4.2
andTheorem 4.2, we have

(Bab
[cd] − δa[c δ

b
d])ω

c ∧ ωd + (Babd
c −Bab

h Bhd
c)ω

c ∧ ωd = Ra
b̂c0

ωc ∧ ω +Ra
b̂ĉ0

ωc ∧ ω

+
1

2
Ra

b̂cd
ωc ∧ ωd +Ra

b̂cd̂
ωc ∧ ωd +

1

2
Ra

b̂ĉd̂
ωc ∧ ωd;

So, we get

Ra
b̂c0

= Ra
b̂ĉ0

= Ra
b̂ĉd̂

= 0; Ra
b̂cd

= 2(Bab
[cd] − δa[c δ

b
d]); Ra

b̂cd̂
= Babd

c −Bab
h Bhd

c.

From the above cases we have the following theorem:

Theorem 5.1. In the G-structure adjoined space, the components of the Riemannian curvature ten-
sor of the AC-manifoldM2n+1 which satisfy the identity (3.1), are given by

1. Ra
0c0 = −δac ;

2. Ra
bcd = 2Aa

bcd;

3. Ra
bcd̂

= Aad
bc −Bah

c B
d

bh − δac δdb ;

4. Ra
b̂cd

= 2(Bab
[cd] − δa[c δ

b
d]) ;

5. Ra
b̂cd̂

= Babd
c −Bab

h Bhd
c.

and the other components are identical to zero or given by the symmetric property or conjugate to
the above components.

Now, we discuss some properties of the Riemannian curvature tensor, which has components
as mentioned inTheorem 5.1.

R(X,Y )ξ = Ri
0jk X

jY kεi
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= Ri
00b X

0Y bεi +Ri
00b̂

X0Y b̂εi +Ri
0b0 X

bY 0εi +Ri
0b̂0

X b̂Y 0εi

= δib X
0Y bεi + δi

b̂
X0Y b̂εi − δib X

bY 0εi − δi
b̂
X b̂Y 0εi

= η(X)Y − η(Y )X.

R(X, ξ)Y = Ri
jk0 X

kY jεi

= Ri
0b0 X

bY 0εi +Ri
0b̂0

XbY
0εi +Ri

bĉ0 XcY
bεi +Ri

b̂c0
XcYbεi

= −δib X
bY 0εi − δi

b̂
XbY

0εi + δi0 δ
c
b XcY

bεi + δi0 δ
b
c X

cYbεi

= g(X,Y )ξ − η(Y )X.

Suppose that r is the Ricci tensor of type (2, 0), then r(X,Y ) = g(R(Z, Y )X,Z). So, we
have r(X, ξ) = g(R(Y, ξ)X,Y ) = −2nη(X).

Thereafter, we compute the components of the Ricci tensor in the G-structure adjoined space
of the class, which satisfies (3.1) due to the following:

rij = −Rk
ijk; i, j, k = 0, 1, ..., 2n,

= −R0
ij0 −Rc

ijc −Rĉ
ijĉ.

Then for a, b, c = 1, ..., n, and â = a+ n, we have

rab = −R0
ab0 −Rc

abc −Rĉ
abĉ

= −2Ac
abc +B c

cab −B h
ca B c

hb .

râb = −R0
âb0 −Rc

âbc −Rĉ
âbĉ

= −δab − 2(Bca
[bc] − δc[b δ

a
c]) +Aac

cb −Bah
b B

c
ch − δab δcc

= −2(nδab +Bca
[bc]) +Aac

cb −Bah
b B

c
ch .

From the above discussion we have the following theorem:

Theorem 5.2. The components of the Ricci tensor in the G-structure adjoined space of the AC-
manifoldM2n+1 which satisfy the identity (3.1), are given by

1. r00 = −2n;

2. ra0 = 0;

3. rab = −2Ac
abc +B c

cab −B h
ca B c

hb ;

4. râb = −2(nδab +Bca
[bc]) +Aac

cb −Bah
b B

c
ch .

and the remaining components are identical to zero or given by the symmetric property or conjugate
to the above components.
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Definition 3. [9]AnAC-manifold (M,Φ, ξ, η, g) is called η-Einsteinmanifold if, it’s Ricci tensor
r satisfies the following equation:

r(X,Y ) = λ g(X,Y ) + µ η(X) η(Y ); ∀X,Y ∈ X(M) (5.2)

where λ, µ ∈ C∞(M). In particular, if µ = 0 thenM is called Einstein manifold.

The equation (5.2) equivalent to rij = λ gij +µ ηi ηj , where ηj = g0j and i, j = 0, 1, ..., 2n.
In the rest of this paper, we suppose that M̃ is the AC-manifold of dimension 2n+1, that satisfies
the identity (3.1).

Theorem 5.3. An AC-manifold M̃ is an Einstein manifold if and only if, the following conditions
hold true:

λ = −2n; Ac
abc = 0; B c

cab = B h
ca B c

hb ; Bca
[bc] = 0; Aac

cb = Bah
b B

c
ch .

Proof. Regarding theTheorem 5.2, and the equation (2.1) we have r00 = −2ng00, then λ = −2n.
Moreover, we must have rab = 0 and râb = −2nδab . This equivalent to the following equations:

−2Ac
abc +B c

cab −B h
ca B c

hb = 0; −2Bca
[bc] +Aac

cb −Bah
b B

c
ch = 0.

From the fact thatB c
ab = −B c

ba andBab
c = −Bba

c, we get

−2Ac
abc −B c

acb +B h
ac B c

hb = 0; 2Bac
[bc] +Aac

cb +Bah
b B

c
hc = 0.

Since Ra
bcd = 2Aa

bcd = −Ra
bdc = −2Aa

bdc, then by taking the anisymmetric of the indexes b and
c of the above equations, we obtain

3Ac
acb − (Ac

acb +B c
a[cb] −B h

a[c B c
|h|b]) = 0; 3Bac

[bc] + (Aac
[cb] −Bac

[bc] −Bah
[c B

c
|h|b]) = 0.

Now, from theTheorem 4.2, we deduce that Ac
acb = Bac

[bc] = 0 and this gives the result.

Theorem 5.4. An AC-manifold M̃ is an η-Einstein manifold if and only if, the following conditions
hold good:

λ+µ = −2n; Ac
abc = 0; B c

cab = B h
ca B c

hb ; Bca
[bc] =

µ

3
δab ; Aac

cb = Bah
bB

c
ch −µ

3
δab .

Proof. Regarding the definition of the η-Einstein manifold, we have r00 = λ+ µ, then λ+ µ =

−2n. Moreover, we must have rab = 0 and râb = λ gâb = (−2n− µ)δab . Similar to the manner
of the proof of Theorem 5.3, we obtain the assertion of this theorem.

Remark. From the above theorems, it is clearly that λ and µ are scalars.
Now, suppose thatQ is theRicci operator of theRicci tensor r of type (2, 0), that is, r(X,Y ) =

g(QX,Y ).
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Definition 4. [2] An AC-manifold (M,Φ, ξ, η, g) is said to be of Φ-invariant Ricci tensor if, Φ ◦
Q = Q ◦ Φ.

Lemma 5.1. [2] An AC-manifold (M,Φ, ξ, η, g) has Φ-invariant Ricci tensor if and only if,Qâ
0 =

Qâ
b = 0, or equivalently, ra0 = rab = 0.

Theorem 5.5. An AC-manifold M̃ is an Einstein manifold if and only if, M̃ has Φ-invariant Ricci
tensor and satisfies the following equations:

λ = −2n; Bca
[bc] = 0; Aac

cb = Bah
b B

c
ch .

Proof. The result follows from theTheorem 5.3 and the Lemma 5.1.

Theorem 5.6. AnAC-manifold M̃ is an η-Einstein manifold if and only if, M̃ hasΦ-invariant Ricci
tensor and satisfies the following equations:

λ+ µ = −2n; Bca
[bc] =

µ

3
δab ; Aac

cb = Bah
b B

c
ch − µ

3
δab .

Proof. The assertion of this theorem follows from theTheorem 5.4 and the Lemma 5.1.
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